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Background. Several studies have demonstrated that acetylation was involved in the process of liver cancer. This study aimed to
establish an effective predictive prognostic model using acetylation regulation genes in liver cancer. Methods. Two datasets
were downloaded from the Cancer Genome Atlas (TCGA) database and International Cancer Genome Consortium (ICGC)
database. Differentially expressed acetylation regulation genes were identified in the TCGA-LIHC dataset, and then, Gene
Ontology (GO) functional annotation analysis was used to investigate the molecular mechanism. After grouping the patients
into clusters based on consensus clustering, we explored the correlation between clusters and clinical characteristics. A risk
model was constructed by the least absolute shrinkage and selection operator (LASSO) regression analysis to calculate the risk
score. Patients were divided into high-risk and low-risk groups according to the risk score using the acetylation regulation
genes. Data downloaded from LIRI-JP were used for external validation. Univariate and multivariate Cox regressions were
performed to identify independent risk factors. A prognostic nomogram was constructed according to the TCGA-LIHC
dataset. The effect of HDAC11 expression on the proliferation and migration of liver cancer was detected by the CCK-8
method and cell scratch test, respectively. Results. Eleven of 29 acetylation regulation genes were identified as upregulated
differentially expressed genes. Go enrichment analysis showed that they were involved in “protein and histone deacylation and
deacetylation.” Patients were categorized into two clusters according to the expression of 29 acetylation regulation genes.
Compared with cluster 2, cluster 1 correlated with shorter overall survival (OS) and higher expression. Stage, T stage, grade,
gender, age, and follow-up state were significantly different between two clusters. Pathways involved in DNA repair were
significantly enriched in cluster 1. The risk score was calculated by HDAC1, HDAC2, HDAC4, HDAC11, HAT1, and SIRT6.
Patients in the high-risk group had a worse prognosis in both datasets. Risk score was not only an independent prognostic
marker but could also predict the clinicopathological features of liver cancer. A nomogram containing risk score, T stage, and
M stage was built to predict overall survival. After transfection with HDAC11 overexpression plasmid, the proliferation ability
of HepG2 cells increased, while the migration ability had no change. Conclusions. Our findings suggested that acetylation
regulation genes contribute to malignant progression and have a clinical prognostic impact on liver cancer.

1. Introduction

Primary liver cancer comprises hepatocellular carcinoma,
intrahepatic cholangiocarcinoma, and other rare tumors
[1]. The prognosis for liver cancer is poor [2]. Neither cur-

rent ablation therapies nor chemotherapy is appreciably
effective in improving outcomes of this devastating disease
[2]. Therefore, it is a priority for us to identify high-risk
patients and ascertain novel therapeutic targets as well as
effective treatment options for this disease.
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Since being proposed, considerable evidence supports
the pivotal role of cancer stem-like cells (CSCs) in patholog-
ical self-renewal, drug resistance, and cellular heterogeneity
of cancer. Meanwhile, the epigenetic aberration in normal
developmental processes is a key driver of CSC-like proper-
ties [3, 4]. Epigenetic modifications, including DNA methyl-
ation, histone modification, nucleosome remodeling, and
RNA-mediated targeting, regulate many biological processes
that are fundamental to the genesis of cancer [5]. Acetylation
is one of the most important protein modifications, which
contributes to several chromatin-dependent processes, such
as DNA replication, damage and repair, transcriptional acti-
vation, cell cycle, and gene regulation [3], and in turn mod-
ulates cellular activities like proliferation, differentiation, and
migration [6]. The dynamic process is regulated by the bal-
ance between histone acetyltransferases (HATs) and deace-
tylases (HDACs) [6]. Previous studies have revealed that
several members in HATs and HDACs are involved in liver
cancer progression [7–9], growth [10], proliferation, migra-
tion [7, 11], and chemoresistance [12]. It has been observed
that in different databases, several HDACs increase with a
strong expression variant in liver cancer compared to adja-
cent normal tissues [13]. Also, some HDACs inhibitor can
activate apoptosis in liver cancer [14] and has been approved
as a potential treatment for early-stage liver cancer in animal
trials [15] and cell experiments [13]. However, most previ-
ous studies focus on the effect of a single gene, while the pre-
cise role of each HATs and HDACs in regulating
tumorigenesis remains unclear. Because of the overlap of
the target genes of acetylation regulation genes and the exis-
tence of joint regulation by the same factor [16], the profile
of cellular acetylation status and gene expression level is of
great importance to exploring new treatments and assessing
the potential benefit of the existing inhibitors.

Therefore, through this novel study, we attempt to estab-
lish an effective predictive prognostic model using acetyla-
tion regulation genes in liver cancer. We detected 11
different expression genes (DEGs) between liver tumor tis-
sue and adjacent normal tissues by systematically analyzing
the expression of 29 acetylation regulation genes in TCGA-
LIHC cohort. Gene Ontology (GO) functional annotation
analysis was performed using these 11 DEGs to explore the
underlying molecular mechanism. Next, we divided patients
into two clusters according to 29 acetylation regulation
genes’ expression and confirmed the relation between clus-
tering and malignant progression. Gene set enrichment
analysis (GSEA) was used to find various Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathways that might
explain the mechanism of different prognoses enriched in
different clusters. Besides, we built a risk model including
HDAC1, HDAC2, HDAC4, HDAC11, HAT1, and SIRT6
through the least absolute shrinkage and selection operator
(LASSO) regression analysis. Patients included in the high-
risk group had a worse prognosis. The prediction value
was validated in TCGA-LIHC and LIRI-JP datasets using
Kaplan-Meier curve and receiver operating curve (ROC).
Association between risk score and clinical characteristics
was also investigated. Univariate and multivariate Cox
regressions testified risk score as an independent prognostic

risk factor. The nomogram consisting of risk score, T, and
M, was built to predict overall survival. Cell experiment con-
firmed overexpression of HDAC11 accelerated cell prolifer-
ation. Therefore, we put forward that acetylation regulation
genes may contribute to malignant progression, and these
six genes have a clinical prognostic impact on liver cancer.

We present the following article in accordance with the
MDAR reporting checklist.

2. Materials and Methods

2.1. Data Acquisition. In this study, the RNA-seq tran-
scriptome data of 374 tumor tissues and 50 adjacent normal
tissues and the clinical information of 348 patients in the
TCGA-LIHC dataset were downloaded from the Cancer
Genome Atlas (TCGA) data portal (https://portal.gdc
.cancer.gov/). LIRI-JP dataset was obtained from Interna-
tional Cancer Genome Consortium (ICGC) data portal
(https://dcc.icgc.org/), containing the RNA-seq tran-
scriptome data of 202 normal tissues and 243 liver tumor tis-
sues and the clinical information of 232 patients. RNA-
sequencing data were normalized as fragments per kilobase
million (FPKM). The extracted clinical information, such
as gender, age, grade, stage, T stage, M stage, N stage,
follow-up time (futime), and follow-up state (fustate), was
used in the following analysis.

2.2. Acetylation Regulation Genes and DEGs Identification.
There were 29 well-studied genes in acetyltransferases and
deacetylases families included as target genes in our study
[6, 17], listed as follows: HDAC1-11 [8, 15, 18–20], SIRT1-
7 [7, 8, 21–23], KAT2A [24], KAT2B, KAT5, KAT6A,
KAT6B, KAT7-8, HAT1, CREBBP [7], EP300 [18], and
NAA60. We extracted the mRNA expression matrix of these
genes and the clinical information of patients for subsequent
bioinformatic analysis. The missing data was processed by
list deletion. The overall survival (OS) was defined as the
interval from the date of diagnosis to the date of death.

To investigate the DEGs of acetylation regulation genes
between liver cancer and adjacent normal tissue, we used
the “Limma” package to analyze the expression of 29 genes
in samples of TCGA-LIHC. After log2-transformed, these
genes expression was compared between normal tissue and
tumor tissue by using the Wilcoxon test. After calculating
the mean value and log2FC (fold change)
(log2FC = log2 ðtumormean valueÞ/ðnormalmean valueÞ) of
each target gene, the genes with p < 0:05 and jlog2FCj ≥ 1
were considered as DEGs and the result was visualized by
a vioplot.

2.3. Bioinformatic Analysis

2.3.1. GO Functional Annotation Analysis. Functional analy-
ses of GO pathway were conducted to determine the major
pathways regulated by these DEGs, using several packages
such as “clusterProfiler,” “enrichplot,” “ggplot2,” and
“GOplot.” The p value cutoff and q value cutoff were equal
to 0.05. The top results were presented by barplot and GO
circle plot.
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2.3.2. Identification of Consensus Clusters. The correlation
analysis was conducted by “corrplot” package to identify
the correlation among 29 target genes’ expression in liver
cancer. And then, we used the “ConsensusClusterPlus”
package to group liver cancer patients into different clusters
and used principal component analysis (PCA) to verify the
grouping results.

Next, we drew a Kaplan-Meier survival curve of patients
in different clusters using the “survival” package, and the
correlation between clinical characteristics and clusters was
conducted to determine the relationship between clustering
and malignant progression. GSEA was used to find out var-
ious KEGG pathways enriched in different clusters.

2.3.3. Identification of Risk Model and External Validation.
We performed a univariate Cox regression analysis of the
target genes’ expression matrix to find genes related to a
worse prognosis. Then, we used LASSO regression to gener-
ate a risk model to delete redundant genes predicting clinical
prognosis and used ROC curve to determine the cutoff value.
Patients were divided into high-risk and low-risk groups
accordingly. Meanwhile, according to the risk model for-
mula originating from the TCGA-LIHC dataset, the risk
scores of patients in the LIRI-JP dataset were calculated.
Besides, patients were rated into high-risk and low-risk
groups using the cutoff determined from their own ROC.
The p value of the Kaplan-Meier survival curve and AUC
of ROC were used to evaluate the prediction value in both
datasets. Finally, univariate Cox regression analysis and mul-

tivariate Cox stepwise regression were used to identify inde-
pendent prognostic risk factors in the TCGA-LIHC dataset.

2.3.4. Predictive Nomogram Construction and Evaluation.
Variables identified in multivariate Cox stepwise regression
were used to construct a predictive nomogram via “rms”
package in the TCGA-LIHC dataset. The fit model was built
by the function of “cph.” Calibration curve and Harrell’s
concordance index (C-index) were used to evaluate nomo-
gram discrimination. Both of them were calculated using a
bootstrap method with 1000 resamples. Sixty-five patients
per group compared the concordance between nomogram
predicted OS and observed OS at different time points. Har-
rell’s C-index was calculated by internal sampling validation.
The mean value of C-index evaluated the nomogram
discrimination.

2.4. The Effect of HDAC11 on Liver Cancer

2.4.1. Cell Culture. Human hepatoblastoma cell line HepG2
was obtained from the Chinese Academy of Science (Shang-
hai, China). Cells were cultured in DMEM supplemented with
10% FBS and 1% penicillin/streptomycin in 5% CO2 at 37

°C.

2.4.2. Transfection. PcDNA3.1-NC and pcDNA3.1-hdac11
plasmids were provided by GENEray (Shanghai, China).
Cells were harvested after >24 h transfection in HepG2 using
Lipofectamine 3000 (Invitrogen, USA).
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Figure 1: Flowchart presenting the process in this study.
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Figure 2: Continued.
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2.4.3. Western Blot. RIPA lysis buffer (Fdbio, China) with
protease inhibitors was used to obtain total protein extrac-
tion. Equal amounts of protein were separated by 12%
SDS-PAGE followed by transfer to PVDF membranes
(Millipore, USA). Primary antibodies used included mouse
anti-HDAC11 (Santa Cruz, USA) and anti-GAPDH (CST,
USA). Signal was developed using an ECL Kit (Fdbio,
China) with detection on a ChemiScope system (Clinx Sci-
ence, China).

2.4.4. CCK-8 Assay. Cell survival rates were estimated by the
CCK-8 assay (APExBIO, USA). After transfection, approxi-
mately 103 cells were seeded in 96-well plates with 100μl
medium for each well. At 0, 24, 48, 72, and 96h, the original
medium was removed, and a medium supplemented with
10% CCK-8 solution was added and incubated for 2 h. The
absorbance at 450nm was measured. The proliferation curve
was plotted according to log (ODt1/OD0h, 2).

2.4.5. Cell Scratch Test. A single scratch was made using a
sterile 10-μl pipette tip, while the cells seeded in a 6-well
plate reached a confluent state. Then, cells were washed with
PBS 2 times, and the medium was replaced by FBS-free
DMEM and incubated for another 24h. Images of the
scratches were captured at 0 and 24 h with Olympus IX73.
The width of the scratch was analyzed using the Image Pro
Plus software.

2.5. Statistical Analysis. The statistical and bioinformatic
analysis was conducted by using R software (version 4.0.3),
and related packages (“limma,” “ggplot2,” “survival,” “surv-
miner,” “forestplot,” and “glmnet”) were needed to install
and load during analysis. GSEA was conducted by using
GSEA software (version 4.1.0). Wilcoxon tests were used to
compare the expression level between tumor tissues and
adjacent normal tissues, and Fisher tests were used to
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Figure 2: The profiles of acetylation regulation genes in liver cancer. (a) The heat map of 29 acetylation regulation genes in liver cancer. Red
presents upregulated gene, and green presents downregulated gene. Lake blue represents adjacent normal tissue, and pink represents liver
tumor tissue. (b) Vioplot visualizes the differential expression of acetylation regulation genes between liver cancer tumor tissue and
adjacent normal tissue. Blue is adjacent normal tissue, and red is liver tumor tissue. (c) Enrichment pathway of 11 DEGs in the GO
bubble plot. The larger bubble and red color indicated the more significant enrichment process. (d) Enrichment pathways in the GO
circle plot. The inner circle indicates Z-score, and the red color represents the significant enrichment. The outer circle indicates the
various pathways, and blue dots indicate upregulated genes.∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.

Table 1: Differentially expressed acetylation regulation genes.

Gene MGE (normal) MGE (tumor) log2FC p value

HDAC1 9.67 19.70 1.03 6.77E-19

HDAC10 0.82 1.85 1.18 8.46E-20

HDAC11 0.88 4.65 2.40 1.68E-27

HDAC4 0.24 0.77 1.66 9.14E-23

HDAC5 3.35 7.82 1.22 1.08E-21

HDAC7 1.20 3.17 1.41 7.39E-15

KAT2A 3.46 15.28 2.14 1.06E-27

KAT7 1.04 2.16 1.06 9.80E-20

SIRT4 1.05 2.14 1.04 1.18E-15

SIRT6 2.38 5.76 1.27 1.63E-23

SIRT7 1.11 3.53 1.66 7.04E-27

MGE: mean gene expression, presented by FPKM value.
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Figure 3: Continued.
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compare the differential distribution of age, gender, stage, T
status, M status, and N status in different groups.

After constructing the risk model, we obtained the opti-
mal cutoff value depending on ROC curve and divided the
patients into high-risk and low-risk groups. The significant
prognostic risk factor was identified by univariate Cox
regression analysis and multivariate Cox stepwise regression
analysis (p < 0:05). All cell experimental results were inde-

pendently repeated at least three times. T-test or one-way
ANOVA test was used to analyze proliferation and migra-
tion ability. p < 0:05 was statistically significant.

3. Results

3.1. The Distinction of Acetylation Regulation Genes in Liver
Cancer and Normal Tissue. This study is performed
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Figure 3: Identification of consensus clusters by acetylation regulation genes. (a) Correlation analysis of 29 acetylation regulation genes in
liver cancer. Red is positive correlation, blue is negative correlation, and × in each box is no correlation. The number in each box represents
correlation coefficient between two cross genes. (b) Consensus clustering CDF for k = 2 – 9. (c) Relative change in area under CDF curve for
k = 2 – 9. (d–f) Consensus clustering matrix for k = 2, k = 3, and k = 4. (g) PCA of the total RNA expression profile. Patients in cluster 1 are
marked with red, and those in cluster 2 are marked with lake blue.
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according to the flowchart in Figure 1. Considering the impor-
tance of each acetylation regulation gene in tumorigenesis and
the development of liver cancer, we compared the expression
of 29 genes in 374 tumor tissues and 50 adjacent normal tis-
sues (Figure 2(a)). The heatmap and vioplot showed that there
were 25 genes (Figures 2(a) and 2(b)), the expression levels of
which were significantly different between tumor tissue and
normal tissue. Among them, the expression of HDAC6 and
KAT2B decreased in tumor tissue, while the rest increased.
HDAC1, HDAC4, HDAC5, HDAC7, HDAC10, HDAC11,
KAT2A, KAT7, SIRT4, SIRT6, and SIRT7 were upregulated
and identified as significant DEGs between normal and tumor
tissues (Table 1). Among them, HDAC7, HDAC4, SIRT7,
KAT2A, and HDAC11 were the top five most upregulated
genes, indicating that the expression of deacetylation-related
genes played a dominant role in liver cancer compared with
acetylation-related genes.

GO analysis was conducted to analyze the function of
these 11 genes in tumorigenesis and progression of liver can-
cer. The bubble plot (Figure 2(c)) showed the result listed in
descending order by gene ratio in each pathway. In terms of
biological process (BP), pathways such as “histone modifica-
tion,” “covalent chromatin modification,” “protein
deacetylation,” and “protein deacylation” increased. Besides,
“histone deacetylase complex” and “transcription regulator
complex” increased as cellular component (CC), and the
molecular function (MF) of “hydrolase activity,” “histone
deacetylase activity,” and “protein deacetylase activity” was
upregulated in tumor tissue (Figures 2(c) and 2(d)). The
top 5 results in BP, CC, and MF in ascending order by
p value are listed in Supplementary Table S1.

3.2. Consensus Clustering of Acetylation Regulation Genes
Identified Two Clusters of Liver Cancer. We supposed the
expression of acetylation regulation genes might correlate
to different clinical characteristics in liver cancer. Firstly,
we investigated the correlation analysis of 29 acetylation reg-
ulation genes in liver cancer. Figure 3(a) shows that a large
proportion of target genes were weakly to moderately corre-
lated, which meant those genes could not be considered as a
single independent variable during subsequent analysis.
Next, we used “ConsensusClusterPlus” package to group
patients into different clusters. The fit k value needed to meet
three criteria: (1) The ideal k value should be chosen as the
cumulative distribution function (CDF) reaching a maximum
approximation, (2) the number of patients in each cluster
should not be too small, and (3) the gene expression should
be a strong correlation in each cluster, while the correlation
between clusters should be as weak as possible. Based on the
results of Figures 3(b) and 3(c), k = 4 seems to have a minor
cumulative distribution function (CDF) increment, but taking
the number of patients in each cluster and the correlation
among different clusters into consideration (Figures 3(d)–
3(f)), k = 2 was more appropriate in our study. To confirm
whether our classification was correct, we performed PCA
using the whole RNA-seq data and found that patients in
respective clusters could gather together (Figure 3(g)). This
result indicated that the classification of liver cancer patients
into two clusters by target genes was correct.

3.3. Correlation between Clusters and Clinical Characteristics
and Potential Mechanisms. After grouping the patients, we
investigated the correlation between clusters and clinical
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features. Figure 4(a) shows that stage (stage I-IV), T stage
(T1-T4), grade (G1-G4), gender (male/female), age (≤65,
>65), and follow-up state (alive/dead) were significantly dif-
ferent in two clusters. Besides, we found that most of the tar-
get genes had higher expression in cluster 1. The OS of
patients in cluster 2 was much longer than that in cluster 1

(Figure 4(b)), and the difference of 3-year survival rates was sta-
tistically significant (cluster 1 vs cluster 2=40.5% vs 67.6%). In
other words, the expression profile of acetylation regulation
genes was expected to predict prognosis in liver cancer.

To investigate the potential mechanisms caused this sur-
vival difference, we used GSEA to find out different KEGG

0.00

1.00

0.75

0.50

0.25

0 1 2
Time (years)

p = 2.57e–06

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Ri
sk

3 4 5 106 8 8 9

0 1 2
Time (years)

3 4 5 106 8 8 9

Low risk
High risk 143

227
81

173
36
90

3
22

4
36

12
51

22
67

0
6

1
7

0
3

0
1

High risk
Risk

Low risk
+
+

(e)

2

10
8
6
4

0 100

Ri
sk

 sc
or

e

300200

High risk
Low risk

(f)

2
0

10
8
6
4

0 100

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

300200

Dead
Alive

(g)

Patients (increasing risk score)

HDAC1
70

60

50

40

30

20

10

HDAC4

HAT1

HDAC2

SIRT6

HDAC11

High
Type

Low

(h)

Figure 5: Risk signature of acetylation regulation genes. (a) Target genes correlate with worse clinical prognosis in forestplot. The HR and
95% CI are calculated by univariate Cox regression. (b, c) The optimal gene numbers and coefficients are calculated using LASSO’s
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pathway between two clusters. The top 5 regulated KEGG
pathways with the highest normalized enrichment score in
respective clusters are listed in Figure 4(c). The pathways
such as “complement and coagulation cascades,” “retinol
metabolism,” “drug metabolism cytochrome p450,” “fatty
acid metabolism,” and “tryptophan metabolism” were
upregulated in cluster 2. Meanwhile, “spliceosome,” “RNA
degradation,” “pyrimidine metabolism,” “base excision
repair,” and “nucleotide excision repair” were upregulated
in cluster 1 (Figure 4(c)), which may endow tumor cells
stronger vitality.

3.4. Prognostic Value of Risk Model Consisting of Acetylation
Regulation Genes.We performed a univariate Cox regression
analysis to investigate better the prognostic role of acetyla-
tion regulation genes in liver cancer. The results indicated
that HDAC1, HDAC2, HDAC4, HDAC5, HDAC11,
HAT1, SIRT6, SIRT7, and KAT7 were prognostic risk fac-
tors, with hazard ratios (HR)>1 and lower 95% confidence
intervals (CI)>1 (Figure 5(a), Table 2). Thirteen genes
(HDAC1, HDAC2, HDAC3, HDAC4, HDAC5, HDAC7,
HDAC11, HAT1, SIRT6, SIRT7, KAT5, KAT7, and EP300)
with p < 0:1 entered LASSO Cox regression algorithm to
delete redundant genes and constructed a risk model. Six
genes were selected based on the minimum criteria, and
the coefficients obtained from the LASSO algorithm were
used to calculate the risk score for every patient included
in our study (Figures 5(b) and 5(c)). The risk score was cal-
culated as follows:

Risk score = exp {[(Expression value of
HAT1)×0.0706633890112458] + [(Expression value of
SIRT6)×0.0148275359702248] + [(Expression value of
HDAC4)×0.0573493877297365] + [(Expression value of
HDAC11)×0.00408455809173769] + [(Expression value
of HDAC2)×0.0699244618291594] + [(Expression value
of HDAC1)×0.0123873924505771]}.

“SurvivalROC” package was used to evaluate the perfor-
mance of the risk model and to determine the optional cutoff
when grouping the patients into high-risk and low-risk
groups. According to 3-year survival rates, the AUC was
equal to 0.683 (Figure 5(d)), and the cutoff was equal to
2.301581.

To confirm the grouping result, we drew Kaplan-Meier
survival curves. Figure 5(e) indicates that the patients divided
into the high-risk group had a shorter OS (p < 0:05), especially
when follow-up was less than 3 years. Besides, patients with
higher LASSO risk scores tended to have shorter survival
(Figures 5(f) and 5(g)). We also found that these 6 genes
included in the LASSO algorithm had higher expression in
the high-risk group (Figure 5(h)).

3.5. External Validation of Risk Model. The mRNA expres-
sion matrix and clinical information of the six genes were
extracted in the LIRI-JP dataset. The RNA-seq tran-
scriptome data originated from 202 normal tissues and 243
liver tumor tissues in this dataset. After matching with clin-
ical characteristics, a total of 232 patients were included in
this study. The risk score of each patient was calculated
using the formula mentioned above. According to the 3-
year survival rates, the AUC was 0.699 (Figure 6(a)) with a
threshold of 6.168746.

Furthermore, the AUC of 5-year survival rates was 0.741
(Figure 6(b)). One hundred and thirty-three patients were
rated as high risk, while 99 patients were low risk. Kaplan–
Meier survival curves showed that the OS in the high-risk
group was much shorter than in the low-risk group
(Figure 6(c)). These results confirmed that the risk score calcu-
lated by six genes effectively predicted liver cancer prognosis.

3.6. Associations between Risk and Clinicopathological
Features in Liver Cancer and Independent Risk Factor
Identification. The correlation between the risk model and
clinical features was analyzed. We found that stage (stage
I-IV), T stage (T1-T4), N stage (N0/N1/NX), grade (G1-
G4), gender (male/female), age (≤65, >65), and follow-up
state (alive/dead) were significantly differential distribution
in high-risk and low-risk groups (Figure 7(a)).

Next, we used age, gender, grade, stage, T stage, M stage, N
stage, and risk score in a univariate Cox regression analysis
(Figure 7(b)). Three variables stage, T stage, and risk score
with p < 0:05 were identified as risk factors. Furthermore,
Cox regression stepwise analysis was used to build a fit model
to predict prognosis with independent risk factors. Eventually,
risk score, T, and M were included as independent prognostic
risk factors in our study (p < 0:05) (Figure 7(c)).

3.7. Predictive Nomogram and Evaluation. The TCGA-LIHC
dataset was used to construct the predictive nomogram. Inde-
pendent risk factors identified by stepwise COX regression
analysis, such as risk score, T, and M, were contained in pre-
dicting 1-year, 2-year, and 3-year OS (Figure 8(a)). Total
points calculated by respective points based on risk score, T,
and M were used to predict corresponding 1-year, 2-year,
and 3-year OS. Calibration curves showed the ratio of nomo-
gram predicted OS and observed OS always fluctuated around
1 (Figure 8(b)), indicating that the nomogram performed well.
C-index was calculated by the internal bootstrap method with
1,000 resamples. The mean of C-index was 0.672.

3.8. HDAC11 Upregulated Cell Proliferation in HepG2. CCK-
8 proliferation curve indicated that the proliferation rate of
HepG2 cells was significantly accelerated after transfection

Table 2: Univariate Cox regression analysis of acetylation
regulation genes.

Gene HR 95% CI p value

HAT1 1.25 1.14-1.36 7.58E-07

HDAC1 1.04 1.02-1.05 2.92E-07

HDAC11 1.05 1.02-1.09 0.003937024

HDAC2 1.24 1.15-1.34 2.88E-08

HDAC4 1.66 1.29-2.13 7.32E-05

HDAC5 1.06 1.01-1.10 0.007920889

KAT7 1.21 1.03-1.42 0.019357053

SIRT6 1.08 1.03-1.13 0.003052138

SIRT7 1.09 1.02-1.17 0.008986678

HR: hazard ratios; 95% CI: 95% confidence intervals.
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with HDAC11 plasmid compared with the control group
(Figures 9(a) and 9(b)). After 48 h, the cell densities were
much higher in the over-HDAC11 group compared with
the over-con group (Figure 9(b)). The cell scratch test result
showed no difference in the travel distance between the two
groups (Figures 9(c) and 9(d)). Therefore, a high level of
HDAC11 could upregulate cell proliferation ability.

4. Discussion

As the second leading cause of cancer-related death and a
major public health challenge worldwide, the burden of liver
cancer is increasing globally [1]. Liver cancer patients’ out-
comes are improved due to the optimization of individual
treatment strategies and the development more complex
therapeutic modalities [2].

Acetylation, considered one of the most critical protein
modifications, plays an essential role in tumorigenesis and
tumor growth, proliferation, migration, and chemoresis-
tance in various cancer. Previous studies have demonstrated
that acetylation and deacetylation influence the plasticity of

chromatin structure by changing the electrical property of
acetylated sites of histone and improving the stability of
many nonhistone proteins by covering ubiquitination sites
[16]. Protein acetylation modification regulated by HATs
and HDACs exhibits different biological effects, leading to
promotion [25] or suppression [26] in liver cancer, depend-
ing on the effect of protein. Even the same acetylation regu-
lation gene can cause the opposite effect in liver cancer
through regulating different target proteins [25, 26], let alone
the genes in the same family [27, 28]. Considering these
complex situations, integration of expression profiles of
known acetylation regulation genes, which influence malig-
nant progression and clinical prognostic in liver cancer,
has great value and necessity. This study aimed to clarify
the effect of acetylation regulation genes on liver cancer
and attempted to construct a predictive prognostic model.

Twenty-five of 29 target genes had significant differences
between tumor and normal tissues, and 11 were identified as
DEGs. Nine of 11 DEGs were HDACs, including HDAC1,
HDAC4, HDAC5, HDAC7, HDAC10, HDAC11, SIRT4,
SIRT6, and SIRT7, and only KAT2A, and KAT7 in HATs
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were DEGs. GO analysis showed the activity of “protein
deacetylation,” “histone H3 deacetylation,” “protein deacyla-
tion,” “macromolecule deacylation,” and “histone
deacetylation” upregulated in tumor tissue. Therefore, we
hypothesized that deacetylation of important proteins
played an important role in developing liver cancer.

To explore the relationship between acetylation regula-
tion genes and prognosis in liver cancer, we identified two
clusters of liver cancer by applying consensus clustering to
29 genes. We found that cluster 1 with higher expression
of most target genes was correlated with a poorer prognosis.
Stage (stage I-IV), T stage (T1-T4), grade (G1-G4), gender
(male/female), age (≤65, >65), and follow-up state (alive/
dead) were significantly different in two clusters. The KEGG
pathways involved in “spliceosome,” “RNA degradation,”
“pyrimidine metabolism,” “base excision repair,” and
“nucleotide excision repair” were significantly enriched in
cluster 1. It was genomic repair and stability that we sup-
posed endowed the tumor cells with better survival and sub-
sequently caused a worse prognosis.

Also, we constructed a risk model by LASSO regres-
sion analysis. The risk score was calculated using the
expression value of 6 acetylation regulation genes. All
patients were rated into the high-risk and the low-risk
groups accordingly. The ROC AUC of the risk score to
predict clinical prognosis was 0.683. Generally, a model
with AUROC=68.3% was not an ideal perfect one. But
considering the complexity of tumorigenesis and its multi-
ple factors contributed to prognosis, we supposed the risk
prediction model using gene expression level has specific
values. Furthermore, we explored other significant risk fac-
tors in the following analysis. We found that stage (stage
I-IV), T stage (T1-T4), N stage (N0/N1/NX), grade (G1-
G4), gender (male/female), age (≤65, >65), and follow-up
state (alive/dead) were significantly differential distribution
in high-risk and low-risk groups. Information extracted
from the LIRI-JP dataset validated the predicted value of
this risk model. Stepwise Cox regression showed that risk
score, T, and M were independent risk factors in predict-
ing prognosis in liver cancer. Finally, we construct a
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nomogram including the above-mentioned three variables.
The calibration curve and C-index confirmed that the
nomogram performed well.

This study analyzed the relationship between acetylation
regulation genes and the development of liver cancer in its
entirety and explored the potential mechanisms. We sup-
posed deacetylation of pivotal proteins might contribute to
tumorigenesis and progression of liver cancer. Six acetyla-
tion regulation genes were identified as independent risk fac-
tors to calculate the risk score, which was included in the
prognostic nomogram, as well as T and M. Furthermore,
the calibration curve and C-index confirmed that the perfor-
mance of the nomogram was reliable.

HDAC11 was the most upregulated differentially
expressed acetylation regulation gene. The role of HDAC11
in liver cancer was identified by CCK-8 array and cell
scratch test. The results suggested that overexpression of
HDAC11 could promote cell proliferation rather than alter
cell migration.

However, this study had several limitations. First, two
datasets are included in our study with limited sample sizes.
So, it is necessary to verify our conclusion in more external
datasets. Second, different datasets’ risk scores may vary
depending on different sequencing platforms. The optimal
cutoff and nomogram are required to be redetermined
accordingly before clinical application. Moreover, the pro-
tein expression levels of 6 genes and the total level of protein
acetylation remain unclear, which requires the exploration
of further experimental studies.

5. Conclusions

Our study verified that acetylation regulation genes contrib-
ute to malignant progression and have a clinical prognostic
impact on liver cancer. The risk score calculated by the
expression value of HDAC1, HDAC2, HDAC4, HDAC11,
HAT1, and SIRT6 was an independent risk factor for liver
cancer. The nomogram composed of risk score, T stage,
and M stage could effectively predict overall survival. Over-
expression of HDAC11 enhanced cell proliferation in liver
cancer. The findings of our study may provide a new treat-
ment insight and target for liver cancer and affect medical
decision-making for clinical practice.
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