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Abstract

Increasing interest in the structural and functional organisation of the human brain

encourages the acquisition of big data sets comprising multiple neuroimaging modali-

ties, often accompanied by additional information obtained from health records, cogni-

tive tests, biomarkers and genotypes. Diffusion weighted magnetic resonance imaging

data enables a range of promising imaging phenotypes probing structural connections

as well as macroanatomical and microstructural properties of the brain. The reliability

and biological sensitivity and specificity of diffusion data depend on processing

pipeline. A state-of-the-art framework for data processing facilitates cross-study

harmonisation and reduces pipeline-related variability. Using diffusion magnetic reso-

nance imaging (MRI) data from 218 individuals in the UK Biobank, we evaluate the

effects of different processing steps that have been suggested to reduce imaging arte-

facts and improve reliability of diffusion metrics. In lack of a ground truth, we compared

diffusion metric sensitivity to age between pipelines. By comparing distributions and

age sensitivity of the resulting diffusion metrics based on different approaches (diffu-

sion tensor imaging, diffusion kurtosis imaging and white matter tract integrity), we

evaluate a general pipeline comprising seven postprocessing blocks: noise correction;

Gibbs ringing correction; evaluation of field distortions; susceptibility, eddy-current and

motion-induced distortion corrections; bias field correction; spatial smoothing and final

diffusion metric estimations. Based on this evaluation, we suggest an optimised

processing pipeline for diffusion weighted MRI data.

K E YWORD S
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1 | INTRODUCTION

Increasing interest in the role of individual differences in human brain

architecture in health and disease has stimulated the neuroscience

community to initiate a number of large brain data projects. Due to the

attractive combination of increasing availability, low costs, its noninvasive

nature and high sensitivity magnetic resonance imaging (MRI) including

T1/T2-weighted images, functional MRI and diffusion weighted imaging
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has become the preferred and standard brain imaging modality in these

large efforts, including the UK Biobank (UKB; Miller et al., 2016).

Diffusion MRI is based on the effect of the Brownian motion of

water molecules in biological tissue (Basser, Mattiello, & Le Bihan, 1994)

and allows one to probe and visualise brain organisation at the micro-

metre scale (Johansen-Berg & Behrens, 2014). Recent advances in theo-

retical and experimental diffusion MRI approaches (Novikov, Kiselev, &

Jespersen, 2018) have offered various diffusion models and sequences

allowing for a detailed description of the signal decay due to water diffu-

sion. Advanced diffusion measurements are technically challenging and

optimal data quality places high demands on practical implementation

and protocol, including hardware gradient system and coil. Due to limited

time and technical constraints, researchers designing imaging studies

face various trade-offs, influencing, for example, signal-to-noise ratio

(SNR) and options related to the specific pulse sequences such as mono

or bipolar diffusion encoding gradients.

Beyond MRI sequence and acquisition parameters, various sources

of distortions influence the resulting diffusion metrics, and different

approaches for quality control (QC) and corrections have been

suggested (Alfaro-Almagro et al., 2018; Esteban et al., 2017; Farzinfar

et al., 2013; Hasan, 2007; Oguz et al., 2014). Ideally, the QC methods

should reliable to identify and correct typical artefacts originating from

subject head motion, discarded volumes and low SNR, which may be

particularly present at high diffusion weightings, also known as b-values.

Despite recent major developments and improvements (Alfaro-Almagro

et al., 2018; Cui, Zhong, Xu, He, & Gong, 2013; Miller et al., 2016; Roalf

et al., 2016), automated procedures for QC and artefact reduction

largely represent unresolved challenges in the imaging community.

Various postprocessing steps have been suggested to correct spe-

cific sources of noise and distortions, including thermal noise evalua-

tion (Veraart, Novikov, et al., 2016; Veraart, Fieremans, & Novikov,

2016), Gibbs ringing correction (Kellner, Dhital, Kiselev, & Reisert,

2016; Veraart, Fieremans, Jelescu, Knoll, & Novikov, 2016), suscepti-

bility distortion correction (Andersson & Sotiropoulos, 2016), motion

correction (Andersson, Graham, Zsoldos, & Sotiropoulos, 2016;

Andersson & Sotiropoulos, 2016), correction of physiological noise

and outliers (Maximov et al., 2015; Maximov, Grinberg, & Shah, 2011;

Sairanen, Leemans, & Tax, 2018; Walker et al., 2011) and eddy current

induced geometrical distortions (Taylor et al., 2016). However,

although the application of even part of the postprocessing steps such

as noise correction has been demonstrated to improve sensitivity and

provide additional information about absolute diffusion metrics

(Kochunov et al., 2018), systematic evaluations of the effects of the

different steps on the diffusion metrics are scarce.

Several minimal postprocessing pipelines have been recommended

to prepare structural, functional and diffusion MRI data (Alfaro-

Almagro et al., 2018; Cui et al., 2013; Glasser et al., 2013; Sotiropoulos

et al., 2013). For example, the UKB diffusion pipeline first employs

fieldmap generation using the anterior–posterior (AP) and posterior–

anterior (PA) images of original diffusion data. The selection of AP-PA

images is done by an estimation of correlations across AP-PA pairs to

find the most accurate reference. Thus, the UKB pipeline include only

one diffusion-specific step based on eddy (Andersson & Sotiropoulos,

2016; Andersson et al., 2016, 2017), correcting the eddy currents and

head motion, susceptibility artefacts and identification and replace-

ment of outlier slices. Providing a comprehensive approach for arte-

fact correction of diffusion data, a recent publication introduced the

Diffusion parameter ESTimation with Gibbs and NoisE Removal

(DESIGNER) pipeline, which allows one to identify and minimise ther-

mal noise, Gibbs ringing artefacts, Rician noise bias, eddy-current and

B0-induced spatial distortions and motion-related artefacts, and which

was demonstrated to improve accuracy of common diffusion MRI

metrics (Ades-Aron et al., 2018). Improvements in accuracy and preci-

sion of the derived diffusion metrics were evaluated using numerical

and diffusion phantoms and a small number of in vivo brain imaging

datasets. However, how different pipeline steps influence the associa-

tions between diffusion metrics and phenotypes with relevance for

studies of individual differences, such as, for instance, age-related dif-

ferences, is still open. In lack of a ground truth reference sensitivity to

age is a relevant criterion for pipeline comparisons, partly due to fre-

quently observed associations between data quality characteristics

(e.g., due to subject motion) and age.

With the aim to identify the most efficient and adequate pipeline

steps and to assess their influence on diffusion data analysis, we tested

the effects of various postprocessing steps on different diffusion scalar

metrics, based on diffusion tensor imaging (DTI; Basser et al., 1994), dif-

fusion kurtosis imaging (DKI; Jensen, Helpern, Ramani, Lu, & Kaczynski,

2005) and white matter tract integrity (WMTI; Fieremans, Jensen, &

Helpern, 2011) using UKB diffusion MRI data. We assessed the direct

influence of pipeline on conventional QC metrics by comparing esti-

mated temporal signal-to-noise ratio (tSNR; Roalf et al., 2016) of the

diffusion-weighted volumes between pipelines for each of the two

TABLE 1 Demographic data of the used UK Biobank sample

Subgroups
(years)

Number
of subjects

Age (mean/std)
years Sex (F/M)

“40” 12 40.40/0.08 6/6

“42” 13 42.08/0.29 6/7

“44” 16 43.92/0.28 8/8

“46” 14 46.01/0.31 7/7

“48” 13 48.00/0.32 7/6

“50” 15 50.06/0.29 8/7

“52” 15 52.07/0.27 7/8

“54” 11 54.11/0.35 7/4

“56” 15 55.97/0.26 7/8

“58” 13 57.98/0.29 6/7

“60” 15 59.99/0.27 8/7

“62” 14 61.95/0.26 7/7

“64” 12 64.11/0.25 7/5

“66” 14 66.11/0.25 8/6

“68” 14 68.08/0.27 7/7

“70” 12 69.81/0.18 6/6

Total 218 54.95/9.09 112/106
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shells (b = 1,000, 2,000 s/mm2). To assess which degree pipeline influ-

ences across-subject analysis and corresponding interpretations, we

compared estimated age-curves (Grinberg et al., 2017; Tamnes, Roalf,

Goddings, & Lebel, 2017; Westlye et al., 2010; Westlye, Reinvang,

Rootwelt, & Espeseth, 2012) of the diffusion metrics between pipelines

using voxel-wise analysis based on tract-based spatial statistics

(Smith et al., 2006, 2007) and multiple linear regression analysis on dif-

fusion metrics averaged across the TBSS skeleton.

2 | METHODS AND MATERIALS

2.1 | Subjects and data

Table 1 summarises the demographics of the 218 UKB participants

included in the present work. We computed diffusion scalar metrics using

two different pipelines including various intermediate steps (see Figure 1).

An accurate overview of the UKB data acquisition, protocol parameters

and image validation can be found elsewhere (Alfaro-Almagro et al., 2018;

TABLE 2 Summary of used and alternative algorithms with links to the numerical implementations

Pipeline step Algorithm/utility Link to the software Comments

Noise correction MP-PCA https://github.com/NYU-DiffusionMRI/

mppca_denoise

www.mrtrix.org

Implementations are accessible as original

code (Veraart et al.) as well as a part

of mrtrix3

Gibbs ringing

correction

Local sub-voxel shift https://bitbucket.org/reisert/unring

www.mrtrix.org

Implementations are accessible as original

code (Kellner et al.) as well as a part

of mrtrix3

EPI-geometrical

distortions

TOPUP-EDDY (FSL)

TORTOISE

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

https://science.nichd.nih.

gov/confluence/display/nihpd/DIFF_PREP+Main

Modifications of B0 and eddy-current/motion

corrections can be found from other

authors

Bias field

corrections

N4BiasFieldCorrection

(ANTs)

FAST (FSL)

http://stnava.github.io/ANTs/

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

Any methods can be used here by calling an

original utility or over matrix wrapper.

Spatial smoothing fslmaths (FSL)

convert3d (itksnap)

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

http://www.itksnap.org/pmwiki/pmwiki.php?

n=Downloads.C3D

There are many different utilities allowing

one to do a spatial smoothing

Diffusion metric

estimations

IRLLS (DKI)

DKE

https://github.com/NYU-DiffusionMRI/

Diffusion-Kurtosis-Imaging

https://www.nitrc.org/projects/dke/

One can find another code for estimation

of the diffusion metrics

Abbreviations: DKI, diffusion kurtosis imaging; MP-PCA, principle component analysis of Marchenko–Pastur.

F IGURE 1 Schematic representation of a general pipeline. Numbers in the upper left corner correspond to the step order. The Step 7 is an
estimation of final diffusion metrics depending on used diffusion model. The Step i presents a possible variability in the pipeline but omitted in
the present work, for example, a frequency drift correction, application of different spatial filters (isotropic vs. anisotropic), difference in
algorithmic utility implementations (ANTs vs. FSL), permutations in the step orders (Steps 5 vs. 4) [Color figure can be viewed at
wileyonlinelibrary.com]
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Miller et al., 2016). In brief, the diffusion sequence was a conventional

Stejskal–Tanner monopolar spin-echo echo-planar imaging (Stejskal &

Tanner, 1965) with multiband factor 3, b-values were 1,000 and

2,000 s/mm2 and 50 noncoplanar diffusion directions per each b-shell.

The spatial resolution was isotropic 2 mm3, and 5 AP versus 3 PA images

with b = 0 s/mm2 were acquired. All subjects were scanned at a single 3T

Siemens Skyra (VD13A SP4) with a standard Siemens 32-channel head

coil, in Cheadle Manchester. The original UKB postprocessing pipeline is

described in details online (http://biobank.ctsu.ox.ac.uk/crystal/docs/

brain_mri.pdf) and includes susceptibility, eddy-current and head motion

corrections accompanied with slice outlier detection and replacement, all

performed with topup and eddy.

Figure 1 gives an overview of the current pipeline. We divided the

postprocessing flow into seven general blocks. Additional block

i (marked by blue frame in Figure 1) consists of extra steps allowing

one to substitute or extend used steps or algorithms. An advantage of

F IGURE 2 Correlation plots for FA based
on DKI fitting obtained for four different
datasets (see Figure 1) (a) up to Step 5; (b) up
to Step 4; (c) up to Step 7; (d) original UK
Biobank pipeline. Diffusion metrics were
averaged over estimated subject skeletons in
the case of each pipeline in accordance with
the TBSS preparation pipeline. DKI, diffusion
kurtosis imaging; FA, fractional anisotropy
[Color figure can be viewed at
wileyonlinelibrary.com]
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the proposed pipeline is freely accessible code for all processing steps.

Table 2 summarises possible alternatives and links to the software

implementations for each pipeline step. Whereas the current assess-

ment of the pipeline was based on UK Biobank only, we assume that

the recommendations generalise to other diffusion MRI data sets with

conventional acquisition parameters. Below we briefly describe each

step in the suggested order.

2.2 | Noise correction

The noise in diffusion data is spatially dependent in the case of multi-

channel receive coils (Aja-Fernandez, Vegas-Sanchez-Ferrero, & Tristan-

Vega, 2014; Andre et al., 2014; Maximov, Farrher, Grinberg, & Shah,

2012). Principle component analysis of Marchenko–Pastur (MP-PCA)

noise-only distribution provides an accurate and fast method of noise

F IGURE 3 Correlation plots for MK based
on DKI fitting obtained for four different data
sets: (a) up to Step 5; (b) up to Step 4; (c) up to
Step 7; (d) original UK Biobank pipeline.
Diffusion metrics were averaged over
estimated subject skeletons in the case of each
pipeline in accordance with the TBSS
preparation pipeline. DKI, diffusion kurtosis
imaging; MK, mean kurtosis [Color figure can
be viewed at wileyonlinelibrary.com]
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evaluation and reduction (Veraart, Fieremans, & Novikov, 2016; Veraart,

Novikov, et al., 2016). The thermal noise correction using the MP-PCA

method should be the first step in data analysis due to an assumption

about uncorrelated noise both spatially and across the diffusion space.

In the present work, we used the original Veraart's MATLAB code

(The Mathworks, Natick, MA): https://github.com/NYU-DiffusionMRI/

mppca_denoise. Note that the noise correction methods are regularly

improved and in future application the current implementation may

be substituted by a more efficient approach (see e.g., Aja-Fernandez

et al., 2014; Manjon et al., 2015). The noise in MR images can be

described by a Rician distribution. To avoid a possible bias affecting the

diffusion data, we use MP-PCA estimated standard deviation at each

voxel and an analytical approach developed by Koay and Basser (2006)

for evaluation of the true signal (Ades-Aron et al., 2018).

2.3 | Gibbs ringing correction

Various artefacts appearing in the raw data due to table vibration

(Gallichan et al., 2010), radio-frequency-based distortions, incorrect

F IGURE 4 Correlation plots for AWF based
on WMTI fitting obtained for four different data
sets: (a) up to Step 5; (b) up to Step 4; (c) up to
Step 7; (d) original UKB pipeline. Diffusion metrics
were averaged over estimated subject skeletons in
the case of each pipeline in accordance with the
TBSS preparation pipeline. AWF, axonal water
fraction; WMTI, white matter tract integrity [Color
figure can be viewed at wileyonlinelibrary.com]
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magnetic field gradient calibration (McRobbie, Moore, Graves, &

Prince, 2006) can significantly degrade the diffusion data. One of the

most frequent artefacts is known as the Gibbs ringing artefact. This

appears due to a k-space truncation along finite image sampling and

can be suppressed by post hoc methods (Kellner et al., 2016; Perrone

et al., 2015; Veraart, Fieremans, Jelescu, et al., 2016). Here, we used

the approach developed by Kellner et al. (2016) and the original

MATLAB code: https://bitbucket.org/reisert/unring.

2.4 | EPI distortions

Diffusion data acquisition is based on echo-planar imaging, which is

susceptible to multiple distortions originating from magnetic field inhomo-

geneity. A few approaches have been developed to correct field inhomo-

geneities: a simple and robust method based on field mapping; a method

based on evaluation of point spread function; and reversed gradient

approach (Wu et al., 2008). FSL (Smith et al., 2004) offers an excellent

F IGURE 5 Correlation plots for FA based
on conventional DTI fitting (1 b-shell) obtained
for four different data sets: (a) up to Step 5;
(b) up to Step 4; (c) up to Step 7; (d) original
UKB pipeline. Diffusion metrics are averaged
over estimated subject skeletons in the case of
each pipeline in accordance with TBSS
preparation pipeline. FA, fractional anisotropy;
DTI, diffusion tensor imaging; UKB, UK
Biobank [Color figure can be viewed at
wileyonlinelibrary.com]
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utility for the EPI geometric distortion correction (topup, https://fsl.fmrib.

ox.ac.uk/fsl/fslwiki/topup; Andersson, Skare, & Ashburner, 2003). Topup

requires data with opposite phase-encoding directions for the nondif-

fusion weighted images, for example, anterior–posterior and posterior–

anterior pair or left–right and right–left pair.

2.5 | Motion, eddy current and susceptibility
distortion correction

Topup and eddy works together for correcting distortions appeared due to

eddy currents, head motion and susceptibility originated artefacts. The

GPU accelerated version of eddy (eddy_cuda) allows one to significantly

speed up the computations as well as providing additional options such as

in slice alignments, improved outlier detection and multiband dataset esti-

mations (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy/UsersGuide; Andersson

et al., 2016, 2017; Andersson & Sotiropoulos, 2016).

2.6 | Field nonuniformity

MR images possess a low frequency intensity shift appearing as inten-

sity inhomogeneity over the image. Several studies have evaluated its

influence on the intrasubject and intersubject reproducibility of T1-

weighted structural MRI data (Banerjee & Maji, 2015; Ganzetti,

Wenderoth, & Mantini, 2016), but less has been published regarding

effects of nonuniformity correction on diffusion data. To avoid bias

based on the field nonuniformity, we applied a bias field correction

for b = 0 s/mm2 image. Then, the estimated field map was applied to

all diffusion images to decrease the field inhomogeneity. We used the

N4BiasFieldCorrection utility from ANTs (Tustison et al., 2010). The

order of the bias field correction step is discussed below.

2.7 | Spatial smoothing

After all the above mentioned steps, the diffusion data, in theory, are

ready for the estimation of diffusion scalar metrics. To increase SNR,

which may be particularly beneficial for the numerical stability of

advanced diffusion models (Maximov, Tonoyan, & Pronin, 2017;

Maximov & Vellmer, 2019; Vellmer, Tonoyan, Suter, Pronin, &

Maximov, 2018), we applied spatial smoothing of the raw diffusion

data. For simplicity, we used isotropic smoothing with a Gaussian ker-

nel 1 mm3 implemented in the FSL function fslmaths.

F IGURE 6 Results of TBSS analysis between
the pipelines: Original UKB and the proposed here
(S7). TBSS analysis for diffusion metrics based on
FA, MK and AWF (2 b-shells); TBSS analysis for
diffusion metric based on FADTI fitting (1 b-shell).
All images are in standard MNI space and
correspond to the coordinates: x = 26; y = −8;
z = 24. The red-yellow colour means that metrics
from S7 pipeline are significantly higher than from
UKB (p < .05); the blue-light-blue colour means an
opposite situation. The presented TBSS results are
TFCE corrected. ANTs, Advanced Normalization
Tools; AWF, axonal water fraction; FA, fractional
anisotropy; FSL, FMRIB Software Library; MK,
mean kurtosis; MNI, Montreal Neurological
Institute; TBSS, tract-based spatial statistics; UKB,
UK Biobank [Color figure can be viewed at
wileyonlinelibrary.com]
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2.8 | Metric estimation

UKB diffusion data acquisition was done using a multishell protocol with

b = 1,000 and 2,000 s/mm2 in addition to b = 0 s/mm2. We based our

evaluation on various diffusion metrics derived using three different

approaches: Conventional DTI (Basser et al., 1994), namely, fractional

anisotropy (FA), mean, axial and radial diffusivity (MD, AD and RD,

respectively); DKI (Jensen et al., 2005) with FA, MD, AD, RD, mean, axial

and radial kurtosis (MK, AK, RK, respectively); and WMTI (Fieremans

et al., 2011) metrics with axonal water fraction (AWF), extra-axonal axial

and radial diffusivities (AE and RE) and tortuosity (Tort). These metrics

are based on a cumulant expansion of the diffusion propagation function,

that is, strictly speaking, they do not represent a comprehensive diffusion

biophysical model (Novikov et al., 2018). Nevertheless, these maps are

very popular and easy to obtain in clinical studies. For DKI, we used an

approach proposed by Veraart, Sijbers, Sunaert, Leemans, and Jeurissen

(2013) and the original MATLAB code (https://github.com/NYU-

DiffusionMRI/Diffusion-Kurtosis-Imaging). The DTI metrics were esti-

mated using DTIFIT in FSL, by means of a linear weighted least squares

option in command line for the shell b = 1,000 s/mm2. We assume that

the original UKB DTI metrics were estimated with the same option,

although it was not mentioned in the description (Miller et al., 2016).

2.9 | Additional options

Some of the steps can be substituted by other approaches or

implementations. For example, nonuniformity field corrections used in

functional MRI and brain tissue segmentation may increase the accuracy

of the motion correction (Ganzetti et al., 2016). The applied isotropic

spatial filtering even with a quite small Gaussian kernel introduces blur-

ring of tissue borders and increase partial voluming. A classical aniso-

tropic diffusion filter based on the Perona–Malik algorithm (Perona &

Malik, 1990) may provide an alternative with less blurring (Van Hecke

et al., 2010; Vellmer et al., 2018). Therefore, we suggest to carefully con-

sider the influence of different degradation factors on the diffusion

image quality and to choose a reliable and robust tool for the correction

step tailored to the study (see, e.g., considerations related to neonatal

neuroimaging: Bastiani et al., 2019).

2.10 | Temporal SNR

To quantify the effects of the pipelines using a conventional data

quality metric, we estimated tSNR (Roalf et al., 2016) for each pipe-

line, which allows one to present a single metric characterising the

whole brain diffusion weighted data set and to perform comparative

estimations of data quality (Tønnesen et al., 2018). The average tem-

poral SNR is defined as tSNR = meanvolume(meanvoxel/stdvoxel), along

diffusion dimension. For each shell (b = 1,000 and b = 2,000 s/mm2),

we calculated temporal SNR after steps S4, S5, S7 of the developed

pipeline and the UKB pipeline (see below).

2.11 | Statistical analysis

To compare diffusion metrics obtained using different pipelines, we

used TBSS (Smith et al., 2006). Initially, all volumes were aligned to

the FMRI58_FA template, supplied by FSL, using nonlinear transfor-

mation realised by FNIRT (Andersson, Jenkinson, & Smith, 2007).

Next, a mean FA image of all subjects was obtained and thinned to

create mean FA skeleton. Afterward, the maximal FA values for each

subject were projected onto the skeleton to minimise confounding

effects due to partial voluming and any residual alignment problems.

We performed voxel-wise comparisons between diffusion metrics

obtained from the different pipelines using general linear models

(GLMs). For simplicity, we used individual level difference maps

(UKB—S7) when comparing pipelines. For each pipeline, we also

F IGURE 7 Results of TBSS analysis between data sets produced by
(a) S5 and S7; (b) S5 and original UKB pipeline. All images are in standard
MNI space and correspond to the coordinates: x = 26; y =−8; z = 24. The
red-yellow colourmeans that the first pipeline is significantly higher than
the second one (p < .05); the blue-light-blue colourmeans an opposite
situation. The presented TBSS results are TFCE corrected. AWF, axonal
water fraction; FA, fractional anisotropy;MK, mean kurtosis; TFCE,
threshold-free cluster enhancement; UKB, UKBiobank [Color figure can
be viewed at wileyonlinelibrary.com]
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tested for associations with age using GLMs, including sex as covari-

ate. For all contrasts, statistical analysis was performed using

permutation-based inference implemented in randomise (Winkler,

Ridgway, Webster, Smith, & Nichols, 2014) with 5,000 permutations.

Threshold-free cluster enhancement (TFCE, Smith & Nichols, 2009)

was used. Statistical p value maps were thresholded at p < .05

corrected for multiple comparisons across space.

In addition to voxel-wise statistics, we used diffusion metrics aver-

aged over the skeletons for estimating age differences using linear

models, as well as for visualisation of age curves and differences

between pipelines using the corrplot function in MATLAB. Linear regres-

sions were performed using two models: Model 1: y = b0 + b1*Age

+ b2*Sex andModel 2: y = b0 + b1*Age + b2*Age
2 + b3*Sex, where Age is

age in years and Sex corresponds to male or female. These two models

allowed us to test for linear and quadratic associations between diffusion

metrics and age for each pipeline. Regression parameterswere estimated

using the MATLAB function fitlm with a robust estimator based on the

Welsch function (Holland & Welsch, 1997) to decrease the influence of

possible outliers. Comparison of the variance between groups was per-

formed using repeated measures ANOVA test as implemented in the

MATLAB function ranova and standard deviations estimated over the

skeleton for each subject. Comparison of regression parameters for age

(slopes) from the linear models for each pipeline was done using the R

package cocor (Diedenhofen &Musch, 2015).

3 | RESULTS

3.1 | Voxel-wise comparisons of diffusion metrics
between pipelines

Figure 2 shows the scatter plots for FA obtained from the DKI fitting

and S4, S4, S7 and UKB pipelines. Top correlation plot corresponds to

mean skeleton FA, the bottom plot represents the individual standard

deviations across the skeleton. Briefly, the results revealed high correla-

tions of the diffusion metrics between all pipelines, however, ANOVA

test revealed significantly (p < 10−30) lower variance in S7 pipeline

(histogram peak values and mean/std are at MD—0.18 (0.16/0.03);

AD—0.29 (0.30/0.03); RD—0.15 (0.17/0.03), see Figure S1) compared

to the original UKB pipeline (histogram peak values and mean/std are

at MD—0.21 (0.24/0.05); AD—0.35 (0.35/0.03); RD—0.23 (0.24/0.04),

see Figure S1). Figure 3 shows the correlation plots for MK from the

DKI model. The metrics were highly correlated between pipelines. The

variances were also lower (ANOVA test, p < 10−30) in the S7 pipeline

compared to UKB (see Figure S2). Figure 4 shows the correlation plots

F IGURE 8 Scatter plots of different
postprocessing steps for evaluated tSNR values
using b-values equal to 1,000 (x axis) and 2,000
(y axis) s/mm2. tSNR, temporal signal-to-noise
ratio; UKB, UK Biobank [Color figure can be
viewed at wileyonlinelibrary.com]
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of AWF from the WMTI model. Since the estimation of WMTI metrics

were based on the DKI values, the WMTI diffusion metrics exhibited

quite high correlations for all pipelines similar to Figure 3. The variance

of S7 pipeline was lower (ANOVA test, p < 10−30) compared to all other

pipelines (histogram peak values and mean/std are at AWF—0.07

(0.07/0.004); AE—0.40 (0.41/0.02); RE—0.18 (0.19/0.03); Tort—0.65

(0.66/0.07); see Figure S3). Figure 5 shows the scatter plots for FA

based on single-shell (b = 1,000 s/mm2) DTI, suggesting similar relation-

ships between the pipelines as for FA based on the DKI models, with

lower variance in the S7 pipeline compared to the original UKB

pipeline. Similar results using other conventional DTI metrics (MD, AD

and RD) can be seen in Figure S4.

Figure 6 shows the results from the voxel-wise comparison

between the original UKB pipeline and S7. Both DKI/WMTI and DTI

revealed significant differences (p < .05, corrected using permutation

testing and TFCE) between pipelines, where the S7 pipeline metrics

revealed both higher and lower values compared to UKB pipeline, in

particular, see MK and conventional FA. Figure 7 shows the results

of the analysis based on S5 versus UKB and S5 versus S7. Briefly,

the results revealed significant difference (p < .05, corrected using

F IGURE 9 Linear age correlations of
diffusion metrics obtained from two
pipelines (S7 and original UKB).
Regressions were performed for two
linear models with included Sex as a
covariant. Regression lines are plotted
together with a 95% interval of
confidence. AWF, axonal water fraction;
FA, fractional anisotropy; MK, mean
kurtosis; UKB, UK Biobank [Color figure
can be viewed at wileyonlinelibrary.com]
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TABLE 3 Estimated regression intercepts/slopes/root mean square error (RMSE), and R2 for two linear models (Model 1: y = b0 + b1*Age
+ b2*Sex; Model 2: y = b0 + b1*Age + b2*Age

2 + b3*Sex) in age-curves in Figure 8

Pipeline/model FA MD AD RD

Model 1

Slope (b1) −0.895�10−3 1.525�10−3 1.055�10−3 1.774�10−3

Intercept (b0) 0.487 0.799 1.284 0.555

S7 RMSE 0.017 0.027 0.028 0.030

R2 0.175 0.214 0.142 0.227

Model 2

Slope (b0) −0.905�10−3 1.561�10−3 1.075�10−3 1.811�10−3

Intercept (b1) 0.488 0.797 1.283 0.553

RMSE 0.017 0.027 0.028 0.030

R2 0.173 0.216 0.142 0.229

Model 1

Slope (b1) −0.696�10−3 1.256�10−3 0.667�10−3 1.503�10−3

Intercept (b0) 0.511 0.818 1.351 0.552

RMSE 0.015 0.024 0.024 0.027

UKB R2 0.140 0.188 0.087 0.209

Model 2

Slope (b1) −0.701�10−3 1.274�10−3 0.688�10−3 1.518�10−3

Intercept (b0) 0.511 0.817 1.350 0.551

RMSE 0.015 0.025 0.025 0.027

R2 0.136 0.186 0.087 0.206

MK AK RK

Model 1

Slope (b1) −0.995�10−3 −0.586�10−3 −1.978�10−3

Intercept (b0) 1.075 0.810 1.493

RMSE 0.037 0.019 0.068

S7 R2 0.06 0.106 0.063

Model 2

Slope (b1) −1.000�10−3 −0.591�10−3 −1.989�10−3

Intercept (b0) 1.075 0.811 1.493

RMSE 0.037 0.019 0.068

R2 0.056 0.101 0.059

Model 1

Slope (b1) −1.395�10−3 −0.663�10−3 −2.600�10−3

Intercept (b0) 1.047 0.774 1.487

RMSE 0.036 0.018 0.068

UKB R2 0.115 0.126 0.106

Model 2

Slope (b1) −1.405�10−3 −0.678�10−3 −2.606�10−3

Intercept (b0) 1.047 0.777 1.487

RMSE 0.036 0.018 0.069

R2 0.111 0.128 0.101

AWF AE RE

Model 1

Slope (b1) −0.464�10−3 0.616�10−3 2.158�10−3

(Continues)
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permutation tests and TFCE) between S5 versus S7, and S5 versus

UKB. Interestingly, that analysis of S5 versus UKB reproduces similar

patterns as for S7 versus UKB (see Figure 6).

3.2 | Temporal signal-to-noise ratio

Figure 8 shows the tSNR distributions for each pipeline by scatter

plots for b = 1,000 and 2,000 s/mm2. For b = 1,000 s/mm2 mean esti-

mated tSNR (std) = 3.83 (0.25), 3.83 (0.25), 3.94 (0.29) and 1.81 (0.10)

for S4, S5, S7 and UKB, respectively. For b = 2,000 s/mm2 mean esti-

mated tSNR (std) = 1.92 (0.12), 1.92 (0.12), 1.93 (0.14) and 1.73

(0.10). These results indicate 2.2 times (for b = 1,000 s/mm2) and 1.1

time (for b = 2,000 s/mm2) higher tSNR in the S7 pipeline compared

to the UKB pipeline.

3.3 | Age-related differences across pipelines

Figure 9 shows the estimated linear fits with age for the various diffu-

sion metrics and Table 3 shows the summary stats from the regression

models, including the intercepts and slopes. Cocor revealed no signifi-

cant differences in the estimated slopes between pipelines (in all cases

z < 0.005, p > .99). The DTI metrics exhibited expected age-related

differences with lower FA and higher MD, AD and RD with higher

age. MK, AK and RK showed age-related reductions, that is, reduced

non-Gaussianity of the water diffusion with increased age. Metrics

based on WMTI (AWF, AE and RE) demonstrated reduction of the

AWF and extension of the extra-axonal water diffusivity with

increased age for both regression models. Note, that in the regression

Model 2, the associations between diffusion metrics and age2 and sex

were not significant (p > .05) and the total explained variance in

Model 2 was very similar to Model 1. Estimated linear fits with age for

MD, AD, RD, AK, RK, AE and RE metrics are presented in Figure S8.

Figure 10 shows the results from the voxel-wise GLM testing for

linear age associations with the different diffusion metrics across the

skeleton, and a scatter plot of the uncorrected voxel-wise t-stats from

each of the two pipelines. The spatial correlation between the

uncorrected t-stats maps were 0.84, 0.79, 0.84 for FA, MK and AWF,

respectively (scatter plots are presented in Figure 9c). Table 4 summa-

rises the number of voxels identified in each pipeline. Whilst the two

pipelines revealed highly overlapping results, a few regions showed

significant age differences in one of the two pipelines only. For exam-

ple, for MK and AWF S7 identified significant (p < .05, corrected) cor-

relations in splenium and genu, and UKB revealed significant age-

associations for MK in occipital region of the skeleton.

4 | DISCUSSION

A growing interest in utilising advanced diffusion MRI to study the

human brain motivated us to test the effects of various data processing

pipelines on different diffusion metrics. Differences in data post-

processing steps such as the current S4, S5 and S7 are likely to influence

reliability and subsequent interpretation of results. Thus, a harmonised

diffusion pipeline may prove valuable for increasing sensitivity, reliability

TABLE 3 (Continued)

Pipeline/model FA MD AD RD

Intercept (b0) 0.400 1.820 0.852

RMSE 0.013 0.036 0.035

S7 R2 0.091 0.048 0.239

Model 2

Slope (b1) −0.467�10−3 0.625�10−3 2.190�10−3

Intercept (b0) 0.400 1.819 0.851

RMSE 0.014 0.036 0.035

R2 0.087 0.045 0.239

Model 1

Slope (b1) −0.566�10−3 0.110�10−3 1.435�10−3

Intercept (b0) 0.425 1.937 0.863

RMSE 0.014 0.034 0.028

UKB R2 0.118 0.013 0.176

Model 2

Slope (b1) −0.569�10−3 0.110�10−3 1.456�10−3

Intercept (b0) 0.425 1.937 0.862

RMSE 0.014 0.034 0.029

R2 0.114 0.011 0.175

Abbreviations: AD, axial diffusivity; FA, fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity; UKB, UK Biobank.
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and generalisability across studies.We suggest a general framework with

the following postprocessing steps: (a) noise correction, (b) Gibbs-ringing

correction, (c) field mapping, (d) susceptibility, eddy current and head

motion distortion corrections, (e) B1 field correction, (f) spatial smoothing

and (g) final metrics estimation. Our comparison between three post-

processing steps in the current diffusion pipeline demonstrated that the

F IGURE 10 Results of general linear model (GLM) tests of diffusion metric versus age across the skeleton. “Diff” columns visualise the spatial
difference between the GLM results: The red colour marked the regions with significant difference (p < .05) detected in S7 pipeline but not in
UKB. Blue voxels showed significant age correlation in UKB pipeline but not in S7. The mean skeleton is visualised by the green colour. The
presented TBSS results are TFCE corrected. (a) Voxel-wise analysis was performed using individual skeletons derived for each pipeline separately;
(b) voxel-wise analysis was performed using common skeleton derived for the merged datasets; (c) scatter plots of t-stats for FA, MK and AWF
derived using the merged data sets. AWF, axonal water fraction; FA, fractional anisotropy; MK, mean kurtosis; TFCE, threshold-free cluster
enhancement; UKB, UK Biobank [Color figure can be viewed at wileyonlinelibrary.com]
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general pipeline suggested here yield a substantially higher tSNR com-

pared to the original UKB pipeline, and also influence the estimated age

curves with potentially relevant implications.

Overall, the diffusion metrics derived after the different steps in the

current pipeline demonstrated high correlations and similar distribu-

tions. In some cases, S7 resulted in lower variance of the diffusion met-

rics than others, for example, for WMTI. Although we interpret the

reduced variance to indicate higher precision in the current context, it

should be emphasised that lower variance does not necessarily indicate

higher accuracy of the diffusion metric estimation. Nevertheless, S7

exhibited quite high correlations with S5 for the conventional DTI met-

rics. This strong correlation suggests a small effect of the Gaussian

smoothing on the metric estimations to additional data interpolations

introduced by the Gibbs ringing (S2) and eddy corrections (S4) and can

be interpreted as a metric shift. Results from the UKB pipeline showed

relatively high correlations with S4 and S5 for the DTI metrics, and

slightly lower for DKI and WMTI. For DTI the UKB pipeline showed

stronger correlations with S4 than to S5. The correlations between the

S7 and UKB pipelines were lower than for other pipeline pairs. Overall,

the results support that all steps of the proposed S7 pipeline might lead

to relevant improvements in the estimations of diffusion metrics.

TBSS revealed a significant difference between the S7 and UKB

pipelines for all diffusion metrics. Interestingly, the differences between

pipelines did not reflect simple global shifts of the diffusion parameters

across the skeleton, but rather spatially variable differences across sev-

eral metrics, including DTI, DKI and WMTI. The observed differences

between S4 and S5 pipelines suggest significant effects of bias field cor-

rections across a large part of the skeleton. The comparison between S5

andUKB pipelines revealed similar results as those seenwhen comparing

the S7 and UKB pipelines (Figures 6 and 7b), suggesting that spatial

smoothing in the S7 pipeline yields a reasonable improvement which did

not remove important information from the data set. The regionally spe-

cific increases or decreases in diffusion metrics for different pipelines

might partly be explained by an effect of the noise correction step on

physiological noise around the large arteries or strong susceptibility-

induced artefacts close to air cavities in the brain. Such artefacts might

introduce spatially variable distortions, which could lead to spurious find-

ings. This could explain the previously demonstrated higher sensitivity to

group differences after noise correction (Kochunov et al., 2018). More-

over, our comparison between pipelines demonstrated that noise and

Gibbs ringing corrections (corresponds to S4) influenced tSNR both in

the case of conventional (b = 1,000 s/mm2) and at higher diffusion

weightings (b = 2,000 s/mm2; see Figure 8). Interestingly, the bias field

correction step (S5) did not change tSNR compared to S4. Similar, the

spatial smoothing step (S7) did not introduce a strong shift in tSNR

compared to S4 and S5, however, has been shown to influence further

diffusion metric estimations by reducing the number of “bad” voxels

(Veraart et al., 2013).

To assess possible practical consequences of the different correc-

tion steps, we compared the estimated age slopes in DKI and WMTI

metrics between pipelines. Age-related differences are abundant in the

relevant age span (Grinberg et al., 2017; Westlye et al., 2010). All

included metrics showed an effect of pipeline and, although similar

signs, some variability in estimated age-slopes between the S7 and

UKB pipelines. The voxel-wise comparisons revealed a higher number

of voxels showing significant age associations in the S7 compared to

the UKB pipeline for DTI and WMTI metrics. On the contrary, the UKB

pipeline demonstrated a higher number of significant voxels for DKI

metrics. Although subtle, pipeline related global and spatially varying

differences in diffusion metrics will have consequences for subsequent

analyses, for example, for machine-learning-based age prediction or

diagnostic classification or prediction of clinical traits (Alnaes et al.,

2018; Doan et al., 2017; Kuhn et al., 2018; Richard et al., 2018).

In conclusion, our analysis of UKB data demonstrated that temporal

SNR and estimated diffusion metrics are sensitive to processing pipe-

line and might benefit from the proposed sequential advanced post-

processing steps. Although applied in UKB, the current pipeline offers

an example of a general approach for harmonisation of postprocessing

steps across diffusion MRI studies. Whereas artefact correction may

be particular important when applying complex diffusion models to

multishell diffusion data (Galdi et al., 2019) such as a difference

between conventional and kurtosis-derived diffusion metrics or novel

experimental setups (Vellmer et al., 2017). The current pipeline can

be adapted to other diffusion scheme such as conventional single-shell

diffusion acquisitions and isotropic diffusion weighting (Maximov &

Vellmer, 2019; Vellmer et al., 2017).
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TABLE 4 The number of voxels (Nvox) depending on the pipeline with significant age-correlation specific for the given pipeline versus a total
number of voxels with significant age correlation (p < .05, corrected)

Pipeline
specific/total Nvox

Individual skeletons: skeleton size (NS7/NUKB) 117,623/132,025 Common skeleton: skeleton size Nvox 120,958

FA MK AWF FA MK AWF

S7 35,151/70,335 10,816/26,896 21,452/52,974 29,130/69,152 12,691/47,408 14,752/62,434

UKB 23,744/58,928 43,297/59,377 38,180/69,702 5,995/45,911 20,508/55,225 15,130/62,812

Note: Voxel estimations were performed for analyses based on individual skeletons derived by each pipeline and for the skeleton derived from the merged

data sets. See also Figure 9 for explanation.

Abbreviations: AWF, axonal water fraction; FA, fractional anisotropy; MK, mean kurtosis; UKB, UK Biobank.
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