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Effects of social distancing and isolation on
epidemic spreading modeled via dynamical density
functional theory
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For preventing the spread of epidemics such as the coronavirus disease COVID-19, social
distancing and the isolation of infected persons are crucial. However, existing reaction-
diffusion equations for epidemic spreading are incapable of describing these effects. In this
work, we present an extended model for disease spread based on combining a susceptible-
infected-recovered model with a dynamical density functional theory where social distancing
and isolation of infected persons are explicitly taken into account. We show that the model
exhibits interesting transient phase separation associated with a reduction of the number of
infections, and allows for new insights into the control of pandemics.
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ARTICLE

ontrolling the spread of infectious diseases, such as the

plague! or the Spanish flu?, has been an important topic

throughout human history3. Currently, it is of particular
interest owing to the worldwide outbreak of the coronavirus
disease 2019 (COVID-19) induced by the novel coronavirus
SARS-CoV-24-7. The spread of this disease is difficult to control,
as the majority of infections are not detected3. Owing to the fact
that a vaccine does not currently exist, the response to the pan-
demic has focused on nonpharmaceutical interventions®, invol-
ving the general reduction of social interactions, and in particular
the isolation of persons with actual or suspected infection. For
political decisions on such measures, it is important to have
available a way for predicting their effects.

Mathematical models for disease spreading exist in a variety of
forms. Simple compartmental models, such as the widely used
susceptible-infected-recovered (SIR) model!?, can take into
account social restrictions in an effective way by changing the
transmission rate, but cannot model them explicitly. Individual-
based models'!, on the other hand, are computationally very
expensive in practical applications and provide little room for
analytical insights. In physics, bridging the gap between large-
scale and detailed descriptions is possible by using coarse-grained
field theories such as dynamical density functional theory
(DDFT)!213, which are more efficient than particle-based simu-
lations while still having a clear connection to the microscopic
dynamics. This indicates that similar approaches will also be
valuable for epidemiology.

In this article, we present a DDFT for epidemic spreading that
allows to model the effects of social distancing and isolation on
infection numbers. Our model is based on combining the general
idea of a reaction-diffusion DDFT from soft matter physics with
the SIR model from theoretical biology. The phase diagram
predicted by our model shows that, at parameter values corre-
sponding to certain strengths and ratios of social distancing and
self-isolation, the system undergoes a phase transition to a state
where the spread of the pandemic is suppressed. For all regions of
the phase diagram, the predicted curves have the shape that is
observed in real pandemics. Numerically, the inhibition of epi-
demic spreading is found to be associated with transient phase
separation, where infected persons accumulate at certain spots.
Another mechanism decreasing infection numbers is a reduction
of the density. Our results are of high interest for the control of
pandemics, as the effects of social distancing and the properties of
the disease can be studied separately. Moreover, the observed
phase separation effects can also be expected to occur in crowded
(bio-)chemical systems, which are governed by similar equations.

This article is structured as follows: In the results section, we
first introduce the SIR-DDFT model. Second, analytical results
concerning disease outbreaks are discussed. Third, we present
numerical results showing that social interactions can reduce
infection numbers in our model. Fourth, the associated spatio-
temporal dynamics is explained. We summarize our findings in
the discussion section. In the methods section, we present details
on the construction of the model, linear stability, front propa-
gation, the basic reproduction number, and the applied numerical
methods.

Results

SIR-DDFT model. A quantitative understanding of disease
spreading can be gained from mathematical models!4-17. In
compartmental models!%, the population is divided into various
compartments that often represent different health conditions,
such as susceptible or infected. The dynamical equations then
describe transitions between these compartments, such as infec-
tions or recovery. In contrast, individual-based models use a

bottom-up approach by considering the behavior of individual
agents, which may have different locations, physical properties,
and social behavior!l. Although being more detailed than com-
partmental models, they are computationally much more costly.

The analog of an individual-based model in soft matter physics
is a particle-based simulation, which is used for a microscopic
description of a complex fluid. An alternative method used in this
area are coarse-grained field theories, which describe in a
simplified way the microscopic dynamics they are derived from
on a larger scale. A paradigmatic example of such a theory is
DDFT!819. The results obtained from coarse-grained theories are
often in excellent agreement with particle-based simulations and
have a clear connection to the microscopic description, while
providing additional analytical insights?). At the same time,
coarse-grained theories are much easier to solve numerically. This
motivates the application of such field theories, and in particular
of DDFT, to the case of disease spreading.

A well-known compartmental theory for epidemic dynamics is
the SIR model!?

g = _Ceff§T7 (1)
j = Ceffgj — WT, (2)
R= wi, (3)

which has already been applied to the current coronavirus
outbreak?!22, It is a reaction model that describes the number of
susceptible S, infected I, and recovered R individuals as a function
of time t. Susceptible individuals get the disease when meeting
infected individuals at a rate c.¢ (“transmission rate”, also known
as “effective contact rate”?3). For ease of notation, we have
absorbed the total population size N into the transmission rate.
Infected persons recover from the disease at a rate w. When
persons have recovered, they are immune to the disease. (We use
overbars to distinguish population numbers from population
densities: S is the total number of susceptibles, while S is the
number of susceptibles per unit area.)

A drawback of this model is that it describes spatially
homogeneous dynamics, i.e., it does not take into account the
fact that healthy and infected persons are not distributed
homogeneously in space, even though this fact can have
significant influence on a pandemic?4%>. To allow for spatial
dynamics, disease-spreading theories such as the SIR model have
been extended to reaction-diffusion equations?6-32, For this
purpose, a term DyV2¢(r, ) with diffusion constant D, and
spatial variable r is added on the right-hand side of the dynamical
equation for ¢ = S, I, R from the SIR model (Eqs. (1-3)) with S, T,
and R replaced by the corresponding densities S, I, and R and c.¢
replaced by a parameter ¢ that has dimensions of area/time. No
change is required for the parameter w. Using a
reaction—diffusion equation to model disease spreading corre-
sponds to assuming local transmissions®>. A phenomenological
extension incorporates the avoidance of infected persons by
susceptible persons using cross-diffusion34. This, however, does
not incorporate general physical distancing also between healthy
persons (which is required if infected persons cannot generally be
identified as such).

A drawback of reaction-diffusion equations is that they—being
based on the standard diffusion equation—do not take into
account particle interactions other than the reactions. This issue
arises, e.g., in chemical reactions in crowded environments such
as inside a cell. If the number of reactions is limited by the rate of
encounters, it will be reduced by crowding3”. To get an improved
model, one can make use of the fact that the diffusion equation is
a special case of DDFT. In this theory, the time evolution of a
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density field p(r, t) is given by

OF
op =TV <pV 5—p> (4)

with a mobility I and a free-energy functional F. Note that we
have written Eq. (4) without noise terms, which implies that
p(r, t) denotes an ensemble average3®. The free energy is given by

F:Fid+Fexc+Fext' (5)

Its first contribution is the ideal gas free energy
Fy=p" [ dple o erony -1, (o)

corresponding to a system of noninteracting particles with the
rescaled inverse temperature f3, number of spatial dimensions d,
and thermal de Broglie wavelength A. If this is the only
contribution, Eq. (4) reduces to the standard diffusion equation
with D = I'83~L. The second contribution is the excess free energy
F.xo» which takes the effect of particle interactions into account. It
is typically not known exactly and has to be approximated. The
third contribution F.,, incorporates the effect of an external
potential U,(r, t). DDFT can be extended to mixtures37-38, which
makes it applicable to chemical reactions. Although DDFT is not
an exact theory (it is based on the assumption that the density is
the only slow variable in the system!319), it is nevertheless a
significant improvement compared to the standard diffusion
equation as it allows to incorporate the effects of particle
interactions and generally shows excellent agreement with
microscopic simulations. In particular, it allows to incorporate
the effects of particle interactions such as crowding in
reaction—diffusion equations. This is done by replacing the
diffusion term DV2¢(r, t) in the standard reaction-diffusion
model with the right-hand side of the DDFT equation (4)3°-42.
Thus, given that both static density functional theory (DFT)43
and dynamical models for interacting agents*->! have previously
been used to describe social systems, DDFT is a very promising
approach for the development of extended models for epidemic
spreading. In particular, the successes of DDFT in other biological
contexts such as cancer growth®?, protein adsorption®3, ecology®4,
or active matter>>~6! suggest that it can be an extremely valuable
tool also in the present context.

We use the idea of a reaction-diffusion DDFT to extend the
SIR model given by Egs. (1-3) to a (probably spatially
inhomogeneous) system of interacting persons, which compared
to existing methods allows the incorporation of social interactions
and in particular of social distancing. Persons are modeled as
diffusing particles that can be susceptible to, infected with, or
recovered from a certain disease. Social distancing and self-
isolation are incorporated as repulsive interactions. The dynamics
of the interacting particles can then be described by DDFT, while
reaction terms account for disease transmission and recovery.
DDFT describes the diffusive relaxation of an interacting system
and is thus appropriate if we make the plausible approximation
that the underlying diffusion behavior of persons is Markovian®2
and ergodic®3. Using the Mori-Zwanzig formalism®4-%0, one can
connect the DDFT model and its coefficients to the dynamics of
the individual persons!®1°. The extended model reads

6F

3,S=TgV- (SV g) — ¢S, (7)

9,/ =T,V - (IV ‘;—f) + ST — wl — ml, (8)
OF

R=T,V - <RV ﬁ) + wl. (9)

Note that we allow for different mobilities I's, I', and I'p for
the different fields S, I, and R. For generality, we have added a
term —mI on the right-hand side of Eq. (8) to allow for death of
infected persons, which occurs at a rate m (cf. SIRD model®7-98).
Details on the microscopic construction of the extended model
can be found in the first part of the methods section. Since we are
mainly interested in how fast the infection spreads, we set m =0
in the following. In this case, as the total number of persons is
constant, one can easily show that
OF OF OF
J = T3SV 55 = DIV 5 — TRV =5 (10)
is a conserved current. The ideal gas term Fy4 in the free energy
corresponds to a system of noninteracting persons and ensures
that standard reaction—diffusion models for disease spreading?®
arise as a limiting case. The temperature measures the intensity of
motion of the persons. A normal social life corresponds to an
average temperature, whereas the restrictions associated with a
pandemic will lead to a lower temperature. Moreover, the
temperature can be position-dependent if the epidemic is dealt
with differently in different places. The excess free energy Fey.
describes interactions. This is crucial here as it allows to model
effects of social distancing and self-isolation via a repulsive
potential between the different persons. Social distancing is a
repulsion between healthy persons, while self-isolation corre-
sponds to a stronger repulsive potential between infected persons
and other persons. Thus, we set

Fexc:Fsd+Fsi (11)

with F4 describing social distancing and F;; self-isolation. Note
that effects of such a repulsive interaction are not necessarily
covered by a general reduction of the diffusivity in existing
reaction—diffusion models. For example, if people practice social
distancing, they will keep a certain distance in places such as
supermarkets, where persons accumulate even during a pan-
demic, or if people live in crowded environments, as was the case
on the ship Diamond Princess®. In our model, in the case of two
particles approaching each other, which even at lower tempera-
tures still happens, repulsive interactions will reduce the
probability of a collision and thus of an infection. Existing
models can only incorporate this in an effective way as a
reduction of the transmission rate c.g, which implies, however,
that properties of the disease (How infectious is it?) and measures
implemented against it (Do people stay away from each other?)
cannot be modeled independently. Furthermore, interactions
allow for the emergence of spatiotemporal patterns. The final
contribution is the external potential Upy. In general, it allows to
incorporate effects of confinement into DDFT. Here, it
corresponds to things such as externally imposed restrictions of
movement. Travel bans or the isolation of a region with high rates
of infection enter the model as potential wells.

The advantage of our model compared to the standard SIR
theory is that it allows—in a way that is computationally much
less expensive than microscopic simulations, as the computa-
tional cost of a DDFT calculation is independent of the number of
persons for a fixed system size and resolution’9—to study the way
in which different actions affect how the disease spreads. For
example, people staying at home corresponds to reducing the
temperature, social distancing corresponds to repulsive interac-
tion potentials, and mass events correspond to attractive
potentials.

Specifically, we assume that both types of interactions can be
modeled via Gaussian pair potentials, depending on the
parameters Cygq and C; determining the strength and o4 and o
determining the range of the interactions (parameters with
subscript sd account for social distancing, parameters with
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subscript si for self-isolation). This corresponds to describing the
society as a Gaussian core model (GCM) fluid3771-74, Gaussian
interaction potentials are widely used to model, e.g., the behavior
of polymers. They capture in an effective way the fact that
polymers are penetrable objects that cannot be described as hard
spheres. In DFT, GCM fluids are well described by a mean-field
approximation’!72, For describing social interactions, soft
interaction potentials are more appropriate than hard-core
potentials: Persons can still get very close to each other if they
practice social distancing, they are just less likely to. Different
ways to practice social distancing can be accounted for by varying
the form of the interaction potential.

Combining the Gaussian pair-interaction potential with a
mean-field approximation’27> for the excess free energy, we get
the specific SIR-DDFT model

9,8 = DgV?§ — TV - (SV(CyyKyg * (S+ R) + CyK i+ I)) — ¢S,
(12)

9,1 =DV’ =T,V - (IV(C4K* (S +1+R))) + cSI — wl,
(13)
0,R = DRV2R — TV - (RV(CyyKyq * (S+R) + C K+ 1)) + wi
(14)

with the diffusion coefficients Dy =TyB~! for ¢ =S5, I, R, the
kernels

K(r) = exp(—o,ar”), (15)

(16)

and the spatial convolution *. A possible generalization is
discussed in Supplementary Note 1.

Ksi(r) = exp(—asirz),

Disease outbreak. We perform a linear stability analysis of this
model, using a general pair potential, in order to determine
whether a homogeneous state with I =0, which is always a fixed
point, is stable. This provides an analytical criterion for whether a
disease outbreak will occur. The full calculation is given in the
second part of the methods section. In the simple SIR model, a
fixed point with S = S, where S, is a constant, is unstable when
oSy >w33. Thus, the pandemic cannot break out if persons
recover faster than they are able to infect others. A linear stability
analysis of the full model gives the eigenvalue

A = Sy — W — Dy

(17)

with the wavenumber k and the homogeneous reference density
of susceptibles Syom, such that a homogeneous state with density
Shom is unstable for cSpom > w. As reported in the literature?$, the
marginal stability hypothesis’®-80 gives, based on this dispersion,
a front propagation speed of v =2./D;(cS,,, — w). (This is
shown explicitly in the third part of the methods section.)
However, there are two additional eigenvalues A, and A; asso-
ciated with instabilities owing to interactions.

The outbreak criterion obtained from Eq. (17) can be directly
translated into the well-known criterion Ry > 1, where R, is the
basic reproduction number8! (this is shown in the fourth part of
the methods section), as well as into the criterion c,gS,>w from
the SIR model (this is shown in the second part of the methods
section). In general, however, the situation is more complex in the
presence of spatiotemporal dynamics and interactions. To see
this, note that Eq. (1) from the standard SIR model can be derived
by integrating Eq. (7), which is the small-scale description, over
space (a region of space with no flux of people through the
boundaries). This motivates the subscript eff, which we use for

the transmission rate in the standard SIR model: Actually, it is
an effective transmission rate c.p which is related to the
parameter ¢ by

carlt) = ¢ / dreq(r, ey (r, 1) (18)
with the normalized distributions eg = S/S and e; = I/I. Hence,
the transmission rate c.¢ observed on large scales depends on the
spatial overlap of the functions S and I. If the infected persons are
spatially isolated from the susceptible persons, there will be no
infections even if the number of infected persons is relatively
large. (In the standard SIR model, the contact rate enters c.g as a
factor?3.) Consequently, the integral on the right-hand side of Eq.
(18) can be decreased by reducing the number of contacts
between susceptible and infected persons, and can thus account
for the effects of social restrictions. The effects of measures such
as face masks that affect ¢ can be studied separately in our model,
and can thus be distinguished from the effects of a change in the
spatial distribution.

Equation (18) shows that there are, in principle, two
mechanisms by which the repulsive interactions can lead to a
reduction of the transmission rate c.g: First, the spatial overlap of
S and I can be reduced by isolating the infected from the
susceptible persons. Second, even if no demixing of this type
occurs, people may spread over a larger distance if they repel each
other. For a completely homogeneous distribution, c.g is just
inversely proportional to the domain area, such that a reduction
of cer is possible by increasing the area over which persons are
distributed. This is, as discussed in the fourth part of the methods
section, the reason why R, is smaller in rural areas. A detailed
discussion of the effective transmission rate can be found in
Supplementary Note 2.

Inhibition of epidemic. For a further analysis, we solved Egs.
(12-14) numerically in two spatial dimensions with periodic
boundary conditions. Details on the simulations can be found in
the fifth part of the methods section. The relevant control para-
meters are Cy and Cg, which determine the strength of social
interactions that are the new aspect of our model. We assume
these parameters to be <0, which corresponds to repulsive
interactions. Moreover, we assume r and f to be dimensionless,
such that all model parameters can be dimensionless too. As
is common, we present our results in terms of the fraction of
the total population that is susceptible (S, = S/N), infected
(I, = I/N), or recovered (R, = R/N). In Supplementary Note 3,
we provide results of simulations in one spatial dimension and for
a smaller domain in order to assess the way in which the number
of dimensions and the domain size affect the results.

Measures implemented against a pandemic will typically
have two aims: enlargement of S, = lim,_,_S,(¢), which (for
R(r, 0) = 0) is the fraction of persons that are not infected during
the pandemic, and reduction of the maximum fraction of infected
persons I, . for keeping the spread within the capacities of the
healthcare system. Using parameter scans, we can test whether
social distancing and self-isolation can achieve those effects.

In particular, we wish to describe an outbreak within a city, i.e.,
a medium-size spatial region in which it can be reasonably
assumed that people move primarily via diffusive random walks
and not using airplanes or trains. The case of a city is of special
interest, as the population density in cities is relatively large,
which can lead to particularly severe outbreaks that have to be
controlled on a local scale. Moreover, systematic investigations of
local spreading can lead to important insights into the properties
of the disease. A study with this aim was performed for the
COVID-19 outbreak in the district of Heinsberg (Germany) by
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Fig. 1 Phase diagrams and time evolutions for the SIR-DDFT model. a The shown phase diagrams reveal the dependence of the maximal fraction of

infected persons T,y

and the final fraction of susceptible persons 300‘,1 on the strength of self-isolation C; and social distancing C.4. A phase boundary is

clearly visible. Blue points correspond to the time evolutions presented in the following subfigures. b Time evolutions of the fractions of susceptible (S,),
infected (Tn), and recovered (Rn) persons are shown for no interactions (C;; = Coq = 0), moderate interactions (Cy; = 2Csq = —20), and strong interactions
(Csi=3Csg=—30). It can be seen that a reduction of social contacts flattens the curve I (t). ¢ The density of infected persons I(x, y, t) is shown for the
same three interaction strengths at different times t. For the strongest interactions, phase separation (first into rings, then into single spots) is observed.

The color bar applies to Figs. 1a and 1c.

Streeck et al.82. Individual-based models, which allow to
incorporate contact networks, are a typical approach for
modeling cities®3. Transportation networks can also be included
in DDFT, where streets can be represented by confining
potentials (that would represent narrow channels in usual fluid
mechanics). Here, we assume a spatially homogeneous city for
simplicity.

As a first scenario, we consider an initial Gaussian accumula-
tion of people in the middle of the domain. This allows us to
model the infection dynamics after a super-spreading event, for
which the outbreak in Heinsberg that took place after a
traditional carnival festivity (Kappensitzung)®? is a good example.
As can be seen from the phase diagrams for the SIR-DDFT model
shown in Fig. la, there is a clear phase boundary between the
upper left corner, where low values of I, , and high values of
Socn show that the spread of the disease has been significantly
reduced, and the rest of the phase diagrams. This is, as shown in
the fourth part of the results section, a consequence of phase
separation. In addition, a smaller reduction of I, , is observed
in the bottom left corner of the phase diagram, where |Cg| and

|Csal are large and have similar values. There, the diffusive spread
after a Gaussian initial distribution, which is altered by the
presence of interactions (the distribution is then broader at early
times), is a relevant mechanism. As all simulations were
performed with parameters of ¢ and w that allow for a disease
outbreak by the criterion presented in the second part of the
results section already for small values of Sy, our results show
that a reduction of social interactions can significantly inhibit
epidemic spreading, and that the SIR-DDFT model is capable of
demonstrating these effects.

Figure 1b shows the time evolutions of the fractions S, (t),
I,(t), and R (t) of susceptible, infected, and recovered persons,
respectively, for the cases without interactions (usual SIR model
with diffusion) and with interactions (our model). If no
interactions are present (ie, Cg4=C,y=0), I, (t) reaches a
maximum value of about 0.49 and the pandemic is over at time
t = 58 (where the end of the pandemic is the point in time where
I,<0.01 for all subsequent times). In the case with interactions
(we choose C;i=3Cyq = —30, i.e, parameter values inside the
social isolation phase), the maximum is significantly reduced to a
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value of about 0.18. The value of R (t) at the end of the
simulation, which measures the fraction of persons that have been
infected during the pandemic, decreases from about 0.95 to about
0.85. Moreover, it takes significantly longer (until time ¢ = 106)
for the pandemic to end. This demonstrates that social distancing
and self-isolation have the effects they are supposed to have, i.e.,
to flatten the curve I (¢) in such a way that the healthcare system
is able to take care of all cases. Intermediate results are found for
Cs = 2Cyq = —20, where social restrictions reduce the maximum
to about 0.4 (the final fraction of recovered persons actually
increases to about 0.97) and the end is reached at t =~ 64. Notably,
all curves were obtained with the same values of ¢ and w, i.e,, the
properties of the disease are identical. Hence, the observed effect
is solely a consequence of social interactions. In the usual SIR
model, in contrast, these would be accounted for by modifying
Cefs Such that they could not be studied separately. The theoretical
predictions for the effects of social restrictions on the course of
I,(t) (sharp rise, followed by a bend and a flat curve) are in good
qualitative agreement with recent data from China848, where
strict regulations were implemented to control the COVID-19
spread®®.

Interestingly, it turns out that a flattened curve is not always
completely beneficial. For intermediate interaction strengths
(C4 =2C,q = —20), the interactions lead to a smaller value of
I axn» Dut also to a slightly larger overall fraction of infected
persons (smaller S ). This can be explained by the modification
of the time-dependent effective transmission rate c.g in the
presence of spatiotemporal dynamics. During the initial spread-
ing phase, c is lower than in the noninteracting case.
Consequently, I, is decreased. At later times, where a larger
fraction of infected persons is left in the interacting case, the
transmission rate is slightly larger, leading to an increased overall
fraction of infected persons. For Cy; = 3Cyq = —30, the effects of
the interactions are strong enough to keep the transmission rate
below that of the noninteracting case also at later times. A full
discussion of the development of c.g for the time evolutions
presented in Fig. 1 can be found in Supplementary Note 2.

Self-isolating persons will in practice exhibit a reduced amount
of motion, which in our model corresponds to a lower
temperature (see the first part of the methods section for details).
The effects of a reduced or increased rescaled inverse temperature
fr of the infected persons are shown in Fig. 2. As expected, a

4
3 — Soo,n (.B/)/gie,n (Bsr)
- lmax,n (ﬁ/)/lmax,n (ﬁS,R)
2 -
14
0.8 T ———————r
107" 100 10"
BilBsg

Fig. 2 Dependence of infection numbers on the amount of motion of

infected persons. The maximal fraction of infected persons I, , and the
final fraction of susceptible persons S__ , are shown as functions of /B,
where f; and fs are the rescaled inverse temperatures corresponding to
the amount of motion of the infected and healthy persons, respectively. The
plot corresponds to strong interactions with Cs; =3Csq = —30. A decrease
of the temperature, i.e., a reduction of the amount of motion of the infected

persons, inhibits the outbreak.

lower temperature reduces the spread of the disease. The effect on

Swon is particularly strong.

Spatiotemporal dynamics and phase separation. To explain the
observed phenomena, it is helpful to analyze the spatial dis-
tribution of susceptible and infected persons during the pan-
demic. Figure 1c visualizes I(x, y, ) with x = (r), and y = (r), for
times t = 0, 10, 20, 30, and 50 and parameter values Cg; = Coq =
0, C; =2Cq = —20, and C,; = 3C,q = —30. Without interactions
(Ci=Csa=0), the pandemic just spreads radially and then
vanishes. The infected persons form a growing disk with a high
density and a sharp boundary in the middle of the domain. For
moderate interactions (Cy; = 2Cyq = —20), a radial spread is still
observed. However, the boundary of the disk is smoothened
significantly, such that the persons are distributed over a larger
area and the density is lower.

The most interesting behavior can be found for large values of
|Cs| and C/Cy, ie., strong interactions: the infection spreads
outwards in concentric circles that then split into separate spots.
This phase separation is a consequence of the interactions. As the
formation of infection rings and spots reduces the spatial overlap
of the functions S(x, y, t) and I(x, y, 1), i.e., the amount of contacts
between susceptible and infected persons, one observes both an
increase of S, , and a decrease of I, , as well as a longer
duration of the pandemic. This is relevant in the top left corner of
the phase diagrams in Fig. la. Physically, the separation into
small, evenly distributed infection spots is a reasonable descrip-
tion of infected persons that self-isolate by going home and then
staying there.

The demixing transition is an interesting type of transient
phase behavior in its own right. Recall that we have motivated the
SIR-DDFT model based on theories for chemical reactions of
interacting diffusing particles. It is thus very likely that effects
similar to the ones observed here can be found in chemistry. In
this case, they would imply that particle interactions can
significantly affect the amount of a certain substance that is
produced within a chemical reaction, and that such reactions are
accompanied by new types of (transient) pattern formation. An
interesting example is a system of polymers undergoing chemical
reactions. If interpreted in this way, the results presented in the
bottom row of Fig. 1c correspond to temporary demixing of a
complex fluid. For two-dimensional systems as considered here,
the minority phase can in general arrange into separated islands
or into a connected network (percolation)?”. In the present case,
one can distinguish between rings and spots, with the former
developing into the latter over the course of time. See refs. 37-71-74
for a general discussion of the phase behavior of GCM fluids.

The observation that the disease initially spreads with a circular
wavefront, made for simulations without and with phase
separation, is in agreement with predictions from simple
reaction-diffusion STR models33. These have been found to give
reasonable results for, e.g., the spread of the Black Death in
Europe or of Rabies in England®®. Radial spreading is even
observed in modern traffic networks on global scales, provided
these are described in terms of effective distance8? (see the first
part of the methods section). Moreover, spatial pattern formation
is known in other contexts from reaction-diffusion STR models®,
including variants where cross-diffusion is used to describe
susceptibles avoiding infected persons®*. Empirically, hotspots
(caused by other mechanisms) were observed, e.g., for the spread
of HIV in South Africa®! or Dengue in Thailand?2. Moreover, it
was found that spatial pattern formation can facilitate the control
of infectious diseases such as Rabies?3. This agreement indicates
that the predictions of our model are correct. However, the SIR-
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Fig. 3 Time evolution of the density of infected persons I(x, y, t) for a local source of infected persons (airport). The time evolution is shown for strong
interactions with Cg; = 3Csg = —30 and different influx strengths Isource. Initially, one observes radial spreading (transient regime). Later, a steady state is
reached, which is stationary for a small influx. A larger influx leads to a periodic regime (I(x, y, t) =I(x, y, t + nt) with n € IN and period duration 7~ 16),

involving the formation of a complex oscillating structure.

DDFT model is more general and incorporates interaction effects
not present in simple diffusion models.

As a second scenario, we consider a city with an airport, which
corresponds to a local source of infected persons. We use a
spherical domain and employ Dirichlet boundary conditions (see
the fifth part of the methods section for details). Overpopulation
is avoided by an outflux at the boundaries. The results are shown
in Fig. 3. First, one again observes radial spreading in the form of
infection rings (transient regime). For later times, a steady state is
reached as a consequence of the fact that the number of
remaining susceptibles is very low. The steady state is stationary
when the influx is weak. If the influx is stronger (which is less
realistic for disease spreading, but of interest for chemical
applications), one observes the formation of a complex oscillating
pattern as steady state.

Discussion

We have presented a DDFT-based extension of the SIR model for
epidemic spreading. It describes persons as diffusing particles
with repulsive interactions that correspond to social distancing
and self-isolation. The resulting theory provides more detailed
insights into the spread of diseases than simpler compartmental
models, whereas at the same time being much easier to handle
than individual-based models.

Analytical investigations of the model revealed that the stan-
dard results for linear stability, basic reproduction number, and
front propagation can be recovered. In addition, the SIR-DDFT
model allows for more detailed microscopic insights into the
effective transmission rate, showing that and how it can be
modified by the amount of contacts. A decrease of the trans-
mission rate is possible by an isolation of infected persons or by
distributing the population over a larger area.

When solving the model numerically in two spatial dimensions
to obtain its phase diagram, it is found that the repulsive inter-
actions significantly reduce both the total number of infections
and the peak of the pandemic. Consequently, social restrictions
allow to flatten the curve. A reduction of the number of infections
is also possible by decreasing the amount of motion of the
persons.

In particular, we have studied an outbreak after a mass event
corresponding to an initial accumulation of persons. The simu-
lations showed that the pandemic develops by radially spreading

outwards. In a certain parameter range, an interesting pattern
formation effect can be observed, in which the infection spreads
in concentric circles that then separate into isolated infection
spots. These can be interpreted as infected persons self-isolating
at home. As a consequence of demixing, the number of infections
is reduced significantly. Further interesting effects were observed
when considering a local source of infected persons that corre-
sponds to an airport.

In future work, corresponding DDFT-based models could be
constructed relying on compartmental models that are more
sophisticated than the standard SIR model, allowing to incorpo-
rate, e.g., different age groups or seasonal diseases!!. In addition,
transmission kernels can account for spreading over a certain
distance?3. Moreover, it is possible to perform simulations for
outbreaks on larger scales, i.e., in multiple cities or entire coun-
tries. Finally, one could investigate the consequences of using
different interaction potentials or more sophisticated approx-
imations for the free energy.

Methods

Microscopic construction of the model. In this section, we explain how the SIR-
DDFT model is constructed from and, consequently, connected to the microscopic
dynamics it is a description of. This is of importance for the interpretation of the
model, in particular regarding the physical meaning of the transport coefficients.
On the microscopic level, persons practicing social distancing can be modeled as
particles interacting via repulsive forces’*. We assume overdamped motion.

It is instructive to consider the limiting case of noninteracting persons first.
These will follow independent paths. If we consider motion on local scales, i.e.,
walking or driving within a city, it is a reasonable approximation to describe it as a
standard random walk. When a particle (or person) moves to position r in a time
At, the dynamics of the system will be described by a diffusion equation with a
diffusion constant”>

(Il x(ar) = x(0)]*)
2dAt

where (-) denotes an ensemble average, ||-|| the Euclidean norm, and d € {1, 2, 3}
the number of spatial dimensions. Consequently, if D is increased, the person
moves (on average) a larger distance in a certain time. Mathematically, this is a
standard description of a system of noninteracting Brownian particles.

The more general case, which is of particular interest in this work, is that of
interacting persons. Staying in the paradigm of Brownian persons, the natural
generalization is to assume that the position r; of person i is governed by the
Langevin equation!?

D =lim,, (19)

1(t) = TF,({r;}, £) + x,(1),

where I is the person’s mobility, F; is the force acting on person i that depends, in
general, on the positions of all persons and on time, and y; is a Gaussian white

(20
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noise with the properties

(1)) =0, (21)

(1) @ x;(t")) = 2D18;8(t — ).

In the latter two equations, ® denotes a dyadic product and 1 the identity matrix of
size three. The mobility I relates the velocity ¥; to the force F;, such that it
determines how strongly a person reacts to an applied force. It is related to the
diffusion constant by D = I'~! with the rescaled inverse temperature § = (kzT) ",
where kg is the Boltzmann constant and T the temperature. Consequently, the
temperature controls, for a fixed I, the value of the diffusion constant and thus the
amount of random motion. For mixtures with different species of persons, the
diffusion constant can have different values for the different species. In our case, a
general restriction of social life corresponds to reducing the amount of motion (i.e.,
the diffusion constant) of all persons, whereas quarantine implies that one
specifically isolates infected persons. In the latter case, the diffusion constant D; of
infected persons is reduced. This is a typical way of incorporating quarantine in
diffusion models for epidemic spreading®.

Although a change of Dy is equivalent to a change of the mobility of infected
persons in simple diffusion models, this is not the case in a DDFT for interacting
particles, such that we have to choose between changing I'; and changing f3; when
modeling quarantine. Reducing I'; implies, by Eq. (20), that persons exhibit smaller
reactions to repulsive forces, which here correspond to social distancing. However,
quarantined persons will certainly still try to avoid contacts. Consequently, we have
chosen to reduce Dy, but not I', which by the relation D; = Iy ﬁ;l implies that the
rescaled temperature ;' should be reduced. Although it is, in a real mixture, not
easily possible to reduce the temperature of one component while fixing that of the
others, it is not problematic in our model where temperature is just a measure for
the amount of random motion of the persons. Hence, a reduced amount of motion
of infected individuals as a consequence of self-isolation can be implemented by
decreasing their temperature. Also reducing I'; can be appropriate if the disease
itself affects the persons’ ability to move®’, e.g., by affecting their legs or causing
particularly severe symptoms.

As shown by Marini Bettolo Marconi and Tarazona!2, one can derive from the
Langevin equations (20) the DDFT equation (4) governing the ensemble-averaged
one-body density p. The crucial step is the adiabatic approximation, in which it is
assumed that the pair correlation of the system equals that of an equilibrium
system with the same one-body density. Although this is not exactly true, it has
been found to be a good approximation in a large variety of contexts. To get an
expression for the free energy (5), we require an approximation for the excess free
energy Fey.. We here choose the mean-field approximation

Fac =3 [ @' [ apte 0. 001 £ =1 ),

which provides a good description if the pair-interaction potential U, has a
Gaussian form’2.
For mixtures with multiple fields p; corresponding to different particle species i,

Eq. (4) generalizes to’7
SF
op, =I,V-(pV—).
i =T, (p, 5 P,->

Here, we consider the specific case of three fields S, I, and R (susceptible,
infected, and recovered persons) and assume that they can undergo three types
of transitions, which are added to Eq. (24) as nonconserved terms. The first one
is infection, which transforms susceptible into infected persons at a rate
governed by a parameter c. We make the assumption of local transmissions,
which can be generalized using transmission kernels33. The second one is
recovery, which transforms infected into recovered persons at a rate w. Finally,
constituting the third transition, infected persons can also die at a rate m,
which removes them from the population. The total density S+ I+ R is

not conserved if we allow for death. We assume (using the language of
chemical physics) ideal chemical reactions (see ref. 39 for a discussion of

the nonideal case).

This model can, in principle, be applied on any scale, both to outbreaks in a city
and in an entire country. Simulations on larger scales, however, need to take into
account two additional aspects: the first one is the growth of length scales, which is
accompanied by a growth of the computational cost. We can increase the
computational efficiency by replacing the regions between cities by confining
potentials that incorporate the fact that movement from one city to another is less
likely than moving within a city.

A second aspect that is relevant on long distances and of crucial importance for
disease spreading is air travel. This type of motion differs in two ways from
standard Brownian diffusion: first, it allows to travel extremely long distances in a
very short time. Second, it is only possible along certain routes and thus depends
on the underlying mobility network. The most realistic way of incorporating this
aspect is via local sink and source terms that describe airports. A simulation of this
type is presented in the fourth part of the results section. The mobility network

(22)

(23)

(24)

can be incorporated by coupling the influx at one airport to the outflux at another
one. Interestingly, it turns out that the spreading behavior characteristic for
diffusion models (of which our theory is a generalization) can also be observed on
a global network if the distance between two cities is measured not by spatial
distance, but by the effective distance determined by the fraction of traffic between
them®?.

When the underlying mobility network is too complex, an approximate
description is useful in terms of Lévy flights®. These can be incorporated into a
diffusion equation by using fractional derivatives instead of ordinary derivatives.
Models with spatial or temporal fractional derivatives (but without repulsive
interactions) have been applied to the spreading of diseases (including COVID-19)
before®>%. Although a DDFT for particles undergoing Lévy flights has, to the best
of our knowledge, not been derived so far, similar models of the Cahn-Hilliard
type”’ indicate that this should be possible.

Linear stability analysis. Here, we perform a linear stability analysis of the
extended model given by Egs. (7-9) in one spatial dimension. For the excess free
energy, we use a mean-field approximation as in Eqs. (12-14), but now with
general two-body potentials Ugh,(x — x’) for social distancing and Ugh;(x — x')
for self-isolation. We obtain

9,5(x,t) = Dsd28(x,t) — cS(x, t)I(x,t)

— T U0, (S(x, £)9, / dx'hy(x — x)(S(x',t) + R(x/, t))) (25)

—IUg0, (S(x, 1)o, / d'hy(x — £I(K, t)>,

9,I(x,t) = D;2I(x,t) + cS(x, t)I(x,t) — wl(x,t)
—T,Ug0, (I(x, £)9, / dx'hy(x — x)(S(X 1) + I(x', £) + R(x/, t))),

(26)

9,R(x,t) = Dpd?R(x,t) + wl(x,t)

—TRU40, (R(x, £)9, / dx'hy(x — x')(S(x', t) + R(x, t))> 27)

1.0, (R(x, 0o, / Ak (x — X)X, t)) .
Any homogeneous state with S = Spom» R = Rpom, and I =0, where S, and
Rpom are constants, will be a fixed point. We consider fields § = S, + S and

R = Ry, + R with small perturbations S and R and linearize in the perturbations.
This results in

9,5(x,t) = Dsd28(x,t) — cSpoml(x,1)

= SunlsUd [ Ay~ XG0, 1) 4 REX.0)

(28)
- ShomrS Usiajz( / dxlhi(x - XI>I(x/’ t)*
9, I(x,t) =D;02I(x, 1) + cSpomI(x, ) — wl(x,1), (29)
3,R(x,t) = DRd?R(x,t) + wl(x,t)
- Rhoer Usdapzc / dx/hd (X - x’)(S(x/. t) + R(x/‘, t)) (30)

— RyomIrUg0> / dx'hy(x — x)I(¥, t).

sivx

We now drop the tilde and make the ansatz S = S, exp(At — ikx),
I =1, exp(At — ikx), and R = R, exp(At — ikx). This gives the eigenvalue equation

S, —Dek* + Suonl'sUahta (KE Sy LsU il (KK = Sy SuomlsUsaha (K)K S
AL | = 0 —Dyk* + Spom — W 0 I |-

Ryou [ Usalta()K W+ Ry LUl () =Dk + Ry TrUghg (KK ) \ Ry

(31)

Here, ;ld(k) and ili(k) are the Fourier transforms of h;(x — x') and h;(x — x')
(defined as izj(k) = fd.xhj(x) exp(ikx) for j =i, d), respectively. By setting the
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corresponding characteristic polynomial to zero, we get
(=1 — Dy + cSpom — W)
((~Dgk + Syl Usghtg (k) = 2)

: o ()
(7DRk + Rhoer Usdhd(k)k - A)
7ShomRhomk4 U?di:l;(k)rsrli) =0.
The solutions of Eq. (32) are given by the three eigenvalues
Ay = Spom — W — D, (33)
K -
/12/3 = 7(Usdhd<k)(shomrﬁ‘ + Rhoer) - DS - DR
p 34
& ((Usaha(06) SuamTs + RyanTx) = Ds = D)’ 4

- !
- 4DSDR + 4Usdhd(k) (DSRhoer + DRShomFS))E)'

A disease outbreak is possible if the real part of A, is positive. This means that
the epidemic will start growing when cSpom > W, as in this case there is a positive
eigenvalue. By noting that for a homogeneous distribution, Eq. (18) gives c.¢= c/A
with the domain area A, and that in this case S, = S, A such that ¢S, = ¢S
we can recover the well-known outbreak criterion ¢S, > w from the SIR model.
When interpreting this result, one should take into account that, as a susceptible
person that has been infected cannot become susceptible again, the system will,
after a small perturbation, not go back to the same state as before even if w > cSpom.
Finally, interaction-related instabilities are accounted for by the eigenvalues A,

and As.

Front speed. For determining the propagation speed of fronts, we can use the
marginal stability hypothesis’®-80. We transform to the co-moving frame that has
velocity v and assume that the growth rate in this frame is zero at the leading edge.
Thereby, we obtain for a general dispersion A(k) the equations

v+ % =0, (35)
Re(ivk +1) = 0. (36)

These equations can be solved for the complex wavenumber k = k,, + ik;, and
the velocity v. For the dispersion 1; = cSpom — w — Djk? (we are interested in
instabilities associated with infections), Eqs. (35, 36) lead to

iv — 2iD;k,, =0, (37)
72D1kre =0, (38)
_Vkim + Cshum —-—w- Dl(kfe - klzm) =0 (39)
The solution of these equations is
ke =0, (40)
CShom — W
k= &,[—hom 7 (41)
m D’
v =2v/Dy(cSpom — W), (42)

which is in agreement with results from the literature?s.

Basic reproduction number. Here, we discuss how the results from the second
part of the results section can be connected to the concept of the basic reproduction
number R, used in epidemiology, which is defined as the expected number of
persons that a single infected individual infects in a completely susceptible popu-
lation in the absence of control interventions®®. This number, which is a widely
used quantification of disease transmissibility in both scientific and popular lit-
erature, has to be introduced and interpreted with care, as it is not a biological
property of a disease and often needs to be obtained by sophisticated mathematical
modeling. A detailed discussion can be found in ref. 8!. Some authors do not
include the absence of interventions in the definition of Ry23. Whether or not this is
done affects the results for R, obtained in SIR-type models, as will be
illustrated below.

If we denote the transmission rate without interventions by ¢,, the SIR model
gives Ry = coN/w?, where N is the population size. Thus, the criterion c S, >w
obtained from a linear stability analysis of the standard SIR model gives

S
ROC“'—“—O >1

43
s, (#3)

which, for the case of a completely susceptible population (S, = N) and no
interventions (cer = ¢o), reduces to the well-known criterion R, > 1. However, Eq.
(43) is more general, as it also holds if the population is not completely
susceptible (e.g., if we have a second wave of a pandemic or if a significant

fraction of the population is vaccinated) or if there are interventions so that ce #
co (e.g., if social distancing measures are implemented). The factor c.q/co does not
appear if R is defined to include interventions. In general, c.f is time-dependent
and can be reduced below ¢,%8. The fact that the outbreak criterion Ry > 1 does
not hold in general motivates the definition of the (time-dependent) effective
reproduction number?8

CoitS
R = %, (44)

which is often simply called R8! (a convention which we will not adopt in order to
avoid confusion with the density of recovered persons). The result of the linear
stability analysis then translates into the outbreak criterion Reg> 1. In the absence
of interventions reducing c.¢r below ¢o, we have R, = R,S/N. The same holds if
the absence of interventions is not included in the definition of Ry, in which case
Ry = ceieN/w.

If we assume that the initial distribution without interventions is a completely
susceptible population distributed homogeneously over a domain of area A, the
instability criterion that follows from the dispersion (17) can be written as
%% _ ReSo

Co A Shom _

CShom _

w w w N

~Ry>1, (45)

where we have used ¢ = cyA (from Eq. (18)) in the first, S; = S, A in the second,
Ry = coN/w in the third, and S, ~ N in the fourth step. Hence, the outbreak
criterion Ry > 1 still holds in the extended model.

More general insights can be obtained from Eq. (18), which is the microscopic
expression for the transmission rate: an inhomogeneous distribution of the
population can already be present in the absence of interventions, e.g., owing to the
difference in population density between urban and rural areas. This difference is
known to affect R,3!. We can explain this here by noting that a larger area over which
the population is distributed reduces, by Eq. (18), the value of ¢, and thus of R,.

Numerical analysis. The simulations for Figs. 1-3 were performed in two spatial
dimensions. For Figs. 1 and 2, we used a quadratic domain [0, L] x [0, L] and for
Fig. 3, we chose a circular domain of diameter L, where the domain size was set to
L =10. To solve the equations of the SIR-DDFT model, we applied an explicit
finite-difference scheme with spatial step size dx = 0.05 for Fig. 1a, dx = 0.0125
for Figs. 1b, ¢, and 3, and dx=0.02 for Fig. 2 as well as adaptive time steps. As
initial conditions for Figs. 1 and 2, we used a Gaussian distribution with amplitude
5/+/7 and variance L?/50 centered at (x, y) = (L/2, L/2) for S(x, y, 0) as well as
I(x, y, 0) = 0.001S(x, y, 0) and R(x, y, 0) = 0 for the other fields. Thereby, the mean
overall density was given by about \/7/5 & 0.35. For Fig. 3, we used a homo-
geneous distribution with S(x, y,0) = /7/5, I(x, y, 0) =0, and R(x, y, 0) =0 as
initial conditions.

We imposed periodic boundary conditions for Figs. 1 and 2 and Dirichlet
boundary conditions for Fig. 3. In the second case, we also added a source term,
which is a Gaussian with amplitude Isgyrc € {0.05, 0.2} and variance L2/1000, to the
right-hand side of Eq. (8). As the effect of the parameters ¢ and w on the dynamics
is known from previous studies of the SIR model, we fixed their values in all
simulations to ¢ =1 and w = 0.1 to allow for an outbreak. Moreover, we set ['y =
I1=Ir=1, Ds=D;=Dr=10.01, and 04 = 05 = 100, with the exception that we
allowed D; to vary (it was given by D; = I';f;" with fixed I'= 1 and varying f;) for
Fig. 2.

The additional one-dimensional simulations presented in Supplementary
Note 3 were performed analogously to those for Fig. 1.

Data availability
The source data underlying Figs. 1-3 and Supplementary Figs. 1-6 are provided as
Source Data files at https://doi.org/10.5281/zenodo.4034599%°.

Code availability
The code used for the numerical solution of the SIR-DDFT model is available at https://
doi.org/10.5281/zenodo.4034599%°.
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