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Treatment of patients with gynecologic malignancies diagnosed at advanced stages 
remains a therapeutic challenge. Survival rates of these patients remain significantly low, 
despite surgery and chemotherapy. Advances in understanding the role of the immune 
system in the pathogenesis of cancer have led to the rapid evolution of immunothera-
peutic approaches. Immunotherapeutic strategies, including targeting specific immune 
checkpoints, as well as dendritic cell (DC) immunotherapy are being investigated in 
several malignancies, including gynecological cancers. Another important approach in 
cancer therapy is to inhibit molecular pathways that are crucial for tumor growth and 
maintenance, such as the insulin-like growth factor-1 (IGF1) pathway. The IGF axis
has been shown to play a significant role in carcinogenesis of several types of tissue, 
including ovarian cancer. Preclinical studies reported significant anti-proliferative activity 
of IGF1 receptor (IGF1R) inhibitors in gynecologic malignancies. However, recent clinical 
studies have shown variable response rates with advanced solid tumors. This study 
provides an overview on current immunotherapy strategies and on IGF-targeted ther-
apy for gynecologic malignancies. We focus on the involvement of IGF1R signaling in 
DCs and present our preliminary results which imply that the IGF axis contributes to an 
immunosuppressive tumor microenvironment (TME). For the long term, we believe that 
restoring the TME function by IGF1R targeting in combination with immunotherapy can 
serve as a new clinical approach for gynecological cancers.

 

Keywords: immunotherapy, ovarian cancer, cervical cancer, endometrial cancer, gynecologic cancers, insulin-like 
growth factor 1 pathway, insulin-like growth factor 1 receptor, targeted therapy

iNtrODUctiON

treatment of Gynecologic Malignancies: current Advances
Endometrial cancer is the most common gynecological malignancy in the developed world and the 
second most common in developing countries (1, 2). Treatment includes surgery and adjuvant radio-
therapy, and/or chemotherapy depending on surgical staging. Women with metastatic or recurrent 
disease have poor prognosis, with median survival of 7–12 months (3). Endometrial cancer has two 
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histopathological subtypes. About 80% of endometrial cancers 
are Type I, which has several mutations, including microsatellite 
instability (MSI), KRAS, PTEN, PIK3CA, and β-catenin. Type II, 
usually aneuploidy with poorer prognosis, contains alterations 
in p53, HER2/neu, p16, E-cadherin CDKN2A, and/or ERBB2 
genes. Patients with mismatch repair-deficient (dMMR) or MSI 
tumors who have progressed on platinum-based chemotherapy 
might be particularly sensitive to immune checkpoint inhibitors, 
such as pembrolizumab, a humanized antibody that targets the 
PD-1 receptor (described in more detail in Section Author’s 
Perspective). In addition, the mTOR inhibitors everolimus and 
temsirolimus demonstrated antitumor activity in endometrial 
cancer, with greatest sensitivity in cells with PIK3CA or PTEN 
mutations (4, 5). Another important agent is bevacizumab, a 
monoclonal antibody against vascular endothelial growth fac-
tor (VEGF), which was shown to be effective in endometrial 
cancer (6). Other targeted therapies against somatic mutation 
in endometrial cancer, including PI3K and MEK, are under 
investigation (7–9).

Cervical cancer is the third most common cause of death from 
gynecological malignancies in the United States (1). The pathology 
behind cervical cancer is related to human papilloma virus (HPV) 
infection, especially genotypes 16 and 18. This finding led to the 
development of vaccines to prevent HPV infection. Despite the 
known etiology and the PAP screening test, advanced cervical 
cancer is a common diagnosis. The standard treatment of advanced 
cervical cancer is based on chemotherapy; however, poor survival 
rates have led to new therapeutic approaches. Recent Phase 3 
studies found that adding bevacizumab to standard chemotherapy 
improved overall survival and progression-free survival in women 
with advanced, metastatic, or recurrent cervical cancer (10). Other 
immunotherapeutic models aimed at targeting the E6 and E7 onco-
proteins of HPV will be discussed in Section “Author’s Perspective.”

Ovarian cancer is the second most common cancer and the 
leading cause of death from gynecological malignancy in the 
United States (2, 11). Epithelial ovarian cancer (EOC) represents 
approximately 90% of ovarian cancers. Conventional treatment 
includes surgical cytoreduction and adjuvant chemotherapy, 
which may lead to recovery in early stages. Unfortunately, there 
are no efficient screening tests to enable early diagnosis; hence, 
the vast majority of patients are diagnosed at an advanced stage 
and 80% of these patients will have recurrence and ultimately die 
of the disease (12–14). Consequently, intensive research has been 
undertaken to investigate alternative therapies for this disease. 
Angiogenesis plays a fundamental role in the pathogenesis of 
EOC; therefore, bevacizumab is used as an adjuvant therapy, as it 
prolongs progression free survival and may improve overall sur-
vival in high-risk patients (15–18). Additional agents are the poly 
ADP-ribose polymerase (PARP) inhibitors, which inhibit the 
PARP protein that functions in single strand DNA repair, leading 
to apoptosis. The PARP inhibitors are most effective in cancers 
with a BRCA mutation, because BRCA protein is involved in 
double-stranded DNA repair (19). Olaparib, a PARP inhibitor 
agent, is currently approved in the USA and Europe for patients 
with recurrent, platinum-sensitive, BRCA-mutation ovarian 
cancer (11, 20). Nowadays, precision medicine is getting more 
attention in the field of gynecology-oncology. Barroilhet and 

Matulonis provides an updated overview regarding this concept 
which is based on tumor gene sequencing, in order to match 
agents targeted against specific tumor mutations regardless of the 
involved organ (21).

immunotherapeutic Approaches for 
Gynecological cancers
The immune system is composed of humoral and cellular 
immune responses. Cell-mediated immunity is important for 
eliminating cells infected with pathogen and tumor cells; the 
dendritic cells (DCs) are professional antigen-presenting cells 
(APCs) that express pattern recognition receptors. These recep-
tors together with cytokines and chemokines cause peripheral 
immature DCs to mature and migrate to lymphoid tissue, where 
they interact with lymphocytes (22–25). The humoral response 
is mediated by antibodies against pathogens. As antigens enter 
the body, B cells respond by undergoing activation, proliferation, 
and differentiation to release antibodies (26). The formation of 
antigen-specific antibodies requires B and T  lymphocytes, as 
well as APCs. Based on the immuno-editing concept (27), the 
immune system eradicates new emerging tumor cells; however, 
in some cases one cell remains dormant, escapes the immune 
system, and proliferates leading to disequilibrium between the 
immune system and cancerous cells. Immune-inflammatory cells, 
among others, comprise the tumor microenvironment (TME). 
Considering the widely established link between inflammation 
and cancer, the TME has a significant role in tumorigenesis 
(28–31). Consequently, immunotherapeutic approaches against 
cancer have recently emerged.

The main immunotherapeutic approaches are DC vaccines 
and blockade of immune checkpoints, including programmed cell 
death, PD-1/PD-L1. PD-1 is an immunoinhibitory receptor that 
is expressed on T cells, B cells, monocytes, natural killer cells, and 
many tumor-infiltrating lymphocytes. Interaction of the receptor 
with its ligand, the PD-L1, which was found to be expressed in 
some cancer cells, restrains the immune system from attacking 
cells in the body (32, 33). The immune system’s involvement in 
endometrial cancer is not fully understood; the FDA approved 
pembrolizumab (anti PD-1 antibody) for patients with MSI or 
MMR deficiency who did not respond to prior therapies (34).

Cervical cancer is related to chronic HPV infection in 99.7% of 
cases. The HPV integrates into the cellular genome and expresses 
two oncoproteins, E6 and E7. The E6 oncoprotein inhibits p53; 
thus, leading to proliferation, while E7 prevents apoptosis (35). 
Immunotherapeutic approaches which target the E6 and E7 
oncoproteins are under investigation. Therapeutic vaccines which 
include vaccinia- and listeria-based vaccines and DC vaccines 
have shown promising results (35, 36). Specifically, DC vaccines, 
which are based on autologous DCs transfected with E6 or E7 
RNA in order to stimulate cytotoxic T cell response, led to effec-
tive eradication of cervical cancer cells (37). Unfortunately, small 
clinical trials demonstrated T cell response without a clinical ben-
efit (38, 39). The immunoinhibitory ligand, PD-L1 was observed 
in 95% of cervical intraepithelial neoplasia and in 80% of cervical 
squamous cell carcinoma, but was not detected in normal cervical 
epithelial cells implying a potential therapeutic benefit (40). In 
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the KEYNOTE-028 trial, pembrolizumab has shown preliminary 
promise as second-line therapy for cervical cancer (41). Finally, 
CAR-T cells are genetically modified T cell that are taken from 
tumor tissue, expanded ex vivo and transferred back into the 
patient. A small trial on nine patients with recurrent metastatic 
cervical cancer showed a complete response in one patient and 
partial response in two others (42).

Despite significant advances in surgery and chemotherapy 
treatments, ovarian cancer is still the most lethal of all gyneco-
logical malignancies. Data suggest that the presence of tumor-
infiltrating lymphocytes at diagnosis, improves survival rates (43, 
44). This reflects the crucial role of the immune system in elimi-
nating tumor cells. Of interest, early reports showed significant 
efficacy for the CAR-T strategy (45). Treatments targeting the 
immune checkpoints PD-1/PD-L1 and the inhibitory receptors 
of cytotoxic T  lymphocyte-associated antigen 4 were approved 
for use in melanoma and have been evaluated for treatment 
of EOC (46–48). The anti-PD-1 agent nivolumab, and the anti 
PD-L1 agents avelumab and pemrolizumab, are being evaluated 
in clinical trials with promising results (48–50). Various vaccine 
models, including simple vaccine preparations consisting of 
proteins expressed in EOC and more complex models, such as 
DC vaccines have been developed. In the latter model, DCs are 
matured outside the body and programmed to detect and attack 
tumor cells upon reinjection into the patient (51).

the insulin-Like Growth Factor (iGF) Axis 
in Gynecological cancer
The IGF system has a pivotal role in cell proliferation, differen-
tiation, and apoptosis (52). This system is composed of ligands 
(IGF-1, IGF-2), IGF receptors (IGF1R, IGF2R), and six IGF bind-
ing proteins (IGFBPs 1–6). The biologic effects of the ligands are 
mediated by the IGF1R, which undergoes autophosphorylation 
of its tyrosine kinase domain, with ensuing phosphorylation of 
insulin receptor (INSR) substrates. Consequently, the ras–raf–
MAP kinase and the PI3K–PDK1–Akt/PKB signaling pathways 
are activated, resulting in metabolic actions, proliferation, and 
reduction in apoptosis (53). Unlike the IGF1R, the IGF2R, which 
is apparently not involved in IGF signaling, is mainly responsible 
for targeting the highly mitogenic IGF2 for lysosomal degrada-
tion (54). Worthy of mention, the IGF1R shares a high degree 
of homology with the INSR, leading to a certain level of cross 
talk between insulin, IGFs, and their receptors. The complexity 
of these interactions was widely discussed and studied by several 
studies (55–58). The interplay between the IGF signaling and 
estrogen pathways is of importance as well (59), and relevant 
to us is the well-established cross talk between these pathways 
in endometrial cancer (60, 61). In addition to its normal physi-
ological roles, the IGF axis and in particular, the IGF1R are also 
involved in carcinogenesis. Epidemiologic observations showed 
an association between circulating IGF-1 levels and prostate, 
premenopausal breast and colorectal cancer incidence (62). 
Consequently, the IGF axis became an attractive therapeutic 
target.

Targeting IGF1R with specific monoclonal antibodies inhib-
ited IGF-induced proliferation in both Type I and II endometrial 

cancer (63, 64). Moreover, a human monoclonal IGF1R antibody 
inhibited endometrial cancer proliferation in clinical trials (65). 
In cervical cancer animal models, treatment with IGF1R antibod-
ies inhibited tumor growth and caused tumor regression (66). 
In addition to monoclonal antibodies, small molecule IGF1R 
inhibitors such as NVP-AEW541 had anti-proliferative effects on 
ovarian cancer cells (67). Current ovarian cancer clinical trials are 
evaluating IGF inhibitors alone, or in combination with biologic 
agents or chemotherapy.

These findings and others have turned the IGF1R into a prom-
ising target for treating cancer; yet there is no clear-cut evidence 
to approve its use as a single agent.

AUtHOr’s PersPective

The complexity of the IGF1R signaling pathway was suggested 
as one cause of the failure of IGF-targeting strategies (68). 
Parallel growth and survival pathways, as well as a lack of proper 
biomarkers for patient selection are additional possible explana-
tions. Given the genetic complexity of most tumors, including 
gynecological cancers, accumulating evidence suggests that 
combination strategies of targeting multiple signaling pathways 
will probably be required to obtain therapeutic effects. Shao et al. 
showed that dual anti-VEGF and anti-IGF1R treatment (bevaci-
zumab and cixutumumab, respectively) enhanced tumor growth 
inhibition in ovarian cancer cells and provided significant benefit 
over either treatment alone (69). Another study reported that the 
IGFIR kinase inhibitor BMS-536924 increased the cytotoxicity 
induced by the PARP inhibitor 3-aminobenzamide in human 
EOC cell lines, suggesting a combination of IGF1R inhibitor 
and a PARP inhibitor to decrease resistance to treatment (70). 
Haluska et  al. demonstrated functional cross talk between the 
IGF and HER family of receptors in ovarian cancer cells (71). In 
line with the development of immunotherapeutic approaches in 
various cancer types, targeting the IGF1R signaling pathway in 
combination with immunotherapy should be investigated. This 
is supported by the finding that PI3K–AKT pathway inhibitors 
sensitize tumor cells to immunotherapy (72). It seems that a deep 
understanding of the involvement of the IGF pathway in host 
immunity and in immune cells in the TME constitutes a basis for 
the combination targeting strategy described above. Interestingly, 
a recent published review describes a similar approach regarding 
the estrogen pathway involvement in TME (73). In the context of 
combined therapies estrogen is highly relevant, considering the 
interplay between estrogen and IGF1. The role of IGF1R in the 
development and function of the immune system appears to be 
complex and variable; nonetheless, there is compelling evidence 
that within a TME, the IGF axis promotes an immunosuppres-
sive, anti-inflammatory response that enables cancer growth. For 
example, IGF1 was shown to negatively regulate DC activation; 
thereby impairing the antigen-presentation function (74). IGF1 
was also shown to stimulate the proliferation of Treg cells, which 
are known to suppress local T  cell immune responses (75). 
Moreover, IGF1R activation was linked to macrophage polariza-
tion from the pro-inflammatory M1 to the pro-tumorigenic M2 
phenotype in various animal models (76). A recent study showed 
that IGF1 production by myeloid-derived suppressor cells 
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FiGUre 1 | Dendritic cell (DC) differentiation of HL-60 cells show reduced total and phosphorylated IGFIR protein levels. (A) Human leukemic HL-60 cells were 
differentiated to DCs by treatment with 0.5, 1, and 2.5 μg/ml of calcium ionophore (CI) for 72 h. (B) Human leukemic HL-60 cells were treated with 0.5, 1, and 2.5 g/
ml of CI for 72 h and 10 min before harvest, cells were treated with insulin-like growth factor (IGF)1. Whole-cell lysates were resolved on SDS-PAGE and 
immunoblotted with the specified antibodies. Level of tubulin was used as a loading control. (c) Human leukemic HL-60 cells were treated with 2 μM of NVP-
AEW541 for 1, 5, 24, and 48 h. Whole-cell lysates were resolved on SDS-PAGE and immunoblotted with the specified antibodies. Level of tubulin was used as a 
loading control.
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promoted stromal cell migration and tumor invasion, implying 
that IGF1 might also play a role in the tumor-promoting effect 
of myeloid-derived suppressor cells (77). Taken together, the 
interplay between the IGF1 axis and immune cells should be 
investigated further. This will contribute to future studies involv-
ing IGF1R targeting in combination with immunotherapy for 
gynecologic malignancies.

iGF1r Monoclonal Antibodies and 
tyrosine Kinase inhibitor (tKi) inhibit the 
iGF1-induced Activation of intracellular 
cascades
We have been investigating the effect of IGF1R targeting in 
endometrial and ovarian cancer for several years. IGF1R-
targeting with monoclonal antibodies and specific IGF1R 
TKIs inhibited IGF-induced proliferation in both Type I and II 
endometrial carcinomas (63, 64). In addition to the eliminated 
IGF1-stimulated proliferation, IGF1R inhibitors increased apo-
ptosis. Cixutumumab, a fully human monoclonal antibody 
against IGF1R, inhibited IGF1-mediated biological actions and 
cell signaling events in four endometrial carcinoma-derived cell 
lines. Cixutumumab blocked the IGF1-induced autophospho-
rylation of IGF1R and reduced IGF1R expression. Recent stud-
ies demonstrated that MK-0646 had a potent anti-proliferative 

effect in Type I and II endometrial cancer cell lines, associated 
with a decrease in IGF1-induced IGF1R, AKT, and ERK1/2 
phosphorylation. Interestingly, a different response to IGF1R 
blocking with MK-0646 was observed in Type I and Type II 
endometrial cancer. In addition, a previous study showed that 
IGF1R-targeted therapy has significant anti-neoplastic activity 
in ovarian cancer cells (67).

tumor suppressor p53 and BrcA1 Are 
Potential Biomarkers for iGF1r-targeted 
therapy
Following the failure of the IGF-targeting strategies, another 
possible approach is identifying predictive tumor biomarkers 
that will increase the efficacy of IGF1R-targeted therapy. These 
predictive biomarkers are intended for the process of develop-
ing early, innovative, patient screening methodologies that will 
predict the response to personalized therapy and resistance to 
IGF1R-targeted therapy. Several studies have provided evidence 
that the IGF1R gene transcription rate depends on a number 
of stimulatory nuclear proteins and is modulated by negative 
transcriptional regulators, including p53, p63, and p73 (78, 79) 
and the BRCA1 gene (80, 81). The IGF1R system is regulated by 
the p53 pathway in several malignancies, including endometrial 
cancer and ovarian cancer (82). Using USC-derived cell lines, 

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


5

Yahya et al. IGF1-targeted Immunotherapy in Gynecologic malignancies

Frontiers in Endocrinology | www.frontiersin.org June 2018 | Volume 9 | Article 297

Attias-Geva et  al. demonstrated that p53 negatively regulates 
IGF1R gene expression via a mechanism that involves interac-
tion with the zinc finger protein Sp1, a potent transactivator 
of the IGF1R gene (82). BRCA1 is a tumor suppressor whose 
mutation was correlated with the appearance of familial breast 
and/or ovarian cancer at young ages. Our group reported a 
high rate (25.8%) of the predominant BRCA1/2 mutations in 
unselected Jewish patients with USC (83). Moreover, immu-
nohistochemical studies of USC tumors revealed high protein 
expression of BRCA1 and IGF1R in primary and metastatic 
tumors. Interestingly, we found that BRCA1 expression led to 
significantly reduced IGF1R promoter activity in USC cell lines. 
These results are consistent with the notion that loss of inhibitory 
control due to BRCA1 mutation may lead to enhanced IGF1R 
expression and eventually, increased proliferation (84). Taken 
together, our results suggest that BRCA1 mutational status 
may predict IGF1R inhibitor efficacy. This is supported by the 
recent study of Cohen-Sinai et al., which demonstrate a reduced 
inhibitory effect of anti-IGF1R treatment in mutant BRCA1-
expressing cells (85).

involvement of the iGF Axis in Dcs
Although the involvement of the IGF axis and the IGF1R in 
ovarian cancer has been widely investigated, the exact function of 
IGF1R in host immunity and in tumor-infiltrating immune cells 
is still not clear. It has been shown that IGF1 is expressed in many 
immune cells and bone marrow stromal cells (86). In addition, 
nearly all immune cells such as T lymphocytes and B lymphocytes 
(87), mononuclear cells (88), and NK-cells (89) express IGF1R and 
are susceptible to the effects of IGF. A recent study showed that 
long-term IGF treatment resulted in delayed maturation of DCs 
and suppression of DC-mediated immunity. Specifically, treat-
ment of DCs with the IGF1R inhibitor NVP-AEW541 restored 
DC-mediated antigen presentation and antitumor immunity 
(90). Moreover, it has been shown that IGFs enhance the secre-
tion of IL-10 in bone marrow monocyte-derived DCs, thereby 
enhancing the immunosuppressive status of the tumor environ-
ment. Accordingly, blocking the IGF1 signaling pathway, apart 
from its effect on cancer cells, provides a new target to generate 
potent antitumor immunity by rescuing the impaired function 
of DCs. To examine IGF1R signaling activation in DCs, human 

FiGUre 2 | NVP-AEW541 treated dendritic cells decrease ovarian cancer cell migration. Cell migration was detected by wound scratch assay. Representative 
wound closure images from three experiments are shown. Human leukemic HL-60 cells were treated with 1 μg/ml of CI and with 2 μM of NVP-AEW541 for 72 h 
after which they were co-cultured with the epithelial ovarian cancer (EOC) cells ES2 (A) and SKOV3 (B). Scratch was applied 24 h post cell merge. The growth of 
EOC cells into the scratch zone is demonstrated here at time 0, 24, and 48 h after scratch. The graphs represent average growth score of three independent 
experiments of ES2 and SKOV3 cells (*P < 0.05).
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