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Abstract

Pseudoxanthoma elasticum (PXE), an autosomal recessive disorder characterized by ectopic 

mineralization, is caused by mutations in the ABCC6 gene. We examined clinically 29 Chinese 

PXE patients from unrelated families, so far the largest cohort of Asian PXE patients. In a subset 

of 22 patients, we sequenced ABCC6 and another candidate gene, ENPP1, followed by 

pathogenicity analyses for each variant. We identified a total of 17 distinct mutations in ABCC6, 

15 of them being previously unreported, including 5 frame-shift and 10 missense variants. In 

addition, a missense mutation in combination with a recurrent nonsense mutation in ENPP1 was 

discovered in a pediatric PXE case. No cases with p.R1141X or del23-29 mutations, common in 

Caucasian patient populations, were identified. The 10 missense mutations in ABCC6 were 

expressed in mouse liver via hydrodynamic tail-vein injections. One mutant protein showed 

cytoplasmic accumulation indicating abnormal subcellular trafficking, while the other nine 

mutants showed correct plasma membrane location. These nine mutations were further 

investigated for their pathogenicity using a recently developed zebrafish mRNA rescue assay. 

Minimal rescue of the morpholino-induced phenotype was achieved with 8 of the 9 mutant human 

ABCC6 mRNAs tested, implying pathogenicity. This study demonstrates that the Chinese PXE 

population harbors unique ABCC6 mutations. These genetic data have implications for allele-

specific therapy currently being developed for PXE.
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INTRODUCTION

Pseudoxanthoma elasticum (PXE), the prototype of heritable ectopic mineralization 

disorders, is characterized by late-onset, yet progressive, calcium hydroxyapatite deposition 

on elastic structures in peripheral connective tissues (Neldner, 1988; Uitto et al., 2010). 

Clinically, PXE manifests with characteristic cutaneous, ocular and cardiovascular findings. 

The disease is inherited in an autosomal recessive manner with apparently complete 

penetrance, and ABCC6 has been identified as the gene harboring mutations in most patients 

with PXE (Bergen et al., 2000; Le Saux et al., 2000; Ringpfeil et al., 2000; Struk et al., 

2000). This gene encodes ABCC6, a putative transmembrane efflux transporter protein 

primarily expressed in the baso-lateral plasma membranes of hepatocytes and to a lesser 

extent in the proximal tubules of the kidneys.

In addition to ABCC6, recent studies have disclosed mutations in the ENPP1 gene in some 

patients with PXE-like cutaneous findings, often associated with extensive vascular 

mineralization (Kalah et al., 2012; Li et al., 2012). ENPP1 mutations also underlie a severe 

ectopic mineralization disorder, generalized arterial calcification of infancy (GACI), an 

autosomal recessive disease, which affects primarily the arterial blood vessels (Ruf et al., 

2005; Rutsch et al., 2003). This disease is commonly diagnosed by pre- or perinatal 

ultrasound, and the affected individuals in most cases die within the first year of life from 

cardiovascular complications. While most cases of GACI are caused by mutations in the 

ENPP1, ABCC6 mutations have also been demonstrated in some patients (Li et al., 2014; 

Nitschke et al., 2012). Thus, there is considerable phenotypic and genotypic overlap 

between PXE and GACI (Li and Uitto, 2013; Nitschke and Rutsch, 2012).

Over 300 distinct mutations in the ABCC6 gene have been identified in patients with PXE, 

two common recurrent mutations, p.R1141X and genomic deletion of exons 23 through 29 

(c.2996-1724_4209-478del; referred to as del23-29), representing 18.5 and 9.9% of all 

reported mutant alleles, respectively (Pfendner et al., 2007; Terry and Hefferson, 2013; 

Uitto et al., 2013). However, essentially all published studies have focused on PXE in 

Caucasian patient populations, and very few mutations have been reported in patients of 

Asian ancestry. In this study, we have investigated a cohort of 29 Chinese PXE patients 

from unrelated families, so far the largest cohort of Asian PXE patients. Genetic analysis of 

22 patients revealed a mutation profile clearly distinct from that found in Caucasian patients, 

and the Chinese PXE patients harbor unique mutations.

RESULTS

Identification of ABCC6 Mutations

A cohort of 29 Chinese patients with PXE was examined, and the diagnosis was initially 

suggested by characteristic cutaneous lesions and histopathology using routine 

Hematoxylin-Eosin as well as Verhoeff van Gieson and von Kossa stains for elastic 

structures and mineralization, respectively (Uitto et al., 2014) (Fig. S1). The majority of 

patients were females (26/29), most of them had the onset at less than 30 years of age, and 

the majority of patients (~90%) had the disease for over 6 years since diagnosis at the time 

of the study (Table S1).
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In a subset of 22 patients, DNA, isolated from either peripheral blood leukocytes or paraffin-

embedded skin biopsies, was available and subjected to mutation analysis first using a 

strategy and primers that we have previously developed for streamlined mutation detection 

in the ABCC6 gene (LaRusso et al., 2010; Pfendner et al., 2007). A total of 36 sequence 

variants in ABCC6 were discovered. These variants included 6 small insertion or deletion 

mutations resulting in premature termination codon (PTC), and these variants were 

considered pathogenic (Fig. 1A). Among the 30 single nucleotide substitutions, we 

identified 7 synonymous mutations while 23 were missense mutations. Among the 

nonsynonymous substitutions, 9 were present in the single nucleotide polymorphism (SNP) 

database (http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?

geneId=368&ctg=NT_010393.16&mrna=NM_001171.5&prot=NP_001162.4&orien=forwa

rd) in frequency >1% and were therefore considered to be nonpathogenic polymorphisms. 

Among the 14 amino acid substitutions not present in the SNP database, one of them, c.

3341G>A, has been previously reported as a pathogenic mutation. The remaining 13 amino 

acid substitutions were examined for potential pathogenicity by PolyPhen-2 and SIFT 

prediction programs (Table 1), and 10 putative missense variants were examined for 

subcellular localization in mouse hepatocyte plasma membrane targeting assay and for 

functional pathogenicity in zebrafish mRNA rescue assay in vivo (see below). Among the 

putative pathogenic mutations, only two of them, one missense and one single-nucleotide 

deletion mutation, have been published previously. Most notably, none of the Chinese PXE 

patients had the recurrent p.R1141X or del23-29 mutation. When examined individually, 13 

patients were homozygous or compound heterozygous with mutations in both alleles of 

ABCC6, while in 7 patients only one mutation was found. In the latter cases, search for 

ENPP1 mutations was unyielding.

Assay of membrane targeting of the mutant protein

Among the discovered sequence variants, 13 of them resulted in amino acid substitution 

(Table 1 and Fig. 1B), and they all were initially considered pathogenic because searches of 

the SNP database did not report the presence of these variants or they were present in 

frequency of less than 1%. Analysis of the potential functional consequences of these 

mutations at the protein level by SIFT and PolyPhen-2 bioinformatics programs predicted 

that 6 of them were definitely damaging/probably disruptive while the remaining 7 were 

tolerated or benign (Table 1). In the latter group, three variants, even though not present in 

the SNP database, were recurrent in the Chinese families with PXE in high frequency, and 

they were considered nonpathogenic and not studied further.

Theoretically, missense mutations could inactivate the ABCC6 activity by a number of 

mechanisms. First, it is possible that the mutant protein is mis-localized within the 

hepatocytes and does not migrate into the appropriate plasma membrane location on the 

baso-lateral surface of hepatocytes (Aranyi et al., 2013). Alternatively, the protein is 

appropriately targeted to the correct membrane location but the transporter activity is 

compromised by inability of the protein to perform its transport function, for example due to 

deficient binding and hydrolysis of ATP (Ilias et al., 2002). We first determined the 

subcellular localization of the human mutant protein expressed from an expression vector 

under the control of a liver-specific mouse albumin promoter delivered to the mouse liver by 
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hydrodynamic injection through the tail vein (Jiang et al., 2010). After 3 days of delivery, 

the livers were harvested, and the subcellular localization of the human as well as 

endogenous mouse ABCC6 protein was determined by immuno staining with antibodies that 

differentially recognize human and mouse protein epitopes (Fig. 2). As demonstrated 

previously, the endogenous mouse ABCC6 protein resides at the baso-lateral surface of the 

hepatocyte plasma membrane (Pomozi et al., 2013). Similarly, 9 out of the 10 human mutant 

proteins tested in this study were co-localized with the mouse protein at the proper 

membrane location (Fig. 2A). However, one mutation, p.L605P, did not allow the protein to 

migrate to the plasma membrane, and the mutant protein was localized exclusively in the 

cytoplasm (Fig. 2A and B). Similarly, another, previously identified mutation, p.R1114P, 

resulted in partial retention of the protein in the cytoplasm while some cells demonstrated 

plasma membrane staining (Aranyi et al., 2013) (Fig. 2B).

A chaperone compound, 4-phenylbutyrate (4-PBA), has previously been shown to facilitate 

transfer of some mutant mis-targeted ABCC6 molecules from the cytoplasm to the plasma 

membrane (Aranyi et al., 2013). Consequently, we tested the effect of 4-PBA on the 

subcellular localization of the p.L605P and p.R1114P mutants by treating mice with this 

compound two days prior and four days following the injection of the expression construct 

for a total of 6 days. 4-PBA clearly facilitated the transfer of the cytoplasmic mutant 

p.R1114P protein to the plasma membrane, as shown previously (Pomozi et al., 2014) (Fig. 

2B). However, this compound had no effect on the subcellular localization of the protein 

harboring the mutation p.L605P. Thus, 4-PBA may be of help in facilitating the proper 

targeting of some, but not all, mutant ABCC6 proteins to the plasma membrane.

Demonstration of pathogenicity in zebrafish mRNA rescue assay

The pathogenicity of the missense mutations identified in ABCC6 was further investigated in 

a zebrafish mRNA rescue assay that we have recently developed (Li et al., 2010a; Zhou et 

al., 2013). In this assay, zebrafish embryos are injected with an abcc6a morpholino which 

causes knock-down of the corresponding gene expression. As a consequence, the zebrafish 

embryos develop a profound phenotype consisting of pericardiac edema, stunted growth and 

curled tail, and the developing embryos die before the age of 7 days post fertilization (dpf) 

(Fig. 3). This phenotype can be fully rescued by injection of wild-type human ABCC6 

mRNA together with the morpholino (Fig. 3). We consequently injected zebrafish embryos 

with the morpholino together with human ABCC6 mRNA harboring missense mutations 

identified in this study. As a negative control, the morpholino was injected with the human 

mRNA harboring stop codon mutation p.R1141X. As shown in Fig. 3, this mRNA 

containing the nonsense mutation did not rescue the phenotype. Injection of mutant mRNAs 

harboring the missense mutations identified in this study together with the morpholino 

revealed that 8 out of 9 mutations tested did not provide significant rescue as judged by 

either morphology of the zebrafish embryos (Fig. 3) or by the percent of lethality (Table 2) 

at 4 dpf, suggesting that they are pathogenic. Only one mutant mRNA, p.R64Q, resulted in 

rescue comparable to that of the wild-type mRNA (Fig. 3 and Table 2). However, the 

corresponding mutation, c.191G→A, was not present in the SNP database, and it is unclear 

whether this is a pathogenic mutation in the 5 patients with PXE.
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Identification of mutations in the ENPP1 gene

A male patient diagnosed as having PXE by the presence of characteristic cutaneous 

findings and histopathology of the skin did not reveal the presence of mutations in ABCC6 

(Fig. 4). Careful examination of the patient revealed several unusual features. First, the 

patient’s cutaneous findings had been noted definitely to be present as early as at 8 years of 

age categorizing him with a diagnosis of pediatric PXE. Furthermore, in addition to 

characteristic yellowish papules in the axillary fossa, the patient had large areas of 

hyperpigmented lesions on the trunk, a finding not characteristic of PXE (Fig. 4A). With the 

notion that mutations have been recently disclosed in the ENPP1 gene in patients with 

cutaneous PXE-like lesions (Kalah et al., 2012; Li et al., 2012), we next sequenced ENPP1, 

which identified 2 heterozygous mutations, p.Y261X and p.S479F, and the parents were 

heterozygous carriers, respectively (Fig. 4B and D). The nonsense mutation, p.Y261X, has 

been previously reported (Ruf et al., 2005). Sequence alignments indicated that serine at the 

amino acid position 479 is highly conserved during evolution (Fig. 4C). This sequence 

variant, p.S479F, was not present in the SNP database, and this mutation was predicted to be 

probably damaging (0.99) and damaging (0), when analyzed by PolyPhen-2 and SIFT 

programs, respectively. Collectively, the mutation analysis in the Chinese cohort of PXE 

demonstrated considerable genetic heterogeneity and identified a number of mutations not 

previously reported in the literature.

DISCUSSION

Understanding of the mechanisms leading to aberrant mineralization of connective tissues 

has been advanced by observations on a group of heritable disorders manifesting with 

ectopic mineralization. The prototype of such conditions is PXE, an autosomal recessive 

disorder which affects a number of organs by ectopic mineralization, with primary clinical 

findings in the skin, the eyes, and the cardiovascular system (Neldner, 1988; Uitto et al., 

2010). PXE is a rare disorder, with an estimated prevalence of ~1:50,000 which would 

imply that there are ~7,000 to 8,000 affected individuals in the United States, and with the 

same prevalence as many as 50,000 patients in China. The diagnosis of PXE is made by a 

combination of clinical findings in the skin and the eyes, supported by histopathologic and 

molecular diagnostic observations (Uitto et al., 2014). While the manifestations of PXE are 

of late onset and the disease progresses slowly, PXE is associated with major clinical 

complications, including loss of central vision often leading to blindness, and occurrence of 

catastrophic cardiovascular events, including early myocardial infarcts and strokes. There is 

a considerable spectrum of phenotypic presentations and severity of the disease: At one end 

of the spectrum, young patients in their infancy, with considerable vascular involvement, 

have been diagnosed with PXE-like cutaneous findings, often classified as pediatric PXE (Li 

et al., 2013; Li et al., 2014). In addition, patients with GACI, typically caused by mutations 

in the ENPP1 gene, can demonstrate PXE-like findings, supporting the notion that there is 

considerable both clinical and genetic overlap between PXE and GACI (Nitschke and 

Rutsch, 2012).

The classic form of PXE is caused by mutations in the ABCC6 gene, and over 300 distinct 

mutations have been identified representing well over 1,000 mutant alleles (Terry and 
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Hefferson, 2013). Among the published mutations, two common recurrent mutations, 

p.R1141X and del23-29, account for up to 30% of all mutant alleles (Pfendner et al., 2007; 

Terry and Hefferson, 2013). Examination of the ancestry and geographic distribution of 

patients in the ABCC6 mutation databases reveals that most patients tested are apparently 

Caucasians from the United States or European countries, and specific reports of mutations 

in the Italian, French and German cohorts have been published (Chassaing et al., 2007; 

Gheduzzi et al., 2004; Pfendner et al., 2007; Schulz et al., 2006). Examination of the 

mutation database indicates that the frequent p.R1141X mutation is distributed widely 

across Europe, while deletion of exons 23-29 (del23-29) is encountered in Northern Europe 

and in Northern Mediterranean countries (LaRusso et al., 2010). In addition, limited 

numbers of patients, with specific mutations, have been reported from Greece, Turkey, 

South Africa and Brazil (Akoglu et al., 2014; Faria et al., 2013; LaRusso et al., 2010; Le 

Saux et al., 2002; Ramsay et al., 2009). There is a striking paucity of mutation reports on 

individuals of Asian ancestry. Specifically, there are only four distinct mutations reported in 

Japanese patients with PXE, and in addition, six ABCC6 sequence variants have been 

identified as a cause of angioid streaks in Japanese patients, an eye finding often associated 

with PXE (Noji et al., 2004; Sato et al., 2009; Tanioka et al., 2014; Yoshida et al., 2005). 

There is only one ABCC6 mutation reported in a Chinese patient with PXE (Yang et al., 

2008).

In the present study, we have clinically examined a cohort of 29 Chinese patients with PXE, 

and DNA was available to specifically sequence the exons and flanking intronic sequences 

of ABCC6 in a subset of 22 patients. Among the 36 sequence variants identified in ABCC6, 

six small insertions or deletions were causing PTCs, five of them being previously 

unreported. Among the 23 nonsynonymous missense mutations, ten were initially 

considered potentially pathogenic based on their absence or presence in low frequency 

(<1%) in SNP database, and as judged by bioinformatics prediction programs PolyPhen-2 

and SIFT to be damaging to the protein function. Among the 10 putative pathogenic 

missense mutations tested in zebrafish mRNA rescue assay, nine of them did not provide 

rescue, confirming the pathogenic nature of the amino acid substitutions. Only one of the 

mutant mRNAs, harboring mutation p.R64Q, was able to rescue the zebrafish phenotype, 

similar to that of wild-type mRNA. However, this mutation was not present in the SNP 

database and three of the five patients with this sequence variant had another allelic ABCC6 

mutation. Therefore, it is unclear whether this mutation, p.R64Q, is pathogenic or not. It 

should be noted that no ABCC6 or ENPP1 mutations were found in two patients, and the 

overall rate of detection of mutations in ABCC6 and ENPP1 was 80 percent (35 mutant 

alleles of a total 44). It should be noted that, the mutation detection strategy utilized PCR 

amplification of individual exons and flanking intronic sequences. This approach does not 

detect mutations in the regulatory upstream sequences or in the 3′-UTR, deeper intronic 

sequences, or large insertions or deletions (Pfendner et al., 2007).

The consequences of missense mutations were also tested in vivo in a mouse system which 

examines the subcellular targeting of the mutant protein in mouse hepatocytes following 

hydrodynamic delivery of an expression vectors through the tail vein. The wild-type ABCC6 

protein localizes to the basolateral surface of hepatocytes, and 9 out of 10 tested missense 
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mutations allowed the protein to target the physiological plasma membrane location. Only 

one mutation, p.L605P, resulted in cytoplasmic localization of the mutant protein. 

Previously, the mutant protein harboring p.R1114P mutation has been shown to remain in 

cytoplasmic localization which could be corrected by treatment with 4-PBA, a chaperone 

molecule. However, treatment of mice expressing miss-targeted protein with p.L605P 

mutation did not result from correction of the subcellular localization. Thus, 4-PBA 

treatment may be applicable for correction of the subcellular localization only to selected 

mutant ABCC6 proteins with missense mutations.

One of the patients was diagnosed as PXE manifested with somewhat unusual features, 

including relatively early age at onset and presence of atypical cutaneous findings, such as 

extensive hyperpigmentation on the trunk, not a characteristic feature of PXE. Analysis of 

the ABCC6 gene failed to identify mutations, but subsequent sequencing of the ENPP1, 

typically associated with GACI, revealed the presence of a nonsense mutation, p.Y261X, 

and a heterozygous missense mutation, p.S479F. The latter mutation is pathogenic, based on 

its absence from the SNP database, conservation of the serine-479 through evolution from 

zebrafish to human, and prediction by PolyPhen-2 and SIFT programs as damaging. This 

previously unreported missense mutation contributes to the growing database of ENPP1 

mutations, and this case also illustrates the phenotypic overlap between PXE and GACI. It 

should be noted that mutations in the ENPP1 gene have been recently identified in Cole 

disease, a rare autosomal dominant genodermatosis featuring punctate keratoderma, patchy 

hypopigmentation, and uncommonly, cutaneous calcifications (Eytan et al., 2013). These 

observations may have relevance to pigmentary changes noted in our patient diagnosed with 

pediatric PXE.

Collectively, this study identified 16 mutations, 15 of them in ABCC6 and 1 in ENPP1, in 

the Chinese PXE population, with implications for accurate diagnosis and subclassification. 

This information can be used for genetic counseling, and it forms the basis for prenatal 

testing and preimplantation genetic diagnosis in future pregnancies in families at risk for 

recurrence. Knowledge of the specific mutations can also be used for presymptomatic 

testing in families with known history of PXE (Akoglu et al., 2014; Li et al., 2010b). 

Important for the patients, identification of the precise nature of the mutations underlying 

the PXE phenotype provides a basis for development of treatment modalities tailored to be 

allele specific.

MATERIAL AND METHODS

Patient samples

A total of 29 unrelated patients with the putative diagnosis of PXE were investigated. 

Informed consent was obtained from all subjects, and the present study was approved by the 

local Medical Research Ethics Committee at Xijing Hospital, Fourth Military Medical 

University, Xi’an, China. The primary diagnosis of PXE was based on dermatological, 

ophthalmologic, and/or histopathologic evaluations (Uitto et al., 2014). In each proband, the 

skin lesions were histologically confirmed to be consistent with the diagnosis of PXE by the 

observation of calcified elastic fibers in biopsy specimens upon hematoxylin and eosin, 

Verhoeff van Gieson and/or von Kossa stains with standard protocols.
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Mutation analysis

Genomic DNA was isolated from peripheral blood leukocytes or paraffin embedded skin 

tissues from 22 patients from whom samples were available, according to standard 

procedures. Mutation detection comprised polymerase chain reaction (PCR) amplification of 

each of the 31 exons in the ABCC6 gene using primer pairs placed on the flanking intronic 

sequences (Pfendner et al., 2007). This protocol excludes amplification of the two ABCC6 

pseudogenes with sequences corresponding to the 5′end of ABCC6 (Pulkkinen et al., 2001). 

Purified PCR products were sequenced for variants by comparison with the published cDNA 

sequence (Gen Bank accession no. NM_001171). The samples in which no mutations were 

found in the ABCC6 gene were further analyzed for the ENPP1 gene using the same 

strategy. Evolutionary conservation of the amino acid residue serine-479 in ENPP1 was 

examined by sequence alignment with Ensemble program.

Mice

Immunodeficient Rag1−/− mice in C57/BL6 background (strain: 002216F; Jackson Labs, 

Bar Harbor, ME), which are wild-type for Abcc6, were used in this study. The mice were 

maintained under standard laboratory conditions and were handled in accordance with the 

guidelines for animal experiments by the Institutional Animal Care and Use Committee of 

Thomas Jefferson University.

Reagents, plasmid and site-directed mutagenesis

Sodium 4-phenylbutyrate (4-PBA) was purchased from Sigma-Aldrich (Deisenhofen, 

Germany) and dissolved in 0.9% NaCl prior to use. A full-length wild-type human ABCC6 

cDNA was cloned into pLIVE™ expression vector purchased from Mirus (MIR5420, 

Madison, WI). Using this cDNA as a template, ten different ABCC6 missense DNA-

constructs were obtained by site-directed mutagenesis following the manufacturer’s 

instructions (Agilent, Santa Clara, CA).

Liver-specific expression of ABCC6 variants in mice

Liver-specific expression of ABCC6 variants was performed in mice as described in our 

previous studies (Jiang et al., 2010; Jiang et al., 2006; Pomozi et al., 2014) Briefly, pLIVE 

expression vector (Mirus Bio, Madison, WI) containing the wild-type or mutant ABCC6 was 

delivered into the mice by hydrodynamic tail-vein injection of 10% body volume of 

TransIT-QR hydrodynamic delivery solution (Mirus), as recommended by the 

manufacturer’s instructions, using a 26-gauge syringe needle. At least three mice were 

injected with each form of the human ABCC6 cDNA. Mice were sacrificed 3–4 days after 

hydrodynamic tail vein injections and the livers were harvested for immunofluorescence.

4-PBA treatment of mice

Mice received intraperitoneal injection of 4-PBA (100 mg/kg per day), once a day for 4 days 

initiated at the time of hydrodynamic tail-vein injection, and they additionally received an 

approximate dosage of 1000 mg/kg per day in the drinking water, two days prior and four 

days following the injection, for a total of 6 days.
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Immunofluorescence

Immunofluorescence was performed on 8-μm thick frozen liver sections. Slices were fixed 

in methanol and then washed with PBS. After incubation in blocking buffer for 13hour, the 

primary antibody recognizing human ABCC6 protein (M6II-7, 1:100; abcam, Cambridge, 

MA) was added first for 1 hour, followed by incubation with the primary antibody specific 

for mouse ABCC6 protein (s-20, 1:200; Santa Cruz, Dallas, Texas) for 13hour. After 

washing with PBS, the sections were incubated with secondary antibodies for 1 hour and the 

nuclei were stained with 4′, 6-diamidino-2-phenylindole for 53minutes. The stained samples 

were analyzed using a fluorescent microscope (Zeiss, Göttingen, Germany).

Zebrafish mRNA rescue assay

To test the potential pathogenicity of ABCC6 missense mutations, a zebrafish mRNA rescue 

assay was performed as described previously (Li et al., 2010a; Zhou et al., 2013). Briefly, 

human ABCC6 variants were cloned in Bluescript II SK- vector, and mRNA was generated 

by in vitro transcription using the mMessage mMachine kit (Ambion, Austin, TX). A 

morpholino specific for zebrafish abcc6a sequence was injected into one- to four-cell-stage 

embryos either alone or in combination with the human, either mutant or wild-type ABCC6 

mRNA (2.4 mmol). The injected zebrafish embryos were followed for their phenotype and 

survival rate on daily intervals.

Ethics Statement

Informed written consent was obtained from all subjects, and the present study was 

approved by the local Medical Research Ethics Committee at Xijing Hospital, Fourth 

Military Medical University, Xi’an, China.

The mice were maintained under standard laboratory conditions and were handled in 

accordance with the guidelines for animal experiments by the Institutional Animal Care and 

Use Committee of Thomas Jefferson University.
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Abbreviations

PXE pseudoxanthoma elasticum

GACI generalized arterial calcification of infancy

Pi inorganic phosphate

PPi inorganic pyrophosphate

PTC premature termination codon

SNP single nucleotide polymorphism

4-PBA 4-phenylbutyrate
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Figure 1. The positions of ABCC6 mutations identified in Chinese patients with PXE
(a) Intron-exon organization of ABCC6 gene. Vertical boxes represent the 31 exons; 

Missense mutations are shown above, and insertion or deletion mutations resulting in PTC 

below the line; Green exons code for the two nucleotide-binding fold domains of the 

protein; Black, previously reported mutations; Red, to our knowledge previously unreported 

mutations; *denotes the presence of the mutation in multiple alleles/patients with the 

number of affected alleles in parenthesis. (b) Positions of the missense variants in the 

membrane topology model of the ABCC6 protein. The various protein domains are 

delineated by horizontal arrows above; the positions of amino acid variants investigated in 

the study are in red; nucleotide binding fold domains and intracellular loops are colored with 

gray and blue, respectively.
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Figure 2. Subcellular localization of human ABCC6 missense variants expressed in mouse liver, 
and the effect of 4-phenylbutyrate (4-PBA) on their localization
(a) The human (red) and mouse (green) ABCC6 proteins were detected on frozen sections of 

mouse liver by immunofluorescence with species specific primary antibodies three days 

after hydrodynamic tail vein injection of each ABCC6 missense variant in an expression 

vector. (b) Mice injected with ABCC6 missense variants were treated with (b, right panels) 

or without (b, left panels) 4-PBA. Scale bar = 100 mm.

Jin et al. Page 14

J Invest Dermatol. Author manuscript; available in PMC 2015 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Morphology of zebrafish 4 days after co-injection of an ABCC6A knock-down 
morpholino together with different human ABCC6 mRNA variants
The morpholino-induced phenotype consisting of pericardiac edema, stunted growth and 

curled tail, similar to zebrafish injected with morpholino (MO) alone, was observed in 

zebrafish co-injected with human ABCC6 mRNA carrying p.R1141X, p.P4H, p.A9E, 

p.P21S, p.R419Q, p.E125K, p.E709G or p.L948P mutation, indicating lack of rescue and 

implying pathogenicity. Zebrafish co-injected with MO and ABCC6 mRNA carrying R64Q 

mutation showed wild-type phenotype, similar to fish injected with MO together with 

human wild-type (WT) ABCC6 mRNA.
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Figure 4. Cutaneous presentation, histopathology and mutation detection in a pediatric patient 
with PXE
(a) Hyperpigmentation on the trunk (left) and yellowish papules in the axillary fossa (upper 

right); Aberrant calcification in the dermis detected by von Kossa stain (bottom right); (b) A 

heterozygous mutation, p.S479F, in the ENPP1 gene revealed by mutation analysis (arrow); 

(c) Conservation of the serine-479 during evolution from zebrafish to human (outlined). 

Scale bar = 100 mm.
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Table 1

The missense variants of ABCC6 discovered in 22 Chinese patients with PXE, and bioinformatics predictions 

of the consequence of the mutations

Mutations SIFT+ PolyPhen2+

At DNA level* At protein level

c.1814T>C p.Leu605Pro Damaging (0) Probably (1)

c.373G>A p.Glu125Lys Damaging (0.01) Probably (0.997)

c.11C>A p.Pro4His Damaging (0) Probably (0.957)

c.1256G>A p.Arg419Gln Damaging (0) Probably (0.994)

c.2843T>C p.Leu948Pro Damaging (0) Probably (0.988)

c.2126A>G p. Glu709Gly Damaging (0) Probably (0.916)

c.2501T>C p.Met834Thr Tolerated (0.28) Benign (0.047)

c.61C>T p.pro21Ser Tolerated (0.45) Benign (0.209)

c.191G>A p.Arg64Gin Tolerated (0.21) Benign (0.051)

c.26C>A p.Ala9Glu Damaging (0.02) Benign (0.109)

c.268G>A p.Ala90Thr Tolerated (0.5) Benign (0)

c.232G>A (x7) p.Ala78Thr Tolerated (0.18) Benign (0.018)

c.4324G>A (x2) p.Arg1442Thr Tolerated (0.47) Benign (0.188)

*
The recurrent mutation in multiple alleles is indicated with the number of affected alleles in parentheses.

+
Indicates the prediction of the consequences of the mutations on the protein function with the score in parentheses.
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Table 2

Zebrafish mRNA rescue assay

Group* ABCC6 mRNA variant No. of embryos injected Lethality (%)†

No injection - 192 8.7

MO alone - 68 79.3

MO+ p.R1141X 163 73.8

MO+ WT 80 23.4

MO+ p.P4H 71 85.9

MO+ p.A9E 94 83.0

MO+ p.P21S 93 79.0

MO+ p.R64Q 83 28.7

MO+ p.E125K 109 63.2

MO+ p.R419Q 48 89.1

MO+ p.E709G 64 65.6

MO+ p.M834T 118 64.4

MO+ p.L948P 109 71.1

*
Zebrafish embryos were injected at day 0 with an abcc6a morpholino (MO) alone or with human ABCC6 mRNA, either wild-type (WT) or 

harboring different mutations.

†
The cumulative number of dead embryos at 4 days after injection, expressed as % of the total number of embryos injected.
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