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Life scientists today cannot hope to read everything relevant
to their research. Emerging text-mining tools can help by iden-
tifying topics and distilling statements from books and articles
with increased accuracy. Researchers often organize these state-
ments into ontologies, consistent systems of reality claims. Like
scientific thinking and interchange, however, text-mined infor-
mation (even when accurately captured) is complex, redundant,
sometimes incoherent, and often contradictory: it is rooted in a
mixture of only partially consistent ontologies. We review work
that models scientific reason and suggest how computational
reasoning across ontologies and the broader distribution of tex-
tual statements can assess the certainty of statements and the
process by which statements become certain. With the emer-
gence of digitized data regarding networks of scientific author-
ship, institutions, and resources, we explore the possibility of
accounting for social dependences and cultural biases in reason-
ing models. Computational reasoning is starting to fill out
ontologies and flag internal inconsistencies in several areas of
bioscience. In thenot toodistant future, scientistsmaybe able to
use statements and rich models of the processes that produced
them to identify underexplored areas, resurrect forgotten find-
ings and ideas, deconvolute the spaghetti of underlying ontolo-
gies, and synthesize novel knowledge and hypotheses.

A vast and rapidly growing volume of text traces the succes-
sion of findings and ideas that constitute modern science.
Extrapolating from global library data, we estimate the world
hosts at least a trillion scholarly pages. An incomplete inventory
(Fig. 1), divided into biological, social, and physical sciences,
contains 400, 200, and 65 billion pages, respectively (see sup-
plemental data). From the Western invention of the printing
press in 1453, scientific knowledge has grown, increasingly
become published in English, and shifted from books to jour-
nals (Fig. 1A). Published knowledge has accumulated fastest in
eras of peace and prosperity; it grows much more slowly in

turmoil (Fig. 1B). Until recently, access to this knowledge
required going to a library. The complete collection of science
is, however, distributed so widely across libraries that to assem-
ble all knowledge on any broad topic would require lifelong
travel (Fig. 1C). More than one-quarter of the world’s basic and
applied science books appear in less than ten libraries. Google
and the Google Books settlement, which finalized in November
2009, is beginning to reverse this trend by making millions of
these books available for search and reading through the Inter-
net. This follows the massive migration of scientific journals
online over the past decade (Fig. 1D).
With the emergence of new journals that are digital at pub-

lication and novel ways of expressing findings and hypotheses
in science tweets, blogs, and online databases (and with more
scientists producing science than ever before), researchers can
catalogue only a vanishing fraction of what is relevant to their
work by traditional reading and note taking. In response, scien-
tists in many fields have begun to use computation not only to
search andbrowse scientific texts (1) but also to read and reason
about them (2). Numerous obstacles remain, but the possibility
of enlisting computation in discovery as well as analysis has
inspired a growing body of knowledge and tools whose use and
development have been nowhere more active than in the
molecular life sciences.

Processing Natural Language

The process by which text is refigured into standardized
machine-readable representations of meaning is often called
semantic analysis. The expressive richness and ambiguity of
natural language, however, make automatically extracting
statements from scientific text a formidable challenge. For
example, consider the difficulty involved in extracting all infor-
mation from the text “NCOA3 in turn acylates histones, which
makes downstream DNA more accessible.” As a result, infor-
mation extraction (IE),3 a robust approach to semantic analysis,
currently avoids attempting to process every phrase in text (e.g.
by simply extracting “NCOA3 acetylates histones”). IE assumes
a relatively simple fixed template of expected information.
Researchers then fill semantic slots with information from text
through a series of steps.
First, what is to be extracted is narrowed using a supplied

lexicon of semantically classified terms (e.g. genes, enzymes,
cofactors, small molecules) (3). The researcher then identifies
these classes in text, a step called named entity recognition,
using deterministic rules or computational techniques that sta-
tistically learn from human-coded data. The accuracy of the
best named entity recognition in some domains rivals that of
human coders at �90% (4). The researcher then assembles
these mentions into basic and then complex noun, verb, and
prepositional phrases. Finally, semantic entities and events are
recognized, inserted into the template, and merged if they are
determined to share a referent. Many biomedical research
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teams in recent years have extracted protein-protein interac-
tions from text using an IE approach and filling a simple tem-
plate that involves two or more proteins, an interaction, and
occasionally evidence associated with the claim. Following
from our previous example, NCOA3 acetylates histones as
determined with high resolution mass spectrometry.
A related butmore involvedmethod of robust semantic anal-

ysis builds on formal grammars that model how the mind gen-
erates language. Several exist, including transformational, rela-
tional, dependency, construction, and categorial grammars (5).
Transformational or constituency grammars (TGs) are the
most commonly used and comprise a set of symbols represent-
ing constituent words and phrases and the rules by which they
are substituted to create language. Parsing a sentence, given a
TG, boils down to reconstructing the substitution steps that
most likely generated the sentence. Context-free grammars are
currently the TG most commonly implemented as they offer
themost affordable compromise between expressive power and
computational cost. A syntactic context-free grammar renders
a sentence through symbols that signify structures like noun

and verb phrases, which are each, in turn, substituted for word
classes like nouns, verbs, adjectives, and prepositions, which are
ultimately replacedwithwords like “bright” or “phosphorylate.”
Similarly, a semantic grammar operates with symbols that

stand for semantic categories such as enzyme, substrate, or
enzymatic reaction. The semantic grammar constitutes rules
that include selection restrictions, which limit the ways in
which entities can appear in meaningful statements within the
domain (5). Semantic grammars in science rely on the notion that
scientific domains are characterized by specalized scientific sub-
languages, which can be characterized by finite sets of rules (6). In
robust semantic grammars, one typically mixes syntactic and
semantic rules and may implement them deterministically or
probabilistically. Inaprobabilisticgrammar, eachrule isassociated
with a probability that can be used to infer the most likely genesis
or parse of the sentence. Collectively, these approaches to robust
semantic analysis are used extensively to extractmeaningful state-
ments in computer science, business intelligence, biology, and
medicine.Theyhavebeenparticularly fruitful in fields at the inter-
face of chemistry and biology, where the fundamental importance
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FIGURE 1. A, estimated number of distinct pages from the Online Computer Library Center WorldCat Database of books and journals in 71,000 libraries across
121 countries, split by manuscripts and journals, broad subject area, and the most common eight languages from 1450 to present. B, manuscript pages, by
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ofmolecules and reactions has drivenmore linguistic conventions
than many other areas of science and scholarship. These
approaches are also beginning to enter many other natural and
social sciences.

Assembling Ontologies

If computation could distill articles into a database of state-
ments, it would still be too large for a researcher to browse.
Consider a scientist who is interested in the relationship
between human gene p53, which regulates the cell cycle, and
cancer, a cell proliferation disorder, and who finds 36,589 rele-
vant articles in PubMed. Alternately, imagine a biochemical
researcher interested in all published statements of the form
“molecule A is a substrate for enzyme B.” The path to computa-
tional reasoning commonly involves aggregating statements
from text into singular declarations ordered into a consistent
system or ontology. Modern scientific ontologies derive from
two traditions. In philosophy, ontology (historically, a branch of
metaphysics) is the study of existence. Formodern science, this
translates into a specification of empirical entities and their
organization into statements of fact that highlight essential
qualities, parts, and relationships. Ontologies emerged in com-
puter science as an approach to knowledge representation in
the early 1990s (7), preceded by practical classification systems
like the 19th century Dewey Decimal System and the Interna-
tional Classification of Diseases. First used in artificial intelli-
gence, ontologies now permeate software engineering and
database theory, where consistent content schemas facilitate
the interoperability of data stores. They are also becoming an
integral part of theWorldWideWeb. In 2004, theWorldWide
WebConsortiumendorsed theOWLWebOntology Language,
which supports the formal semantics required by ontologies, as
the centerpiece of its Semantic Web Framework.
Modern scientific ontologies, often classified into light- and

heavyweight, contain a controlled vocabulary of concepts and
relationships that link them. Lightweight ontologies comprise
terminologies or simple taxonomies with little or no informa-
tion about the entities or relationships. For example, all known
enzymes organized into a list or a simple taxonomy (e.g. a kinase
is an enzyme) would serve as a valuable data resource. In con-
trast, heavyweight ontologies like Cyc, a massive schema of
common sense knowledge, or the FoundationalModel of Anat-
omy add formal axioms and constraints to characterize entities
and relationships distinctive to the domain. A formal axiom in
biology might specify that genes encode proteins, but proteins
cannot encode genes. Light and heavyweight ontologies may
draw upon reference or upper level ontologies to characterize
their parts: abstract entities and processes as in Cyc or concrete
elements like human bones within the Foundational Model of
Anatomy. They then subclass these elements and link them
with domain-specific information. The most frequently cited
ontology in science, the Gene Ontology (GO), is a structurally
lightweight taxonomy that comprises 22,000 entities biologists
use to characterize gene products (8). GO statements are con-
cept-relation-concept triplets like “oxidative phosphorylation
is ametabolic process” and “photosynthesis, light harvesting is
part ofphotosynthesis, light reaction.” Knowledge bases of text-
mined statements similarly draw upon ontologies for the lexicon

used toextract entities andrelations fromtext, butduplicationand
contradiction are permitted as they are in articles (9).
After computer and information science, ontologies aremost

used in biomedicine but also increasingly in astronomy and
diverse areas of engineering, government, and business. Recall
the recent ontological debate over whether Pluto is a planet, an
asteroid, or a dwarf planet, the controversial appellation even-
tually contrived by the XXVIth General Assembly of the Inter-
national Astronomical Union in Prague 2006. Among applied
ontologists, there is broad agreement that ontologies should
primarily be understood as precise data structures to facilitate
sharing and reuse, a kind of object-oriented content.4 Ontolo-
gists are divided, however, over whether to promote one ontol-
ogy that enables/constrains the interoperation of all others or
to let a thousand flowers bloom and encourage a wide range
customized to scientific usage. Mark Musen, coeditor of
Applied Ontology and author of the popular ontology editor
Protégé, wrote, “So much of scientific knowledge is not abso-
lute—it is constructed—it is context-dependent. Ontologies
can provide an impression of certainty that may not always be
appropriate.” Consider, for example, the multiple coexisting
definitions of gene concurrently used in biology: a unit of inher-
itance, a chunk of DNA, and a template for a group of proteins.
Others believe ontologies are and should be built only on “set-
tled parts of science.”5 By creating one ontological compen-
dium or one description of existence, however, scientists nec-
essarily preclude others.
Many ontology communities routinely update changes in

their systems, and recent work in artificial intelligence is begin-
ning to assist ontology evolution by automatically comparing
ontologies and designing repair plans that split functions and
add arguments to make them commensurable.6 Some ontolo-
gies are also beginning to incorporate uncertainty.7 These
amendments suggest an emerging interpretation of ontologies
in science, not simply as truth statements or data-sharing struc-
tures but as representations of mental constructs through
whichwe organize our growing understanding about theworld.

Computational Reasoning

The culminating step of computational reasoning involves
building a reasoner or agent that infers newknowledge from the
existing statements of an ontology.Many reasoners use variants
of unambiguous proposition or first-order predicate logic to
make inferences and prove theorems. Automated theorem
proving has advanced in recent years and is used intensively in
circuit and software design, aerospace, and related industries
where verifying a particular operation under all possible condi-
tions is critical. TheWolframAlpha Computational Knowledge
Engine takes a similar approach to computational question

4 M. Musen, P. Karp, B. Smith, J. Blake, L. Hunter, L. Hirschman, B. Carpenter,
and J. Shrager, personal communications.

5 B. Smith and P. D. Karp, personal communications.
6 A. Bundy, paper presented at the Fall Symposium for the Association for the

Advancement of Artificial Intelligence, Athens, GA, November 5, 2006.
7 P. C. G. Costa, K. B. Laskey, and K. J. Laskey, paper presented at the Proceedings

of the Second ISWC Workshop on Uncertainty Reasoning in the Semantic
Web: Frontiers in Artificial Intelligence and Applications (FLOIS), Arlington, VA,
November 7–9, 2006.
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answering by using rules to assemble systematic knowledge
across a variety of domains and fit it with algorithms to produce
on-demand analysis. Another approach takes computational
inference still further by using extracted published knowledge
to conditionmodels of chemical and biological agents and then
enables these agents to interact to simulate and predict higher
level cellular, tissue, and organism outcomes.
Scientific disagreement, alternative views of the world, and

uncertainty becomemost consequential in the reasoning proc-
ess. For example, are three amino acids in sequence a “small
molecule” or a “macromolecule” (a very short protein). Crisp
logical reasoners have been unleashed on biomedical ontolo-
gies to extend them, for example, by associating genes with
biochemical pathways (10).8 Logical approaches have been
most successful, however, not in generating new knowledge but
in flagging internal contradictions for repair (11).9 Because of
contradictions and self-references, many of the most used
ontologies (like the SNOMED medical ontology and GO) are
insufficiently restricted to be expressed with protocols like
OWLand cannot take advantage ofmany of the reasoners avail-
able for consistent systems. This has suggested to others the
need to incorporate error into the reasoning process.
Early approaches to probabilistic logic dealt with the chal-

lenge of inducing support for a proposition from evidence.
Belief networks combine proposition probabilities to model
uncertainty within a broader domain.10 Belief networks include
nodes, which represent variables, interconnected with arcs,
which signify probabilistic influences. In biology, a node might
constitute the active or inactive state of a gene, and an arc the
probability that the gene is active given the state of the protein
that regulates it. The strength of influence between nodes is
propagated along the graph via forward conditional probability.
Bayesian networks are the most commonly implemented form
of belief network. They use Bayesian conditioning as the basis
for probability updating and so emphasize the relationship
between assumptions and the accuracy of evidence in assess-
ment (12). Consider the use of Bayesian networks to diagnose
illness. Given some set of observed symptoms, one can compute
probabilities along arcs of the network to compare the likelihood
of each possible disease (13). Several implementations of Bayesian
networks have been developed to handle particular types of infer-
ence: dynamic networks for dynamic systems, causal networks for
causal processes, and influence diagrams that add values and
choices to the belief network to optimize decisionmaking (14).
Probabilistic reasoners allow researchers to relax the

assumption that statements within an ontology or associated
knowledge base are certain and universal.11 This strategy
reduces the precision of conclusions but can reduce the influ-
ence of isolated mistakes and make computational inference

possible even in the presence of contradiction. In developing
ontologies from literature, however, researchers called curators
often excise repetitive, contradictory, and incommensurable
statements. They recognize that article statements are unequal,
but rather than rank their certainty, curators have tended to
censor “uncertain” ones. This is changing. Gene function anno-
tation using the GO now allows for the distinction between
experimental findings and structural inference.9

A few researchers have begun to use probabilistic reasoners
on the complete collection of statements extracted from litera-
ture. Retaining uncertain statements has allowed them to
explore how statements become certain. For example, two
recent papers explicitly model the process by which statements
and citations in molecular biomedical articles respond to each
other in information cascades (15, 16). An information cascade
is a chain of collective reasoning that degenerates into repeti-
tion (17–19). Fig. 2A illustrates this process by showing a
sequence of experiments about the same phenomenon (e.g.
NCOA3 acetylates histones). The first researcher to investigate
the relationship interprets his experiment directly. The second
interprets his experiment taking both his own research and the
previously published interpretation into account. The third sci-
entist accounts for still more published history and proportion-
ally discounts her findings. This may not appear irrational to
the individual scientist. She is acting like a Bayesian statistician:
the more prior collective knowledge, the more that knowledge
should influence her interpretation. The process is not collec-
tively rational, however, because the sequence of prior pub-
lished experiments were not independent. The first had much
more influence on the resolution than the last.
A recent investigation into the claim that �-amyloid, a pro-

tein concentrated in the brains of Alzheimer patients, is pro-
duced by and injures skeletal muscle in patients with inclusion
body myositis illustrates this process and its potential costs
(16). The relationship was first published in five 1992 and 1993
articles produced by two research groups. Before 1996, six arti-
cles critical of the claimwere also published, two from the same
laboratory that had produced four of the five original support-
ive articles. This is consistent with the hypothesized “Proteus
phenomena,” whereby early findings are subjected to contra-
diction (21). Nevertheless, 242 new analyses and reviews that
explored the relationship came out before 2008, and all but one
disproportionally cited the positive articles and amplified the
claim within the community. Some reviews even made the
claim firmer and more general than it had been in its initial
context. As a consequence of this cascade of support, interpre-
tation of new experiments neither doubted the claim nor
explored other possible roles of �-amyloid. A 2010 paper takes
a wider view and shows how �-amyloid may beneficially func-
tion as an antimicrobial peptide in the innate immune system
(20). This insight raises the possibility that Alzheimer disease is
infectious and suggests novel treatment strategies. Regardless
of this new claim’s efficacy, the information cascade surround-
ing the deleterious effect of �-amyloid almost certainly pro-
longed experimental consideration of its possible beneficial
role in Alzheimer disease and immunity.
Building on this work could allow analysts to identify the scope

of convergence and divergence processes in biology, chemistry,

8 S. Eker et al., paper presented at the Proceedings of the Pacific Symposium
on Biocomputing, 2002.

9 J. Blake, personal communication.
10 The mathematics of belief networks are closely related to those of game

theory, where winning a game parallels the verification of a scientific con-
clusion, and the uncertainty of competitive moves maps to uncertainty
about scientific evidence and assumptions.

11 This approach can be captured by second-order logic in the principle of
bivalence but cannot exist in first-order statements that demand universal
relationships.
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and related fields. Other work has highlighted how research com-
munities aremuchmoreawareof some findings thanothers: those
appearing in their own journals over others published about iden-
tical topics (22). Ultimately, reasoning across the distribution of
untidy statements could allow us to examine the dynamic nature
of research attention in the sciences.

Incorporating Social Structure and Culture

The complete distribution of published research statements
(even perfectly parsed and analyzed) would still ignore depen-

dences between statements induced by communication. To pro-
duce research, scientists engage in multiparty conversations that
span university hallways, workshops, conferences, and libraries.
Research on the social production of science has begun to trace
these linkages using article bylines and acknowledgments to
understand how authors and resources organize around research
problems into teams (23), networks (24), institutions, and regions
(25). In large article collections, author identification has been a
challenge, but recent approaches that usemany article features are
accurate at�98%even for large article collections like PubMed (26).

FIGURE 2. A, hypothetical temporal sequence of experimental findings (1 and 0 in the beakers) and published articles (1 and 0 in the papers) (15). Early findings are
reflected accurately in publications, whereas scientists’ interpretation of later findings incorporate the history of publication into account. B, the broader social network
in which the scientists in A live. The positive correlation between social ties in B and the propositional agreement in A suggests that communication induces accord.
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Improved models of scientific production could allow rea-
soning models to statistically deconvolute social, geographic,
and funding-related dependences among published statements
(27). For example, offline discussions about “the best” tech-
niques for inferring protein interactionswill likely constrain the
range of methods deployed. The projection of social, geo-
graphic, and funding networks onto the network of published
statements exposes correlations, common repetitions likely
induced by the communication of ideas. Fig. 2B illustrates this
correlation between personal relationships and scientific inter-
pretations. A finding corroborated by articles from three labo-
ratories with no known association from distant locales using
different methods is much more persuasive than one repeated
by a Ph.D. advisor and his students. Computational models
conditioned on social dependences might weight independent
statements with greater confidence.
Incorporating social structure could also improve computa-

tional prediction. In a classic analysis, Don Swanson observed
that the community studying Raynaud disease noted blood vis-
cosity as a common symptom and that the socially discon-
nected nutrition community published how dietary fish oil
reduced blood viscosity. Swanson hypothesized that fish oil

could be beneficial for Raynaud disease patients, and it was
found successful in an independent randomized clinical trial
(28). Where scientific elements (e.g. blood viscosity) cross the
social boundaries between communities, co-occurring ele-
ments, problems, and solutions from one domain can be con-
nected with those in another. This approach is the scientific
equivalent of market arbitrage: accelerated by computation, it
could facilitate “conversations” between contemporary andhis-
torical or orphan ideas that were underappreciated in the sci-
entific context of their debut (29).
Beyond social relations, scientists sort into fields with differ-

ing knowledge cultures: methods of reasoning, evidentiary
standards, and styles of articulation (30). Textual clues provide
insight into the patterns that distinguish these cultures. A
meta-analysis of oncology articles found that methods sections
in those citing industry supportwere systematicallymore vague
than in articles citing only government funding (31). Articles
and patents, even for the same discovery, are also quite differ-
ent, with the article emphasizing continuity with previous
research and the patent highlighting distinction. Uneven con-
tact between related fields leads to concepts from one domain
having imperfect analogs in another. The gene of genetics (the

FIGURE 3. Elements, context, and processes involved in scientific reasoning. Arrows represent causes or influences. The figure emphasizes the scope of
first-generation computational reasoning and the emerging second-generation reasoning we describe in this minireview.
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basic unit of heredity) historically had an emphasis and theo-
retical function distinct from the gene of biochemistry (an
encoding segment of DNA), but the two have becomemangled
with contact. When scientists move between fields or draw
from multiple domains, meanings intermix. Established terms
attract new meanings over time as the context and concerns of
research shift (32). In this way, fields, communities, and even
individuals within papers host multiple clustered but distinct
symbolic systems: their texts draw concepts from a mixture of
ontologies.
Following this logic, reasoners could be trained to account

for cultural bias. By computationally classifying published
statements and estimating the likelihood that each class will
enter scientific discourse, reasoners could reweight certainty in
underrepresented claims. For example, the results of successful
experiments appear in print much more frequently than those
of unsuccessful ones. This approach could quantify that likeli-
hood and begin to correct for it. It might also enable prediction
by suggesting that logically possible but never published nega-
tive statements (e.g. the human gene MIR96 does not increase
susceptibility to heart disease) aremore likely than unpublished
positive ones in densely crowded research areas, but less so in
sparse ones between disciplines where many questions remain
unasked.
Reasoners that account for the sociocultural dispersion of

statements could enable us to recover the mixture of cognitive
ontologies that gave rise to them. This could highlight (and
subject to testing) higher level ontological disputes in science
that lie above the level of most ad hoc hypotheses. Theoretical
progress is often associated with the reconciliation of ontolo-
gies from multiple theories. Consider the merger of evolution
and genetics that precipitatedmodern evolutionary theory (33)
or the common impulse in physics to generate a unified theory.
Separating, formalizing, and explicitly comparing the concep-
tual ontologies that give rise to statements may create novel
opportunities to blend ontologies for theoretical experimenta-
tion and improvement.6

Conclusion

The rapidly increasing volume and electronic availability of
published science can seem overwhelming to the modern bio-
scientist. It also poses a unique opportunity. Recent advances
in natural language processing, ontology construction, and
reasoning models are being brought together by scientists to
computationally read and reason. As analysts begin to
extract more of the richness from texts, computational rea-
soners may become capable of modeling certainty and gen-
erating predictions based on the full range of factors scien-
tists have always considered, including the sociocultural
processes through which science is produced. Fig. 3 dia-
grams relationships between published science, ontologies,
and reasoning in the scientific system. It points to this
expansion of features that researchers are beginning to
engage in their models of science and their tools to analyze
and advance it.
Many obstacles remain, including the need for better models

of the production of language and science, more efficient algo-
rithms, and faster computation. Nevertheless, computational

extraction and reasoning with ontologies have already begun to
help scientists overcomesomeof the limitationsofworkingwithin
a distinct community. By expanding the set of useful documents
through text mining, scientists enlarge the distribution from
which theycansample ideasandextend the lengthandpotential of
their inferences.Reasoningmodelshaveallowedscientists tocom-
plete paradigms, like working out the genetic details of hypothe-
sized biopathways. They are also beginning to enable ontology
comparison,whichcould flagopportunities for theoretical recom-
bination that punctuate scientific advance (see supplemental
data).
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