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Abstract

The discovery of cancer-predisposing syndromes (CPSs) using next-generation sequencing (NGS) technologies is of
increasing importance in pediatric oncology with regard to diagnosis, treatment, surveillance, family counselling and
research. Recent studies indicate that a considerable percentage of childhood cancers are associated with CPSs. However, the
ratio of CPSs that are caused by inherited vs. de novo mutations (DNMs), the risk of recurrence, and even the total number
of genes, which should be considered as a true cancer-predisposing gene, are still unknown. In contrast to sequencing only
single index patients, family-based NGS of the germline is a very powerful tool for providing unique insights into
inheritance patterns (e.g., DNMs, parental mosaicism) and types of aberrations (e.g., SNV, CNV, indels, SV). Furthermore,
functional perturbations of key cancer pathways (e.g., TP53, FA/BRCA) by at least two co-inherited heterozygous digenic
mutations from each parent and currently unrecognized rare variants and unmeasured genetic interactions between common
and rare variants may be a widespread genetic phenomenon in the germline of affected children. Therefore, family-based trio
sequencing has the potential to reveal a striking new landscape of inheritance in childhood cancer and to facilitate the
integration and efforts of individualized treatment strategies, including personalized and preventive medicine and cancer
surveillance programs. Consequently, cancer genetics is becoming an increasingly common approach in modern oncology,
so trio-sequencing should also be routinely integrated into pediatric oncology.

Introduction susceptibility and environmental factors such as influences

during pregnancy and infection exposure [1]. Recent studies

Lifestyle factors such as UV exposure, smoking and alcohol
consumption are major contributors to cancer development
in adults. As these factors are negligible in children, one can
speculate that a substantial (and previously underestimated)
number of pediatric cancers must be attributable to inherited
mutations in cancer predisposition genes (CPGs), currently
unrecognized rare variants, and the combination of inherited
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indicate that 8.5% of childhood cancers are associated with
cancer predisposition syndromes (CPSs), including 16.7%
of non-central nervous system solid tumors, 8.6% of central
nervous system tumors and 4.4% of leukemias [2]. In fact, it
is probable that the percentage of cancers linked to CPSs in
children is even higher. In a recent pan-cancer study by the
International Cancer Genome Consortium, likely deleter-
ious variants of 109 known autosomal CPGs were shown to
affect 11% of 2642 cancer patients across 39 cancer types.
This number increased to 20% of donors when considering
germline pathogenic variants in 183 DNA damage-response
genes, which do not have a presently established link to
cancer risk [3]. However, the exact proportion of children
and adolescents with a malignancy that is attributable to an
underlying CPS is still unclear. A major reason for this is
the fact that most published data on this topic relies on
sequencing of only index patients, i.e., the affected children.
These data does not take into account the family context,
and, therefore, valuable discovery and interpretation infor-
mation are disregarded. The most well-known mutated
genes in childhood cancer are TP53, followed by APC,
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BRCA2, NFI, PMS2, RBI, and RUNX]I [2]. According to a
recent study, affected families show great interest in genetic
testing for an underlying CPSs [4].

Unexpectedly, the predictive value of the family history
is still unclear, as related studies report inconsistent results
[2, 5]. Additionally, the proportion of de novo vs. inherited
germline mutations in CPGs is widely undetermined
resulting in considerable uncertainty about recurrence risk
in siblings. For example, the prevalence of TP53 mutations
has been estimated to be anywhere from 1 in 20,000 up to 1
in 5000, with 7-24% being expected to occur de novo [6].
In contrast, ~50% of the mutations in NFI originate de
novo [7].

The identification of children affected with CPSs could
have direct impact on therapeutic cancer management. For
instance, Li-Fraumeni syndrome (LFS) patients have
an increased risk of radiation-induced secondary malig-
nancies [8].

Next-generation germline sequencing of
parent-child trios

Genetic variations arise through new mutations; thus,
determining the properties and rates of mutations is fun-
damental to understanding the genetics of human disease.
Due to technical limitations, the number of loci studied was
limited in past mutation rate analyses. However, advances
in sequencing technology rapidly replaced classic mole-
cular diagnostics, and the number of its applications has
increased immensely in the past decade. Next-generation
sequencing (NGS) provides a powerful tool to identify
genomic variations associated with specific diseases,
including cancer.

With increasing adoption of whole-exome sequencing
(WES) and whole-genome sequencing (WGS), the detec-
tion of novel, previously uncharacterized sequence variants
has increased and will continue to increase dramatically in
the near future. Today, using NGS approaches, the occur-
rence of all types of mutations, including single-nucleotide
variants (SNVs), small insertions and deletions (indels) and
also large structural variations (SVs) can be analyzed.
Compared to WES, WGS is the better technique to detect
many types of variants, including indels, non-coding var-
iants, CNVs, repeat expansions, and SVs (such as inver-
sions and translocations) and can also reveal pathogenic
mutations in the non-coding part of the genome (promoter
regions, introns, enhancer and regulatory regions). How-
ever, both methods are hampered by challenges in metho-
dical approaches (e.g., depth, coverage), data analysis and
interpretation, storage of vast amounts of data, and rela-
tively high costs.
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Typically, in cancer syndromes only the single patient is
sequenced. However, in order to test hereditary CPSs and
family members at high-risk, WES of parent-child trios has
become an increasingly popular strategy. In children with
rare diseases, particularly in the field of intellectual dis-
ability (ID), autism spectrum disorder (ASD) and primary
immunodeficiency, this strategy allows identifying causa-
tive genetic variants [9—12]. Lee et al. very nicely demon-
strated with a diagnosis rate of 31% in 410 undiagnosed
children with suspected genetic conditions, that trio clinical
exome sequencing (CES) is superior to proband-CES only
(diagnosis rate 22%, p =0.002) and effectively detects de
novo and compound heterozygous variants [13]. This
finding was subsequently confirmed by Farwell et al. with a
diagnostic rate of 37% in a family-based exome sequencing
approach as compared to 21% with a singleton testing
strategy and furthermore in a meta-analysis performed by
Clark et al. (odds ratio 2.04, 95% CI: 1.62-2.56, 12) =
12%; P <0.0001) [14]. In addition, Mestek-Boukhibar et al.
reported the development of a comprehensive real-life
workflow for the use of trio WGS in critically ill children
with a molecular diagnosis in 42% children, in 30% of these
with immediate impact on clinical management [15]. An
overview of studies based on trio sequencing is given in
Table 1.

The detection of germline variants in genes involved in
telomere regulation, such as RTELI, POTI, TERC, and also
in the telomerase reverse transcriptase promoter (TERT),
has been used to identify increased risk of glioma and
melanoma, as well as lung, bladder and pancreas cancer
[16]. POTI germline mutations have been described in high
risk families with melanoma [17, 18], colorectal cancer
[19], glioma [20], and chronic lymphocytic leukemia [21],
and in KDR in Hodgkin lymphoma families [22], and
demonstrate that family-based NGS approaches work like-
wise in cancer.

In addition, also in children with metachronous tumors,
trio sequencing has unveiled underlying cancer suscept-
ibility [22, 23]. In a recent study performing trio-based
whole-exome sequencing in a selected cohort of children
with cancer, causative or likely causative pathogenic
germline mutations were reported in 20% of the patients.
Additionally, in two patients (5%) possible novel cancer-
predisposing genes were identified [24]. However, in
pediatric oncology, rapid workflows for the use of trio WES
in daily clinical routine still need to be established to ensure
adaptation of management and treatment in children with
inherited CPS such as LFS and DNA repair defects in a
timely manner.

The advantage of trio sequencing as compared to
sequencing only the affected individual is the leveraging of
inheritance information, which enables homozygosity
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mapping, inference of compound heterozygosity, and the
identification of inheritance anomalies [25]. Thus, trio
sequencing is of high value in identifying pathogenic var-
iations, but is also important in providing insights into both
the inheritance patterns, including de novo mutation (DNM)
rates, and the pathogenesis of childhood cancer. Note-
worthy, some of the mutations identified by trio sequencing
might be “private” or rare variants, unique to a single
family. These families are faced with the inherent limitation
that both the genotype information is limited to one family
and likewise the clinical and biological phenotype. Thus, to
infer the function of such single (de novo) variants, a
detailed phenotypic functional characterization is needed to
validate whether the disease is conferred by this rare and
unique mutation.

Inheritance

Inherited cancer susceptibility is suspected in families
according to well-established criteria [26]. However, owing
to phenotypic variability, age-related penetrance, and
gender-specific cancer risk, many families with a hereditary
CPS will not meet these criteria [27]. Moreover, due to age,
genetic background and environmental exposures, mutation
processes vary between individuals and families. In addi-
tion, some families present with an uninformative pedigree,
e.g., due to adoption or a linkage phase that cannot be
determined (parents homozygous or parents and child het-
erozygous for the same alleles).

Over 100 hereditary CPSs have been described so far, the
majority with an autosomal dominant inheritance pattern
with incomplete penetrance. The most significant CPS with
autosomal dominant inheritance is LFS, in which tumor
manifestations vary widely within and between families
including age of manifestation and cancer type. The reason
for this phenomenon still remains elusive.

The minority of CPSs (e.g. most types of Fanconi ane-
mia, many immunodeficiency syndromes) are caused by
autosomal recessive inheritance. Homozygosity is particu-
larly relevant in consanguineous families and is often
associated with immunodeficiency disorders [28]. Trio
sequencing has become a common and successful tool for
uncovering underlying genetic defects in these families. In
the scenario of compound heterozygous mutations, it also
provides important insights into the inheritance patterns
(whether the two different mutated recessive alleles of the
same gene are transmitted from the mother and father or one
originates de novo) and, thus, recurrence risk. In addition, in
CPSs like Fanconi anemia, trio sequencing also identifies
heterozygous carriers who are at increased risk to develop
malignancies.

SPRINGER NATURE

Concomitant inheritance of two heterozygous
mutations in the same CPG pathway

In the majority of children with cancer, the family history is
unsuspicious and does not point towards an underlying
predisposition syndrome. Since many cancer types in
pediatric oncology have been associated with CPSs, this
often leads to the clinical scenario of a child presenting with
a moderately or highly suspicious cancer type (e.g., osteo-
sarcoma) but an unremarkable family history, raising the
question of whether a CPS (e.g., LFS) should be suspected.

In general, LFS patients harbor germline mutations in the
TP53 gene, which predispose to a wide spectrum of early-
onset cancer development, including bone and soft tissue
sarcomas, brain tumors, breast carcinomas, leukemias, and
adrenal cortical carcinomas, and, thus defining the clinical
spectrum of LFS and also of the Li-Fraumeni like (LFL)
syndrome [8]. Interestingly, in ~25-60% of LFS and LFL
patients, a germline TP53 mutation is not detectable [29].
This suggests the existence of alternative - currently uni-
dentified - or combined mutations in LFS/LFL susceptibility
genes. In breast cancer patients, a more severe phenotype
has been reported in individuals with double heterozygosity
for disease-causing BRCAI and BRCA2 mutations, two
genes of the Fanconi anemia/Breast cancer pathway [30].

We previously reported a genetic phenomenon, in which
two independent rare germline variants in different genes
affecting the same cancer signaling pathway - inherited by
the mother and father each - act synergistically in children
with cancer [31, 32]. This phenomenon becomes even more
complex when more than two SNVs are taken into account
or when SNVs are considered together with larger structural
alterations, DNA methylation changes and other (epi-
)/genetic changes respectively, which are uniquely com-
bined in the particular child with cancer. Thus, we suggest
that family-based WES should be complemented by the
comprehensive analysis of additional genetic layers. These
include mapping technologies allowing the correct genome-
wide assessment of large structural variations as well as
studies of DNA methylation to detect cancer predisposing
syndromes like Beckwith-Wiedemann syndrome which is
caused by epimutations which are not detectable by WES or
WGS [33].

Taking these observations and hypotheses into account,
trio WES of the families of children with cancer offers a
unique opportunity to gain further knowledge of the
mechanisms of cancer development in children. A recent
study on adult sarcoma patients indicates that a striking
number of patients—nearly half—harbor putatively patho-
genic monogenic and polygenic variation in known and
novel cancer genes in the germline [34]. This is of extra-
ordinary significance for children with cancer, since one can
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speculate that this number must even be higher in children
because of currently unrecognized rare variants and genetic
interactions between both common and rare variants [34].
For example, only recently, trio sequencing in a family
suspicious of an underlying LFS revealed a novel TP53
mutation in the affected child and mother. Moreover, a
nonsense mutation in ERCC3 inherited by the unaffected
father was identified, which might act as possible candidate
modifier linked to 7P53 and explain the accelerated tumor
onset in the child compared to the mother [35].

However, NGS not only identifies well-known patho-
genic variants but likewise a substantial number of variants
of unknown significance (VUSs), which are classified as
following in a five-tier system for variants relevant to
Mendelian disease [(1) benign, (2) likely benign, (3)
uncertain significance, (4) likely pathogenic or (5) patho-
genic] [36]. Thus, thorough functional validation of these
variants is mandatory to correctly classify the VUS as
related to the respective condition. Moreover, as there is a
complex genotype-to-phenotype association with a complex
network of macromolecules (DNA, RNA, proteins) and
metabolites linked through physical or biochemical inter-
actions, careful evaluation of the mechanistic impact of
identified variants and modifications on molecular interac-
tions such as edgetic perturbation is needed [37, 38].

De novo mutations

During the last few years, studies related to the role of
DNMs that disobey Mendelian inheritance have gained
increasing interest, and have shown great potential towards
understanding the genetics of human diseases. The main
focus of these lies on using trio NGS data, including parents
and their children, to determine the properties of and rates at
which new mutations appear, which is also of major
importance to evolution [39, 40]. DNMs originate post-
zygotically or in gametogenesis and result in an embryo
with a constitutive mutation [41]. Recent studies propose an
- age-dependent -3.9:1 ratio of DNMs on the paternal to the
maternal allele, due to the larger number of germline cell
divisions in the spermatogenesis compared with the
oogenesis [39, 40, 42]. Details on various mutation rates in
humans are summarized in Table 2.

An increasing number of studies suggest that DNMs are
of particular importance in conditions such as neurodeve-
lopmental diseases and rare sporadic malformation syn-
dromes, including severe congenital heart disease [9, 11,
43-45]. As a result of less stringent evolutionary selection,
DNMs are commonly more deleterious than inherited var-
iations and contribute to the persistence of early-onset lethal
diseases in the population [46—48].

Despite these important insights and their far-reaching
implications for causes, mechanisms and preventive strate-
gies in childhood cancer and counseling of affected famil-
ies, the contribution of germline DNMs to the disease
burden in childhood cancer is almost completely unex-
plored and, thus, the risk of recurrence in future children of
the parents. Paying particular attention to DNMs using
family-based WES/WGS approaches is crucial to further
identifying cancer predisposition in children. In particular,
one could speculate that DNMs play a fundamental role in
the development of congenital and early-onset cancer in
children as well as in families without a cancer history. This
is underlined by recent epidemiological studies indicating
that older parental age is associated with pediatric cancer
risk in the offspring [49].

Post-zygotic de novo mutations and low-
level parental mosaicism

Post-zygotical appearance of DNMs can lead to embryonic
mosaicism. For genetic counselling, it is crucial to distin-
guish between post-zygotical DNMs and true heterozygous
mutations. As such, it has been proposed that DNMs with
an allelic ratio below 32.8% for WGS, 39.3% for amplicon-
based deep sequencing, and 33.9% for Sanger sequencing
might reflect mosaic mutations, as they significantly deviate
from the statistically expected ratio for true heterozygous
mutations [50]. However, these numbers are prone to inter-
laboratory variation. Acuna-Hidalgo et al. reported that an
important fraction of presumed germline DNMs indeed
occurred either post-zygotically or as a consequence of low-
level mosaicism in one of the parents. In addition, these data
suggest that each individual carries at least two to seven
DNMs of post-zygotic origin [50].

Table 2 Inherited versus de
novo mutation rates

Inherited mutations De novo mutations

Single-nucleotide variants (SNVs) in the genome
SNVs in the exome (coding SNVs)
Small insertion and deletions (INDELSs)

Copy number variations (CNVs)

Ratio of paternal allele versus maternal allele

Parental age effect at conception

~44x10°M 44-82 -2
22,186 @ 12®
~550,000 (V upto9 @

~276 12 0.0077-0.041 @
1:16:9 3.5-3.9:1 G 6D
No effect® Strong effect®
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Gonadal mosaicism contributes to the recurrence of
disorders in a seemingly de novo manner and, thus, trans-
mission of disease-causing mutations from an unaffected
parent [51]. A recent study indicates that gonadal mosai-
cism for disease-causing CNVs is not restricted to germ
cells, but can be carried as low-level mosaicism in the blood
of unaffected parents [52].

The clinical phenotype caused by DNMs is determined
by the proportion of affected cells and the type of tissues
involved, both of which critically depend on the time of the
occurrence of the mutation [50]. In developmental disorders,
post-zygotic DNMs are receiving more and more attention
as significant contributors to disease evolution [41].

Mutations appear from early embryogenesis throughout
adult life, leading to a high prevalence of mosaicism for SNVs;
however, to date, the range of such mosaicism remains unclear
[50]. Therefore, it is important to discriminate technical arti-
facts from biologically relevant allele imbalances, and to dif-
ferentiate between post-zygotic and germline DNMs [50].

In summary, some DNMs previously presumed to be
germline actually occur either post-zygotically in the child
or are inherited from low-level mosaicism in one of the
parents. This might have important clinical implications in
pediatric oncology. It could be hypothesized that in child-
hood cancer this proportion is at least as high as the reported
6.5% for DNMs, which underlines the importance of
identification. Pathogenic variants in CPGs in the mosaic
state influence the risk of recurrence in seemingly sporadic
cancers caused by DNMs, and, thus, accurate genetic
counseling of affected families.

Notably, Conrad et al. reported important differences in
the proportion of CpG mutations, the ratio of transitions and
transversions, the clonality of mutations, their occurrence at
sites under selective constraint, and the evidence for
transcription-coupled repair in germline, non-germline and
inherited DNMs [53].

Parental bias and age effects

Previous studies indicated that advanced parental age might
be associated with a higher incidence of children with
cancer [54]. A study from Sweden demonstrated a 25%
increased cancer risk of brain tumors in children with
fathers over the age of 30, compared to fathers, who were
younger than 25 years [55]. In general, childhood leukemia
has a risk of 1 in 25 000, whereas this rate increases due to
advanced paternal age up to 1 in 17 000 (reviewed in [56]).
However, a potential effect of the parental — particularly the
paternal - age on cancer incidence and type in children
needs to be further elucidated in more detail.

Moreover recent studies suggest that mutations in parti-
cular genes (e.g. FGFR2, FGFR3, HRAS, and PTPNII)
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confer growth advantages to spermatogonial cells, leading
to autosomal dominant disorders such as Apert syndrome
and achondroplasia [39, 57]. This is particularly interesting
because cell growth, differentiation, cycle, and cell senes-
cence are crucial to normal development, and are essentially
regulated by the Ras/mitogen activated protein kinase
(MAPK) pathway. Germline mutations in genes of the Ras/
MAPK pathway cause the so-called “RASopathies”,
developmental disorders which predispose to malignancies
including leukemia, central nervous system and extracranial
solid tumors (reviewed in [58]). In addition, germline and
somatic FGFRI mutations and MAPK-ERK pathway acti-
vation play a key event of many developmental disorders of
the brain such as the dysembryoplastic neuroepithelial
tumor. Therefore, germline analysis of FGFRI is recom-
mended in both familial cases and selected sporadic tumors
(e.g. multinodular growth) [59].

Types of aberrations
Single-nucleotide and copy number variants

By trio sequencing, Gilissen et al. demonstrated that de
novo SNVs and copy number variants (CNVs) in coding
regions are an important cause of severe ID in an exten-
sively pre-studied genetic cohort [60]. Recently, a mosaic
RAS pathway gene aberration, a large SOSI duplication,
was reported in a child with features of Noonan syndrome
and early-onset thabdomyosarcoma [61]. Additionally, an
approximately 5.8 Mbp 14q32.13q32.2 germline deletion of
the DICER1 locus was also lately reported in a child with
multiple DICER1 syndrome related tumors, including a
small lung cyst, a ciliary body medulloepithelioma, and a
pediatric cystic nephroma [62]. This likewise highlights the
need to further elucidate the role of germline de novo SNVs
and CNVs in childhood cancer.

In LFS, there is an unexplained individual disparity
between tumor patterns and ages among subjects and
families in which cancer onset accelerates with successive
generations [63]. It has been speculated that, in TP53 hap-
loinsufficiency, anticipation is caused by accumulation of
CNVs [63]. Although, in a WGS study of two generations of
LFS kindreds, Arrifin et al. could not demonstrate an asso-
ciation of de novo or total CNVs with the phenotype of LFS.
Instead, they proposed a model in which constitutive resis-
tance to tumorigenesis is attenuated by variants from non-
carrier parents in the child with late cancer onset [64]. This,
once more, strengthen our hypothesis that inherited mono-
allelic germline mutations in more than one CPG might
contribute to a substantial proportion of childhood cancers.

However, while WES provides a highly accurate way to
obtain SNVs, the high level of noise and biases in WES data
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Table 3 Benefits of trio

Sequencing of the index patient Trio sequencing

germline sequencing in children only

with cancer
Identification of well-known CPSs + +
SNVs, indels, SVs, CNVs + +
Inheritance information including
Homozygosity mapping Isodisomy +
Inference of compound heterozygosity — +
Inheritance anomalies — +
De novo mutations incl. age effects - +
Mosaicism +) +
Concomitant variants + +
Phenotypic variability, age-related penetrance and gender- - +
specific cancer risk
Phasing of variants — +
Treatment adaptation & surveillance + +
Risk evaluation of unaffected parents, surveillance & precision (—) +
prevention
Determination of the accurate risk to carry the variant for other — +
family members
Prenatal diagnostics n/a +

limit CNV detection with current detection tools for WES
data. Consequently, in selected families, array analysis
might additionally be used to obtain CNV information.

Synonymous mutations

Out of the 10,000 mutations in the TP53 gene that have
been reported in the International Agency for Research on
Cancer tumor database, about 4.1% are synonymous [65].
Over the last decade, silent mutations have been described
in more than 40 diseases (genes) (e.g. in familial adeno-
matous polyposis (APC), ataxia telangiectasia (ATM), neu-
rofibromatosis type 1 (NFI), and hereditary non-polyposis
colorectal cancer (MLHI)), and may also play a role in
tumorigenesis [66]. Additional studies indicated synon-
ymous mutations in genes like CFTR, TCOF1, WT1, EGFR,
IRGM, NTF3. These genes are directly associated with
several human diseases, including non-small-cell lung car-
cinoma and immune diseases [67].

Mutations in the untranslated region and in
regulatory elements

Genetic variations in the mRNA untranslated regions
(UTRs) might disrupt the motifs of the UTR, influence
cancer development and the malignant phenotype of cancer
cells [68]. Mutations in the UTR have been associated with
susceptibility to diseases such as breast cancer [69].
Telomerase reverse transcriptase (TERT) promoter
mutations lead to telomerase activation and cell-cycle pro-
gression. There is mounting evidence, that telomerase not
only plays a critical role in cellular senescence but likewise
in carcinogenesis. Recently, TERT mutations including hot
spot mutations in the regulatory region of the gene have

been described in various malignancies and have also been
linked to poor prognosis [70].

Uniparental disomy

Uniparental disomies (UPDs) have been reported to be
associated with imprinting disorders [71], recessive disease
[72], ID [73], and trisomy mosaicism [74], as well as being
a contributor to rare genetic diseases. For example, the
imprinting disorder Beckwith-Wiedemann syndrome can -
among other mechanisms - be caused by UPDI1 and is
related to an increased risk of cancer development in
childhood [75]. In addition, the development of certain
subtypes of nephroblastoma has been described as being
based on alterations at imprinted loci [76]. King et al.
implemented a method for detecting UPDs in trios [25].
However, whereas UPD can be captured by WES/WGS,
this is not the case for epimutations causing imprinting
disorders. Thus, epigenetic alterations contributing to spe-
cific phenotype-epigenotype/genotype correlations impli-
cating different recurrence risks additionally need to be
excluded by dedicated epigenetic technologies.

Disclosing a hereditary CPS by trio
sequencing

Identifying children with hereditary CPS by trio germline
sequencing has far-reaching consequences. (Table 3) For
example in CMMRD, the parents may — as still being young
- so far be asymptomatic carriers of the genetic alterations
and, thus, likewise be affected by Lynch syndrome. Dis-
closing the hereditary CPS in the parents may be clinically
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highly important by means of initiating early cancer sur-
veillance protocols on one hand [77]. On the other hand, it
may constitute an enormous life-long psychological dis-
tress, and could have a deep effect on quality of life and
family planning.

In contrast to testing the index patient only, trio
sequencing discloses inheritance patterns and, thus, might
put the psychological burden of inheritance to the trans-
mitting parent. In addition, testing for siblings at-risk has to
be discussed, balancing the pros and cons including disease
onset in childhood and the right to decide autonomously on
predictive testing.

Concluding remarks

This review underlines the power of and the need for
comprehensive parent-child NGS analyses of pediatric
cancer families. Such analyses have the potential to reveal a
striking new landscape of inheritance in childhood cancer
by identifying pathogenic heterozygous and homozygous
mutations, concomitant heterozygous mutations in the same
CPG pathway, de novo mutations, and parental mosaicism,
with important implications beyond only the affected child.
Consequently, we recommend to routinely integrate trio
germline sequencing into pediatric oncology by offering it
to each family with a child newly diagnosed with cancer.
However, trio sequencing will reveal numerous variants of
unknown significance for which thorough functional vali-
dation is mandatory but remains challenging.

Beyond that—based on a parent-child approach—future
research is required to elucidate the clinical implications of
non-Mendelian inheritance, the complex interactions
between genetic predisposition and environmental factors,
and the genetic and epigenetic interplay. This will give
important insights into the pathogenesis of cancer in
childhood and the complex genotype-to-phenotype asso-
ciation in most CPSs®.

In addition, by international efforts with large-scaled
studies, evidence-based clinical surveillance protocols with
the aim of early tumor detection and reduction of cancer and
treatment-related morbidity and mortality need to be
established. Moreover, future studies are needed to inves-
tigate the needs and preferences of affected families and the
psychological long-term impact of the burden of knowing.
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