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Deanery of Biomedical Science and Synthsys Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh,
United Kingdom

Protocols in the academic life science laboratory are heavily reliant on the manual
manipulation of tools, reagents and instruments by a host of research staff and
students. In contrast to industrial and clinical laboratory environments, the usage of
automation to augment or replace manual tasks is limited. Causes of this ‘automation
gap’ are unique to academic research, with rigid short-term funding structures, high
levels of protocol variability and a benevolent culture of investment in people over
equipment. Automation, however, can bestow multiple benefits through improvements
in reproducibility, researcher efficiency, clinical translation, and safety. Less immediately
obvious are the accompanying limitations, including obsolescence and an inhibitory
effect on the freedom to innovate. Growing the range of automation options suitable for
research laboratories will require more flexible, modular and cheaper designs. Academic
and commercial developers of automation will increasingly need to design with an
environmental awareness and an understanding that large high-tech robotic solutions
may not be appropriate for laboratories with constrained financial and spatial resources.
To fully exploit the potential of laboratory automation, future generations of scientists
will require both engineering and biology skills. Automation in the research laboratory
is likely to be an increasingly critical component of future research programs and will
continue the trend of combining engineering and science expertise together to answer
novel research questions.

Keywords: laboratory automation, life science research, automation design, research efficiency, reproducibility,
innovation inhibition, environmental design

INTRODUCTION

The progressive integration of automation into work environments has enhanced the production
rates, efficiency and quality of an enormous array of industrial processes (Hitomi, 1994; Autor,
2015). From generation to generation, mechanised tooling has replaced swathes of manual tasks.
More recent advances in robotics and information technology have further automated processes
that were once the sole domain of human brawn or brain (Hasegawa, 2009). Life science
research conducted within academic institutions has also welcomed the ingress of mechanised
equipment designed to automate a range of tasks. However, it is noticeable that a typical university
research laboratory, often led by a single principal investigator, maintains a high level of manual
manipulation in the form of undergraduate, postgraduate, post-doctoral and technical staff. Many
experimental procedures remain heavily reliant upon the individual researcher manually carrying
out protocols at the research bench.
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This is in contrast to industrial environments, where
widespread investment in automation has allowed companies to
maximise their outputs and increase profits (Ravazzi and Villa,
2009). Laboratories in a clinical setting have also experienced the
benefits of adopting automation (Hawker et al., 2018), increasing
the speed and reliability of patient-specific data for use by
clinicians (Sarkozi et al., 2003; Lou et al., 2016). In this review,
written from the perspective of an automation engineer now
working in synthetic biology research and a Principal Investigator
managing a research laboratory, we classify the current levels
of automation in laboratories and highlight the benefits and
limitations of its usage in research. We further attempt to
summarise why automation has had such a limited impact in
our workplace (Jessop-Fabre and Sonnenschein, 2019) and ask
whether the solution to including more automation into everyday
laboratory tasks may reside in greater communication between
scientists and engineers. Further, we suggest that it could be
accelerated by beginning with a more low-tech approach rather
than striving too soon for fully autonomous systems.

CURRENT LABORATORY AUTOMATION

Well-meaning predictions of the cybernetic laboratory
(Beugelsdijk, 1991) and a robotic revolution (Boyd, 2002)
have, at the time of writing, yet to materialise in the majority of
life science research laboratories. Evidence from the proportional
use of the terms ‘automation’ or ‘automated’ in the titles of
PubMed listed articles does, however, exhibit a steady increase
over the previous 4 decades. The terms ‘robot’ or ‘robotic’,
which are often used interchangeably with automation, received
negligible use until the mid 90’s and then showed a more
marked elevation (Figure 1). It should be noted however
that, ‘robot’ or ‘robotic’ can also be used as an adjective for
biological systems or medical devices and the increase in their
prevalence may represent changes in language usage rather than
an indication of greater automation usage. A more thorough
text mining exercise than ours attempted to measure the
extent of manual protocols that could potentially be automated
through analysis of methods sections in published life science
articles. The study concluded that 89% of articles featured a
manual protocol that has an automated alternative (Groth
and Cox, 2017). Whilst there is a scale of automation, from
the simple to the complex, that could be applied to these
protocols, such data provides evidence that there remains a large
potential for automation in most biology research laboratories.
There are also clear claims in the literature that researchers
working in academic institutions have been slow to embrace
automation (Sadowski et al., 2016; De Almeida and Ferreira,
2017; Jessop-Fabre and Sonnenschein, 2019).

In this review we focus on automation where it describes
equipment that physically manipulates items and we do not
consider solely software-based technologies, such as image
analysis and data mining tools. Within our scope there resides a
diverse range of equipment that is found in research laboratories,
from simple hand tools to entirely autonomous systems.
A classification system for laboratory automation equipment

has, to our knowledge, yet to be published, although a number
of equivalent methods have been developed for classifying
industrial automation. Frohm et al. (2008) reviewed these systems
before proposing their own 7 levels of automation. These levels
and descriptions are displayed in Table 1, alongside examples
typically seen in an academic research laboratory, and an
indicative cost.

It is noticeable from Table 1 that the majority of equipment
items that researchers would consider as the most expensive
in their laboratory are categorised at level 5. Higher grade 6
and 7 items are a rarity in a biological research laboratory.
Whilst mid-range level 5 automation items undoubtably increase
the efficiency of laboratory research, they are designed for
specific subtasks in a range of protocols. These items also
generally require a large amount of manual manipulation both
before and after machine usage. Within the research laboratory
this category of equipment is commonplace and dominates
equipment budgets. A further observation can be made in that
the majority of research equipment in this category performs
tasks that human operators would otherwise be incapable of
carrying out themselves (McClymont and Freemont, 2017). The
rotation of samples at high speeds and observing microscale
environments are examples of tasks that would be impossible
without the use of centrifugation and microscopy equipment.
Automation equipment which replaces manual handling tasks
is rarer, and it the prevalence of these items where academic
bioresearch facilities differ to industrial environments and
clinical laboratories.

Access to high level 7 automated equipment can usually only
be obtained through a pooled resource shared between across
the parent organisation or wider research community; these are
often referred to as biofoundries (Chambers et al., 2016; Chao
et al., 2017; Kitney et al., 2019). A new automation variant of
the commercial contract research organisation has also arisen
recently, the cloud lab. These provide researchers with remote
access to heavily automated protocols available as a pay-per-
experiment service (Hayden, 2014). Cloud lab executives have
made grand predictions regarding the impact these facilities will
have on the future of biological research (Miles and Lee, 2018;
Segal, 2019), although doubts remain regarding experimental
flexibility and the resulting inhibitory effect on experimental
innovation (Hayden, 2014).

BENEFITS OF LABORATORY
AUTOMATION

Reproducibility
There are multiple advantages and limitations in including
automation into scientific processes and these are summarised
in Figure 2. Most pertinent is its use in improving the
reproducibility of laboratory research (Kitney et al., 2019).
Reproducibility is a major concern for the research community
both now (Begley and Ioannidis, 2015; Baker, 2016) and
historically (reviewed by Fanelli, 2018), with associated economic
implications (Freedman et al., 2015) and an undermining
of public trust in science (Saltelli and Funtowicz, 2017).
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FIGURE 1 | Prevalence of terms ‘automation’ or ‘automated’ and ‘robot’ or ‘robotic’ within the titles of PubMed articles per year over the period 1970–2019.

TABLE 1 | Automation levels (Frohm et al., 2008) with example laboratory automation equipment and an indicative cost range.

Automation
level

Description Biology research lab
example

Indicative cost

1 Totally manual – Totally manual work, no tools are used, only the users own muscle power. E.g.,
the users own muscle power

Glass washing £0

2 Static hand tool – Manual work with support of static tool. E.g., screwdriver Dissection scalpel £10 – 30

3 Flexible hand tool – Manual work with support of flexible tool. E.g., adjustable spanner Pipette £100 – 200

4 Automated hand tool – Manual work with support of automated tool. E.g., hydraulic bolt driver Stripette and handheld
dispenser.

£200 – 300

5 Static machine/workstation – Automatic work by machine that is designed for a specific task.
E.g., lathe

Centrifuge, PCR thermal
cycler, spectrophotometer,
gel documentation system

£500 – 60000

6 Flexible machine/workstation – Automatic work by machine that can be reconfigured for
different tasks. E.g., CNC-machine

Motorised stage
microscope

£70000 – 120000

7 Totally automatic – Totally automatic work, the machine solve all deviations or problems that
occur by itself. E.g., autonomous systems

Automated cell culture
system, bespoke laboratory
equipment e.g., Labman
formulation engine.

£100,000 – 1,000,000

Debate continues regarding the definition and scope of the
reproducibility issue (Casadevall and Fang, 2010; Goodman
et al., 2018), alongside proposed improvements in scientific
practices (Peng, 2015; Munafò et al., 2017) and remedial
technologies (Benchoufi and Ravaud, 2017). Increasing the use
of automation throughout research laboratories is one such
proposition (Jessop-Fabre and Sonnenschein, 2019; Kitney et al.,
2019). An improvement in reproducibility is cited as a beneficial
effect of automation implementation within clinical laboratories
(Hawker et al., 2018; Genzen et al., 2018).

Automation can assist in improving reproducibility in three
ways: a reduction in human-induced variability, an increase in
the rate of data generation, and a decrease in contamination.
The contribution each of these factors has on increasing
reproducibility depends on the individual protocol. Firstly,
experimental variability caused by humans is an omnipresent
day-to-day reality in research laboratories (Plebani, 2010; Price
et al., 2015). Variation in protocols can arise from the same
person unknowingly performing a task differently each time or
between different individuals attempting to carry out the same
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FIGURE 2 | Benefits and limitations of research laboratory automation.

procedure. Variability that is noticed at the time can be corrected
for with repeated protocols or experimental redesign, although
with an associated time penalty. However, variation that goes
unnoticed will manifest itself in final datasets and published
results. Automation can replace many, but not all, of these
human-based sources of variability. Mechanised componentry
is more suited to repetitive tasks (Moutsatsou et al., 2019)
in comparison to humans who are vulnerable to progressive
mental fatigue (Xu et al., 2018), physical weariness (Björklund
et al., 2000; Iridiastadi and Nussbaum, 2006) and also distracting
influences (Varao-Sousa et al., 2018). Laboratory protocols
where manual operations have been automated demonstrate
greater consistency in their results, improving experimental
reproducibility (Klevebring et al., 2009; Price et al., 2015).
Secondly, a greater rate of experimental data capture, with an
increased volume of results, can be achieved with automation
alongside a wider range of experimental variables tested,
including controls. Ultimately this increases the likelihood that
others will be able to reproduce and build on their findings
(Maleki et al., 2019). Finally, there are those laboratory protocols
that are susceptible to contamination that can arise from

either from the researchers themselves (Salter et al., 2014)
or through increased exposure to environmental contaminants
due to ponderous manual handling operations (Greub et al.,
2016). Automation can remove contact with human operators
(Wilke et al., 1995) or reduce potential contaminant exposure by
lowering the required number of manual handling steps (Mifflin
et al., 2000; Moutsatsou et al., 2019).

Laboratory Efficiency
Efficiency is considered of paramount importance within
manufacturing and can be defined as the rate of production,
divided by the resources such as labour, input materials needed
to accomplish this rate. By investing in automation, a company
can increase the rate of production and also reduce the resources
needed to achieve this rate. With a market available this can
translate to a corresponding increase in profits (Ceroni, 2009).
A research laboratory investing in automation can improve
the efficiency of its researchers (Hawker and Schlank, 2000;
Schneider, 2018) with machinery able to achieve a greater
rate of experimental output than a manual based alternative
(Tacker et al., 2014; Price et al., 2015; Choi et al., 2018). It
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should be noted that an automated protocol need not take
less time from start-to-finish to result in higher output than
the manual alternative, as long as it demands less human
intervention (Reed et al., 2018). This is due the to the reward
for academia differing from industry, with efficiency considered
more as a time input to experimental output ratio. The key
benefit derived from laboratory automation driven processes is
therefore in the time saved by the researchers; time that can
be spent on other parallel experiments. Automation in most
cases will induce a transition from manual to cognitive labour
(Kaber et al., 2009). Allowing an operator to set a protocol in
operation and walk away to think and focus on other tasks is
a valuable function for any automation equipment. Researchers
frequently have multiple projects, and experimental protocols
operating in parallel as well as an array of responsibilities
beyond the laboratory. With a greater rate of automation-
driven experimental output researchers can also identify which
aspects of their experiments don’t work and adjust more
quickly (Baranczak et al., 2017). Within industrial pharmaceutical
development this methodology is known as fail fast, fail often
(Clark and Pickett, 2000; Khanna et al., 2016; Besteman and
Bont, 2019). Efficiency gains can also extend to the use of
expensive reagents and materials. Automation can provide a
higher level of precision in reagent dispensing, reducing the
amount needed per experiment.

Faster Translation
Automation has an important role in those laboratories
engaged in applied research who are seeking to develop
novel therapeutic interventions such as cell-based therapies,
pharmaceutical developments or tissue-engineered constructs for
implantation. Transition of these technologies from a purely
research domain to final usage in a clinical setting is frequently
difficult (Ochs et al., 2017; Hua et al., 2018), often referred
to as translation from the bench to the bedside (Goldblatt
and Lee, 2010). By considering and including automation at
an early stage in the research process, crucial elements of
the process can be mechanised, increasing product quality
and production rates in the laboratory before the jump
to manufacturing. The technological leap from laboratory-
scale production to higher-volume manufacturing is therefore
shortened. Researchers who include automation technologies
at an early stage are subsequently better placed to upscale
their processes allowing faster commercialisation rates and
deployment to the clinic (Kotin, 2011; Heathman et al., 2015;
Rafiq and Thomas, 2016).

Safety
A number of protocols carried out in the research laboratory
require the handling of dangerous reagents and occasionally of
hazardous tooling. The manual manipulation of hazardous items
places a burden on laboratories, particularly when contending
with a continual turnover of short-term contract staff and
students who require safety training and supervision. By
assigning dangerous handling tasks to automated machinery, the
exposure of humans to hazardous substances can be reduced
(Movsisyan et al., 2016; Caragher et al., 2017).

Examples of Automation Benefits
Evidence of automation benefits can be observed in recent success
stories. In projects where high-throughput, reproducible results
are demanded over short time frames automation has significant
advantages over manual procedures. Recently a highly automated
biofoundary, normally with a focus on research applications,
was repurposed towards the development of SARS-CoV-2 assays
for clinical diagnostics (Crone et al., 2020). Automated liquid
handling equipment was able to perform an extensive array
of experimental procedures at a rate in excess of those that a
manual based laboratory could carry out. Furthermore, in these
time-pressured experiments, automation has an advantage over
manual operators who are prone to fatigue and errors, with an
associated negative effect on accuracy and reproducibility. Such
work also clearly demonstrates the positive impact automation
can have on public health challenges. It also an example of
considerate design leading to systems that are flexible enough to
be rapidly adapted to meet new experimental needs. This design
feature is appropriately termed ‘facility agility.’

The use of automation to improve research efficiency
is also demonstrated with a system comprising a mobile
robotic platform that can autonomously navigate a laboratory
performing reagent-dispensing and handling operations at a
range of experimental benchtop stations (Burger et al., 2020).
In combination with an artificial intelligence search algorithm,
the system was able to use initial data to decide on reagent
combinations most likely to include an optimal reaction mix.
The capacity of the robotic equipment to operate at all hours,
with pausing only to charge batteries, allowed it to test five
experimental hypotheses in a fraction of the time a manual
research team would have required. Although it was used to
answer a research question within a chemistry context the
concept would be readily applicable to life science experimental
laboratories. The system shares similar liquid and solid reagent
handling operations to a life science laboratory as well as
the common challenge of there being too many variables for
researchers to explore manually in a reasonable time. A further
crucial advantage of this arrangement resides in the possibility,
with appropriate safety controls, of operating as a hybrid
manual-automated laboratory. A staffed day shift performing
high-skilled tasks requiring on-the-spot decisions could be
followed by a robotic night shift carrying out the repetitive
aspects of procedures.

Researchers aiming to translate stem cell-derived therapies
towards clinical applications have considered automation for
a range of projects. Such therapies will ultimately require the
expansion of stem cells on a scale that is uneconomical for
manual based laboratories, with large numbers also needed
for research and clinical trials phases. The need for reliable
methods of high-volume, quality-assured cells has led to the
development of automated systems such as the StemCellFactory
(Doulgkeroglou et al., 2020), StemCellDiscovery (Jung et al.,
2018) and AUTOSTEM (Ochs et al., 2017). The objective of these
systems is to automate the normally manual stages of stem cell
seeding, growth, colony selection, passaging, quality assessment,
harvesting and potentially in later applications differentiation.
In a similar fashion to the previous mobile robotic platform
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example, complex control algorithms are also being applied to
these systems with the aim of improving cell yields and quality
(Egri et al., 2020). These projects are an important link between
the domains of basic life science research, clinical application,
and commercial cell product manufacturing. By developing these
systems researchers have been able to generate high quantities
of cells for research and testing purposes, hastening the route
to clinical usage.

LIMITATIONS OF AUTOMATION

Incorrect Application
Despite the range of benefits that laboratory automation can
bring, there remains a number of limitations. Integrating
automation into a research laboratory is not in itself a guarantee
of success and, where applied incorrectly can even result in even
less efficiency (Zielinski et al., 2014). The nature of automated
tasks also allows for rapid propagation of errors. An example
would be a machine incorrectly dispensing a reagent repetitively
which can then, if undetected, be distributed across many
thousands of samples. In addition, the incorrect application and
operation of automation may not improve the reproducibility of
research between laboratories. Automation machinery carrying
out the same experimental protocol in different laboratories
may still produce different results. This can be due to
variations in input materials, different equipment models or
set-up and calibration errors. Even where automation has been
carefully integrated into a laboratory and has demonstrated an
improvement in reproducibility an inherent machine to machine
variability can remain. What is more, this variability can be more
hidden than more easily observed manual procedures. Careful
maintenance, calibration and quality control measures are
therefore essential in implementing any laboratory automation
system (Hawker and Schlank, 2000; Xie et al., 2004).

Obsolescence
Obsolescence is an inevitability for any technology and even,
it can be argued, for scientists themselves. Many facilities will
feature a dusty machine in the corner that is unused, because
components and materials are no-longer available, the protocol
itself has been supplanted or simply newer more effective
equipment has taken over (Croxatto et al., 2016). Predicting
how and when a machine will become obsolete is an inherently
difficult task in rapidly evolving research fields and can be specific
to individual laboratories. Some researchers will find equipment
is no-longer useful after a few years of operation whilst others
may continue to happily use the same machine for decades.
It is not only advances in hardware and software design that
can render laboratory equipment obsolete. Scientific progress
in reagent properties and resulting modifications to protocols
can also be responsible. The advent of new thermostable
polymerases obsoleted a whole generation of Polymerase Chain
Reaction machinery designed upon a more repetitive protocol
(Hawker et al., 2018). Despite these difficulties, with considerate
design allowing for reconfiguration and modification premature
obsolescence can be delayed (Harrison et al., 2007; Crombie

et al., 2017), referred to in some industries as future-proofing.
Understanding and planning for obsolescence is therefore an
important part of any automation strategy.

Innovation Inhibition
There is a danger that automation can inhibit creativity in the
experimental design process by limiting the opportunities for
changing or tinkering with a protocol. A researcher may be less
inclined to alter a protocol to optimise it for a new situation
where a large number of steps are automated. This can be based
upon the assumption that process steps carried out by machinery
are already optimised and require no further improvement. They
may also feel less able to begin changing things because they
lack the confidence or maybe even the authorisation to open
the box and begin modifying what is probably an expensive
machine. Sharing of the machine with other users for whose
purposes it is already optimised is also a brake to experimentation
with parameters. Innovation inhibition is also a concern where
protocols are outsourced to third party automated laboratories
(Hayden, 2014).

Workforce Impact
When integrating new automation into any workplace
environment, the impact on workers and how they view
new machinery must be carefully considered. Beginning in
the rural English midlands with the machine breaking Luddite
movement (Roberts, 2017), societal resistance to automated
machinery replacing manual labour and the threat it poses
to livelihoods understandably continues into the present day
(Jones, 2013; Autor, 2015). Both positive and negative reactions
to the introduction of automation have been observed amongst
long-term workers in clinical laboratory settings (Thomson
and McElvania, 2019) and it is reasonable to anticipate that
similar reactions may arise in research laboratories. The outright
replacement of researchers by automation is unlikely as they
are currently categorised as being amongst the lowest risk of
being replaced (White et al., 2019), due to their breadth of
skills, including planning and creativity (Reeves et al., 2019).
However, researchers solely employed to perform repetitive
manual tasks are more at risk and thus more likely to view
automation as a threat. Those researchers with a multitude of
other protocols and tasks beyond the laboratory are more likely
to view automation assistance in their day to day roles in a
positive manner. The short-term contracts that predominate in
research will also lessen any hostility to automation. Employees
who understand that they will be moving on to another position,
will see a machine as more likely to be a replacement for their
replacement rather than a replacement for themselves. Although
the levels of militancy advocated by the early Luddites may not
be repeated, laboratory managers who introduce automation will
still, like their industrial and clinical counterparts, need to be
sensitive to workforce reactions, particularly the impact on any
long-term employees.

Automation Hyperbole
Both vendors of automation equipment and researchers must
also be wary of overstating the benefits of automation and
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elevating expectations regarding the impact its introduction
will have on future work practices. Automation hyperbole
and the accompanying benefits is however part of a wider
trend that is not only restricted to research (Wajcman, 2017).
Whilst automation can improve protocol reproducibility and
efficiency the individual researcher will, in the majority of
cases, still be responsible for correctly operating the equipment,
with maintenance, quality of input materials, and calibration.
These are tasks than can require a high level of personal
discipline and tenacity. With notable exceptions (King et al.,
2009; Williams et al., 2015), automation will also be unable
to undertake the overall experimental design and analysis.
Journal publications have a responsibility too, to ensure
that articles advocating laboratory automation equipment also
highlight the limitations of their technologies, as well as
identifying author conflicts of interests (Miles and Lee, 2018).
Greater awareness of limitations will allow more effective
matching of automation solutions with laboratory problems
and increase the trust between commercial vendors and
academic institutions.

LABORATORY AUTOMATION
OBSTACLES

Automation Is Expensive and Difficult to
Justify
The most significant hurdle for PIs wishing to integrate
automation systems into their laboratories is, unsurprisingly,
cost. Commercially available automation equipment is expensive,
whilst bespoke equipment for individual protocols costlier still.
Cell culture is an example of a common, labor-intensive protocol
familiar to generations of researchers. Equipment to automate
cell culture is available and can save many hours of researcher
effort from the process, but is tantalisingly out of reach for most
laboratories. The cost of these items can be in excess of $1 M for a
complete process system (Storrs, 2013) placing them far beyond
the reach of the majority of academic laboratories. Despite being
commercially available for over 18 years (Kempner and Felder,
2002) they remain a rare sight in research environments but are
used in high volume cell-banking organisations (Wrigley et al.,
2014; Archibald et al., 2016; Daniszewski et al., 2018).

The development of automation equipment can be a time-
consuming and expensive process. Initial rounds of iterative
conceptual and prototype design and testing are followed by
final design, build, and commissioning phases. Coordination
is needed from a variety of disciplines including mechanical,
electrical and software engineers alongside close collaboration
with the end user. Most important for all automation projects
however, is a source of capital investment. Industrial investment
in automation is matched to business cases in which increasing
confidence in the product and the associated income from
projected sales is used to justify upfront capital expenditure.
However, an academic principal investigator seeking to invest
in automation for their laboratory is confronted by a different
set of challenges. When compared to industrial and commercial

organisations, a research laboratory’s output or success rate
cannot be measured in using the same readily quantifiable metric
of profit. Indeed, academic research output has long been a
difficult entity to define both for individual researchers (Klaus
and del Alamo, 2018) and laboratories (Kreiman and Maunsell,
2011; Abramo and D’Angelo, 2014). It is therefore more difficult
to construct a ‘business’ case when seeking funding for laboratory
automation equipment. A factory manager is able to justify a
new item of automation based upon the argument that whilst
it may initially cost X units of currency it will increase profits
by X + Y units, measured in the same currency (Ceroni, 2009).
A clinical laboratory manager can present a similar case based
upon both cost (Archetti et al., 2017; Sarkozi et al., 2003) and the
quantifiable output of turnaround time (Hawkins, 2007; Archetti
et al., 2017). A research laboratory manager however, in the
same position applying for funding, will have greater difficulty in
arguing that although the proposed equipment will cost X units
of currency it will increase their laboratory’s research output by
Y vaguely defined research outputs. The ambiguity of research
success hinders laboratories seeking to invest in automation.

Research Funding Structures
The allocation of scientific funding to academic institutions
further limits investment in automation. Research programs
are most frequently funded through externally sourced grants
that are applied for in a competitive environment, with pre-
applied constraints on the amounts available and where these
funds may be spent. Understandably the majority of funding
calls open to scientific laboratories are seeking answers to
novel scientific questions and not looking to develop items of
equipment that are essentially engineering challenges. Should an
applicant wish to include standard or bespoke automation when
applying for grants, capital expenditure on large equipment,
if even permitted, must be explicitly accounted for before the
project starts. Unfortunately, the nature of research means
that the details of protocols needed for the project are not
always available during the early proposal phase. Estimating the
both the timescales and cost of automation at such an early
stage is a difficult task for supervisors of biological research
laboratories who will have limited experience of budgeting for
automation hardware. The time duration of funding grants
also limits the development of automation, usually with the
maximum being 5 years (European Commission, 2016; Vaesen
and Katzav, 2017). Automation strategies for industry are
generally greater in duration and aligned to the anticipated
lifecycle of the product, frequently extending into decades. In
the case of commercialising a novel pharmaceutical product
or medical device the automation strategy can be aligned to
the 20-year exclusivity patent window. Automation expertise
acquired over this time can then be exploited to maintain
a competitive advantage when the window expires. Academic
projects of a comparable length are rare. The Human Genome
Project is one exception, and consequently was able to invest
and substantially benefit from automation (Meldrum, 2000).
However, long-term, project specific funding stability is rarely
available to most academic principal investigators, limiting
automation investment.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 November 2020 | Volume 8 | Article 571777

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-571777 November 11, 2020 Time: 12:37 # 8

Holland and Davies Automation in Life Science Research

Short-term research funding also places a limit on the
individual researcher’s ability to develop automation. Hands-
on researchers are best placed to determine which elements
of their protocols would benefit from automation. However,
these individuals are typically Ph.D. students or early career
researchers with a time-limited contract or project. Such
temporal limitation leaves little room for developing an idea
for protocol automation into a functional system, particularly
with specific scientific targets attached to the grant scheme
funding their project. Short duration research positions reduce
not only the time available to develop novel automated
laboratory equipment but also the motivation for doing so. On
completion, a researcher is likely to move on to a new laboratory
contract or a career beyond academia (van der Weijden et al.,
2016). Researchers are therefore unlikely to experience any
of the long-term benefits from planning automation. The
cumulative effect of short-term, competitive grant allocations
and transient researchers creates an environment unsuited
to the long-term financial investment required for laboratory
automation development.

A limited number of large grant funded projects have been
successful in devising automation strategies and equipment,
although often with a focus on industrial scale systems for
clinical translation rather than research laboratories. One area
that seen recent attention is the aforementioned development
of high-volume manufacturing solutions for the production
of Mesenchymal and Induced Pluripotent Stem Cells to
meet anticipated future clinical demand (Marx et al., 2013;
Panchalingam et al., 2015; Rafiq et al., 2016; Ochs et al., 2017;
Jossen et al., 2018). It is hoped that technology developed in these
programs will, in the future, trickle down into more affordable
systems that can be exploited by smaller research laboratories.

Stifled Commercial Development of New
Laboratory Automation
Financial challenges also hinder those commercial organisations
seeking to develop laboratory automation equipment.
Industrial automation design and development is often a
bespoke, collaborative arrangement for a particular challenge.
A manufacturer will approach one or more automation
developers to design a manufacturing system for their product.
In this scenario the manufacturer is usually a much larger
organisation with abundant reserves of capital and will also
carry the majority of the risk should the product not sell as
well as expected. To aid in mitigating this risk they are able to
utilise their marketing, sales and distribution expertise within
their particular market sector. For development of automated
laboratory equipment, the scenario is often different. An
automation developer may wish to partner with an academic
research laboratory. However, as previously detailed, in such
an arrangement the laboratory will be unable to operate as a
cash-rich development partner unless a substantial funding grant
can be obtained. The automation developer must therefore carry
the risk that the equipment will not be commercially successful
and assume the role of marketing and selling the product to
the wider research community. Biological laboratories are best

placed to identify where certain processes would benefit from
automation, but don’t have the financial resources or expertise to
develop these systems themselves. Automation companies, whilst
having the capable expertise to develop automation equipment
will be reluctant to pursue such a business strategy requiring
up-front investment to develop a product for customers widely
acknowledged to have little disposable capital.

Small-to medium-sized automation companies have often
been most successful at innovative development of laboratory
equipment, funded through grant schemes in cooperation
with an academic institution or external venture capital
funding. Examples include benchtop pipetting systems from
Andrew Alliance and OpenTrons and Labman automation’s
formulation engine. Access to joint research grants and
funding schemes can encourage the development of novel
automation solutions by increasing industrial and academic
collaboration whilst also reducing the risk the commercial risk
that developers are exposed to.

Laboratory Space
Alongside the financial investment required for automation
researchers must also find physical laboratory space for new
equipment, incurring a footprint cost (Wong et al., 2018;
Moutsatsou et al., 2019). The size and mass of many automation
items means that it is not always practical or safe to tidy the
item away and store it when it is not required. Laboratory
space is often at a premium in many research institutions
with territorial researchers often coming into conflict over
the allocation of it (Adams, 2004). A bench occupied by
equipment is also an area that could be otherwise be utilised by
productive researchers. The requirement for some laboratories
to operate as a dual research and teaching environment
further constrains the available space. It may also not be
possible for automation to totally replace more manual based
equipment and space in laboratories, with room required for
both. The need to maintain cell culture hoods for teaching
is one example. Developers of laboratory of automation have
attempted to minimise the footprint of their machinery through
innovative reworkings of traditional laboratory procedures. The
use of hollow fibre arrays (Russell et al., 2018) and multi-
axis liquid and labware manipulation (Kato et al., 2010) are
examples of compact automated adherent cell culture systems.
Spatial constraints may push future bench-based laboratory
automation towards an architectural style resembling inner
city skyscrapers.

Protocol Variation and Usage
The very nature of bioresearch involves the design and
implementation of protocols aimed at the determining answers to
novel research questions. In pursuit of these targets, researchers
will devise new protocols or substantially modify existing ones
to suit their needs. Recurring cycles of method generation
and evolution within the research laboratory create a high-
level of protocol variation that is not always easily automated.
Matching commercially available automation equipment to
these requirements is often not a feasible option with fixed
componentry and locked-in software frequently being the
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limiting factors. Automated cell culture is an example where the
available systems can be insufficiently flexible to accommodate
the specific cell culture requirements of an individual laboratory
(Crombie et al., 2017), with some requiring a broad range
of cell culture types and others having more focussed needs.
A high level of experimental process variation is therefore
more likely to require a bespoke automation system, the
development of which will have an associated time and
financial cost. Clinical laboratories, by comparison, have a
greater level of consistency across protocols both within
individual laboratories and across institutions, contributing to
the widespread implementation of automated systems. High
process variability is also cited as one of the major challenges
for integrating automation into existing industrial environments
(Frohm et al., 2006) and is necessary when adapting to
changing market conditions (Froschauer et al., 2008). Across
laboratory protocols there are process steps that are common,
and it these where commercially available systems are more
likely to be of assistance to the individual researcher. Liquid
handling, through the manipulation of pipettes and receptacles
is a one example ubiquitous to a range of molecular biology
protocols, with a growing number of competing vendors
offering more affordable and adaptable automation options
(Barthels et al., 2020).

How frequently a protocol is likely to be used over time
is also a key factor when considering automation. A protocol
developed for a specific project may only be used in a single
laboratory for a short period, negating the long-term benefits that
automation could provide. On occasion a researcher may find
that their new protocol becomes widely adopted for an extended
period in their own laboratory, and possibly throughout other
laboratories too. In this scenario automation becomes a more
attractive option and is not always driven by the original founding
laboratory. Sequencing, is one example where the initial manual
protocol developed by Sanger and colleagues (Sanger et al., 1977)
was eventually automated by researchers at different institutions
(García-Sancho, 2007).

Labware and Consumables
Automation equipment operates most effectively when input
materials or consumables are standardised. In the case of
standard shaped labware this allows non-adaptive, rigid
automation components such as grippers to gain full custody
of the device, allowing greater accuracy of placement and
potentially faster actuations. Currently there remains a large
amount of variation in labware not only between research
laboratories but also within the same laboratory. The variant
a researcher uses can change frequently based upon cost,
availability or personal preference. Disposable plastics are an
example where different manufacturers produce products that
are, from an experimental, viewpoint functionally identical but
with variations in the products dimensions and materials. The
justification for these variants maybe a small improvement in
handling, or simply to circumvent intellectual property assigned
to a competing product. These present a significant challenge
to automated handling equipment where even small variations,
that are unnoticeable when handled manually, can render an

automated system using non-adaptive handling elements useless.
Clinical laboratories negate this issue by utilising standardised
plastics for sample collections that can then be more readily
processed autonomously. The recent advent of soft robotics
may provide solutions to these challenges where rigid handling
systems are replaced with pliable, adaptive designs sometimes
based upon biomimetic examples (Noel and Hu, 2018).

A counterstrategy to labware variation has emerged from
commercial developers of automation. Unfortunately, the
solution is often combined with a sales strategy aimed at
securing a continuous revenue stream following the sale of the
initial capital equipment. Commercially available systems are
frequently designed in a fashion such that automation systems
can only operate with specific consumables, available for purchase
from themselves or a licensed distributor (Huggett et al., 2009;
Moutsatsou et al., 2019). Examples include the pipette tips for
the Opentrons and Tecan EVO liquid dispensing systems, array
tape for Douglas Scientific’s IntelliQube PCR system, purification
cards for Invitrogens benchpro and spin kits for Qiagens Qiacube
system. A laboratory binding themselves to a single consumable
supplier has little or no guarantee of future price stability or
even long-term supply should the commercial vendor cease to
exist. Committing to a long-term, single vendor, supply chain is
considered a very unwise strategy in a commercial context but
is a worryingly frequent arrangement for automation equipment
available to research laboratories.

There are two competing forces for labware standardisation;
top-down and bottom up pressure, outlined in Figure 3.
Top-down pressure, as described above, is where commercial
automation organisations seek to dominate a section of the
market by forcing users to purchase specific labware through
the sale of inflexible hardware. Bottom-up pressure acts in
the opposite direction, when manufacturers of labware and
laboratories slowly gravitate towards one standard form that
automation developers are then forced to adopt. An example
where bottom-up pressure has succeeded is in the largely
standardised external dimensions of well plates, the ANSI/SLAS
standard (Society for Laboratory Automation and Screening,
2011), that has enabled automation of microscopy and plate
reading procedures (McClymont and Freemont, 2017). The
range of automation equipment available for standard well
plates is correspondingly larger, increasing competition, reducing
running costs and making automation more affordable. There is
likely to be a reciprocal benefit for labware manufacturers too,
with an associated increase in demand for consumables. More
instances of labware standardisation would allow a wider range
of protocols to be automated.

Environment Impact
The environmental impact that an item of equipment can have
throughout its entire lifespan, from manufacture, to usage, to
end-of-life disposal and recycling is an important consideration
for many research institutions. A particular concern for
laboratories is the rate at which automation consumes disposable
plastics. Research institutions produce a large amount of plastic
waste, estimated at 5.5 million tonnes annually (Urbina et al.,
2015), primarily to avoid contamination between samples.
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FIGURE 3 | Top-down and bottom-up consumable adoption pressures. Top-down pressure occurs when an automation developer imposes a consumable on
laboratories through tooling specific design. Bottom-up pressure acts in the reverse direction with laboratories and automation suppliers coalescing behind one
consumable variant that then determines the design of automation equipment.

Commitments to minimising their use are part of a growing
trend where laboratories aim to switch to recyclable or reusable
alternatives (Bistulfi, 2013; Krause et al., 2020). Automation
designed around the same single-use plastic principle can
generate even greater volumes of waste than human operators,
due to higher experimental throughputs (Howes, 2019). These
designs are incompatible with research organisations who are
committed to minimising their environmental impact. The
consideration given to environmental concerns is currently very
low or non-existent in many commercially available laboratory
automation systems. An exception is Grenova’s pipette washing
systems (Safavi and Anderson, 2019) that can be integrated
into existing automated liquid dispensing units. It is hoped
that this type of equipment represents an emerging category of
environmentally focused automation that will become ever more
important to laboratories in the future.

Culture
There exists a fundamental culture difference between an
academic research laboratory and the industrial workplace
environment, that can inhibit investment in automation. It is
hoped that the majority of principal investigators view their
laboratory as a platform for staff and students to increase
their skills and experience before they move onwards in their
careers. This is a crucial ‘people’ output that accompanies the
research output of a laboratory usually measured in scientific
discoveries and publications. Although many companies also
place a high-value on workforce upskilling their focus is primarily
on profit and not on being a training institution to allow
employee progression elsewhere. Consequently, many will favour
investment in equipment over staff if a business case can be made
(Rampell, 2011). An academic principal investigator however, is
likely to preferentially invest in additional people rather than
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equipment, with funding schemes frequently weighted this way
too. Money spent on a large item of automation equipment could,
for example, pay for several post-doctoral researchers or fund
multiple Ph.D. projects. In the context of automation this culture
could be described as a form of benevolent Luddism.

The availability and culture of undergraduate labour may
also be inhibiting investment in laboratory automation.
Undergraduates working in laboratories contribute by
performing experiments that can generate preliminary data
for grant applications or for publications. The benefits to the
student reside in the acquisition of experience and skills that
can enhance their employability prospects upon completion of
their studies (Seeling and Choudhary, 2016). This reciprocal
arrangement and the high availability of undergraduates provides
a means for carrying out labour intensive laboratory tasks. Not all
principal investigators will view this relationship in such a cold
manner, and will considerately assign duties that can generate
useful data whilst simultaneously teaching students both the
basics and realities of research. Unfortunately, there is evidence
that some less altruistic supervisors do assign undergraduates
to tasks that require a high degree of repetition (Hayward et al.,
2017). These are likely to be precisely the type of tasks where
automation can be effectively applied.

THE LABORATORY AUTOMATION
INTERIM TECHNOLOGY GAP

It is interesting to compare the relatively recent development
of manual labour-saving laboratory automation equipment with
other older, more mature automation processes. Here we
refer to equipment that replaces manual human manipulation
rather than machinery that performs operations operators are
physically incapable of executing, such as centrifuging. Taking
the millennia-old example of sewing, with just a needle, thread
and cloth it is possible, given time, for a skilled human operator
to create a garment. Equally the same items can be completely
mechanised with expensive, high-level automation equipment
and the garment produced with no human input necessary
beyond the need to turn the machine on. Comparing with
the laboratory process of cell culture which requires, media,
pipettes, labware and some starting cells a skilled operator can
also, given time, passage cells and create a sub-culture for
experimentation. Again, the same output can also be produced
using an entirely automated, costly, high-level system, with
minimal operator input. However, in the case of needlework
there exists a range of lower cost interim labour-saving
automation options between these two extremes, such as motor
driven stitching machinery, or manually powered mechanisms,
exemplified in the Singer sewing machine (McLoughlin and
Mitchell, 2013). This is not currently the case for cell culture,
there are no examples of commercially available low-cost
machinery (Figure 4).

Interim automation can arise in several scenarios. More
commonly it occurs incrementally over time, as technological
advances permit a shift from simple to complex machinery.
Alternatively, on occasion a high-end complex automation

system may be simplified due to new demands, such as an
economic demand for cheaper equipment. For many laboratory
automation processes there has been a rapid leap from simple
to complex with, as yet, little or no development of lower cost
automation technology. We believe this is due in part to the
reasonable desire for academic laboratories and companies to be
seen to be developing equipment at the forefront of technology.
In simple terms, low-cost interim automation that removes some
but not all of the manual labour from a protocol is not fashionable
enough. It is unlikely to lead to a prestigious journal publication
and, for commercial organisations, will not lead to financial
rewards, with likely low sales volumes and low profit margins.
There are therefore few incentives for academic and commercial
automation developers to design such equipment.

IN-HOUSE LABORATORY AUTOMATION

Despite the hurdles facing researchers wishing to automate
elements of their experimental procedures, there are many
examples where laboratory automation development is carried
out ‘in-house,’ without the assistance of a commercial partner or
a large automation dedicated funding grant. Research teams are
recognising that their protocols could be made more efficient by
including automation but find themselves restricted financially
and functionally by commercially available options (Pilizota and
Yang, 2018). A range of ingenious methods have been developed
to build low-cost automation solutions, including the integration
of Lego into microscopy automation (Almada et al., 2019),
microfluidics for DNA assembly (Shih et al., 2015) and rapid
synthesis and testing of small molecule libraries (Baranczak et al.,
2017). Laboratories with novel protocols that are nearly but not
quite suited to existing automation equipment have been able
to successfully upgrade commercially available systems for their
specific needs (McGraw et al., 2014; Richter et al., 2015; Zhang
et al., 2016; Crombie et al., 2017; Konczal and Gray, 2017).
Repurposing existing equipment in this fashion either through
software or hardware modification is a cost-and time-efficient
method of obtaining higher levels of protocol automation
without the arduous task of designing and building an entirely
novel system. The number of automation development tools,
components and virtual training options available to research
laboratories continues to broaden, increasing their capability
to develop low-cost solutions to labour intensive processes.
The advent of affordable 3D printing modalities (Jones et al.,
2011; Zluhan et al., 2016; Capel et al., 2018), off the shelf
actuators and readily programable microcontrollers (Mabbott,
2014; Kim et al., 2015; Wong et al., 2018) has given research
laboratories the ability to produce componentry that can then
be assembled, controlled and automated all for a relatively low
cost (Courtemanche et al., 2018; Needs et al., 2019; Barthels
et al., 2020). Open source designs and software have an important
enabling effect for researchers who may not have engineering
or programming expertise. Researchers are also able to exploit
the growing market for second hand laboratory automation
equipment (Zluhan et al., 2016), a case of one lab’s trash
is another labs treasure. Developing automation internally,
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FIGURE 4 | Comparison of available labour-saving automation options for the manual intensive processes of sewing and cell culture. Sewing has a range of interim
automation options up to fully autonomous systems. Cell culture by contrast has only high-level automation equipment and no interim low-cost analogues to replace
or augment manual labour.

whilst often cheaper, and potentially a more rewarding and
enjoyable process (Pilizota and Yang, 2018) can however require
a substantial investment in time (May, 2019). That laboratories
are frequently forced into developing their own systems is an
indication of the paucity of commercially available options.
Existing automation developers see an insufficient market for
providing their services and expertise to develop bespoke items
for individual laboratories and will be justifiably reluctant to
provide open source solutions that may compromise their
intellectual property.

REMEDIES

Increasing the quantity and quality of laboratory automation
within the research laboratory will require a concerted effort
from funders, research institutions, automation developers and
researchers themselves. The desire to automate elements of
laboratory protocols exists. Researchers and their governmental
funders (Reeves et al., 2019) collectively recognise that
mechanisation can improve reproducibility and efficiency.
When attempting to develop laboratory automation three
interrelated components are needed for success. Connecting
researchers with automation needs to automation engineers,
financing the resulting collaboration, and ensuring the resulting
design meets the needs.

Collaboration
Encouraging academic researchers to engage and collaborate
with industrial organisations has been a long-standing objective
for their host institutions. Such joint enterprises are hindered
by the significant differences in culture and attitudes to one
another (Berman, 2008) which are in part due to each partner
having different timescales and expectations from projects.
Academics build projects slowly through the funding stages
and ultimately desire experimental data that can be packaged
into publications. Industry often likes to move more quickly
and would like intellectual property that can be reconstituted
into a commercial opportunity (Lynch, 2016). Contrary to
widespread belief these viewpoints are, however, not always the
most prominent motivations for collaboration, with altruistic
aims also prevalent in both parties (Berman, 2008).

Automation engineers and life science researchers operate
in markedly different disciplines and in different work
environments, rarely occupying the same space to share
problems and ideas. Events where these disparate groups can be
brought together would allow new ideas and projects to develop,
in a similar fashion to academic conferences encouraging
collaboration between different laboratories. Automation
engagement events that feature all levels of employees from both
sides of the divide would have the greatest effect. Interaction
between industrial managers and academic supervisors as
well as researchers who are researching and engineers who
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are engineering could allow the development of solutions to
everyday automation challenges in the laboratory.

Collaboration can also be an internal academic arrangement.
Life science laboratories often have a source of automation
engineering expertise within their own institution in the
form of engineering faculties. Both disciplines could benefit
from increased interaction and discussion around laboratory
automation, with examples of collaborating biomedicine and
engineering departments producing innovative automated
equipment (Kato et al., 2010; Kane et al., 2019). Collaboration
at an educational level can be beneficial too. Allowing
undergraduate engineering students to undertake projects
based upon automating a protocol within a laboratory would
provide the host laboratory with designs and automation aids.
Interdepartmental, interdisciplinary collaborations can bring
benefits for students too, providing real world problems to
develop their skills and the opportunity to apply theoretical
knowledge (Wilson and Zamberlan, 2012).

More varied career paths that allow employees with experience
of industry-based automation to work in research environments
can also develop new ideas that lead to mechanised laboratory
equipment. Academic and industrial career paths diverge at early
career stage and rarely reconnect. The majority of professional
individuals progress from an academic institution into an
industrial or commercial organisation. Researchers typically
remain within a university environment accruing the required
qualifications and experience as their career progresses. Reverse
flow of employees, where an individual moves from industry
to academia is less common (Bonner, 2006). Encouraging a
greater level of employees with experience of automation to work
within life science laboratories will promote an exchange of ideas
that can lead to experimental mechanisation. Such employee
exchanges need not be permanent and can be sabbatical-style
placements targeted at a specific project. The Knowledge Transfer
Partnership is one successful long-running academic-industry
exchange scheme in the authors host country that allows an
employee to concurrently work on a project at both an academic
and industrial organisation (Howlett(ed.), 2010). These types of
employee arrangements have a further benefit in deepening the
relationships between Universities and industrial organisations.
Academic institutions that can successfully foster relationships
with industrial partners can reap substantial rewards not only
in the form of publications and possible financial licencing
agreements but greater reproducibility too (Edwards, 2016). In
a notable success story, automated sequencing technology, now
the mainstay of genetic research, was successfully developed at
Caltech, a research organisation with strong links to industry
(García-Sancho, 2007). Ultimately though any collaboration,
regardless of the method of inception, is unlikely to succeed or
even be embarked upon unless both partners are confident that
they have the financial resources to proceed.

Funding
Greater implementation of automation can bestow benefits
to funding organisations. Devoting financial resources
towards automation engineering may seem paradoxical
where the long-term objectives are targeted towards developing

therapeutic interventions for biological diseases. However,
the reproducibility of published research is essential for
research financed by these organisations. Automation is a
critical component in driving upwards the reproducibility of
disseminated research (Winder, 2019). In addition, as research
confidence increases in a particular therapy consideration will
eventually need to shift towards how the technology can be
produced in sufficient quantities and at an affordable price
so that it is available to the greatest range of patients. As
previously discussed, including automation at earlier stage
in the development process can help in attaining these goals,
easing the transition from the experimentation phase to clinical
usage. Competitive schemes, where funds are specifically are
made available for developing laboratory automation would
be beneficial in bridging the distance between the lab bench
and the bedside.

Automation can provide benefits too for governments funding
academic institutions. Increasing the level of automation across
workplaces is acknowledged as strategy for economic progress
(Velásquez et al., 2009; Reeves et al., 2019) with research
laboratories being no exception. Access to higher levels of
automation increases the output of research laboratories that
exist in publicly funded institutions. Any associated automation
dividend will also require appropriately skilled technical staff to
maintain, operate and enhance laboratory equipment. A greater
range of dedicated grant schemes specifically targeted at
developing laboratory automation will, in the long-term, increase
the effectiveness of all research funding.

Laboratory Automation Design
Improvements can be made in automation design, how it
is implemented in laboratories and the range of available
automations options. A large amount of laboratory automation
is based upon an anthropomorphic design framework that
mimics human movement. Expensive laboratory equipment
frequently features an over reliance on robotics to manipulate
tooling, reagents and labware in a similar manner to how
researchers would themselves. These types of designs can present
as being visually high-tech and impressive and there is indeed
an advantage to machinery that presents as more human-like
in that it is more likely to be trusted by human operators
(de Visser et al., 2016). Unfortunately for many applications
these designs are not always the most efficient means for
automating a laboratory protocol. Robotic actuators featuring
multiple axes and large operating envelopes also require even
larger guarding enclosures and correspondingly complex control
systems (Yachie and Natsume, 2017). These design attributes
render such equipment spatially and economically unsuitable for
the majority of research laboratories. McClymont and Freemont
provide an example where an assay requiring liquid handling can
be more effectively processed and multiplexed with tooling that
is not based upon an anthropomorphic design (McClymont and
Freemont, 2017). Hollow fibre cell culture systems are further
examples of automation systems that have successfully eschewed
more traditional anthropomorphic designs (Eghbali et al., 2016).

Designing for flexibility is also an important factor for
laboratories where there is a high level of protocol variation.
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Laboratory automations systems designs that anticipate future
scientific developments and allow for subsequent adaptation
will be less likely to become prematurely obsolete and thus
more valuable to research laboratories. Machinery based upon
modular based design is one approach to a flexible system.
Modular automation systems can allow selective matching
of automation to the protocol requirements, minimising the
purchase of redundant features, and also providing the option
for future upgrades should it be needed. There are indications
that laboratory automation developers are becoming more
aware of the need for flexibility. The ongoing development of
technology such as Formulatrix’s rover system is one example
where microwell plates are autonomously transferred between
processing modules in a novel reworking of the robotic
warehouse concept (Wikholm and Lindblom, 2019).

The capability for an automation system to be modified
without specialist engineering knowledge is desirable too.
Allowing researchers to automate a wider range of process steps
without the need for time consuming and expensive tooling
redesign or extensive software reprogramming. An interesting
extension of the modular design approach is to unify existing
automation equipment so that it capable of performing the
desired protocol in one continuous process stream. The recent
development of software by the company Synthace that is
capable of communicating and linking robotics from different
manufacturers is one promising system for laboratories requiring
highly flexible systems (Sadowski et al., 2016; Jessop-Fabre and
Sonnenschein, 2019).

To reduce the manual labour burden on laboratory research
staff and students there is a need for a broader range of
automation equipment. These designs should target the identified
gap in labour saving automation with a focus on reducing price
and footprint. In this regard employing multi axis robotics may
not be the most optimal design solution and developers should
be prepared to explore more cost-effective, low-tech routes to
protocol automation, even if seems like a less fashionable option.

THE FUTURE OF LABORATORY
AUTOMATION

It is with a certain degree of trepidation that we follow in
the footsteps of others and attempt to predict the future of
laboratory automation. The life science research laboratory
of the future will undoubtably feature more automation
equipment. How quickly automation is adopted will in all
probability be slower than many would like and haphazard,
with some fields being more suitable than others. Many of the
obstacles to laboratory automation ingress we have described
are long-standing and hardwired into the working practices
of academic research. In particular financial hurdles faced by
individual principal investigators are unlikely to be resolved
and overcome in the immediate future. Bespoke, high-level
automation solutions will remain beyond the reach of all but
the most monied laboratories for a considerable time. Greater
progress can be anticipated in the design and price of lower-
level automation equipment. It is reasonable to assume that like

other technologies laboratory automation will continue to mature
with falling prices and more user centred designs. Hopefully
incorporating more flexibility in response to consumer demand.
In part this progression is already underway, with promising
releases of low-cost liquid handling platforms and ongoing
development of modular systems. The demand from research
laboratories for automation that seeks to limit its impact on
the environment will grow considerably and it is hoped that
developers will create and adapt their designs to meet this
need. Life science researchers will also continue to develop their
own homemade laboratory automation and repurpose existing
equipment, encouraging other laboratories to also take the leap
into engineering. We predict that the second hand market
will become an important resource for those choosing this
route to automation.

Access to pooled resource, high-level, automation in the form
of academic biofoundries is increasing and will continue to do
so with expansion of existing facilities and the foundation of
new ones. The outsourcing of protocols to commercial cloud
laboratories has been predicted to become commonplace for a
huge range of life science laboratories. From the perspective of
the lab bench we are more circumspect in regards to the impact
these organisations will have on day to day experimental research,
with experimental range and flexibility key issues. Ultimately, the
marketplace laws of supply and demand will dictate the success
rate of these enterprises.

An appreciation of the limitations of automation both
generally and for items of specific equipment is needed
from academic, commercial and funding organisations and
individuals. Of all the limitations discussed in this review we
wish to particularly highlight the danger of innovation inhibition.
Innovation in the laboratory is essential and the freedom to
tinker and create new protocols needs to be retained if research
is to retain a high degree of novelty. Ensuring that automation
remains compatible with the curiously minded researcher will be
a significant challenge for our field in the future.

In response to automation ingress the skills of life science
researchers will need to adapt. The presence of more automation
equipment will require more engineering type-skills to ensure
correct equipment operation and implementation of protocols,
along with a working knowledge of the biology under
experimentation. Researchers will therefore need both biology
‘wet’ skills and ‘dry’ automation skills; such people have been
imaginatively titled amphibious researchers by Mellingwood
(2018). It is therefore likely that automation will spawn a new
generation of researchers with a range of interdisciplinary skills.

In summary, automation in life science laboratories lags
behind its industrial and clinical counterparts due to an array
of inhibiting factors, including financial, spatial and cultural
challenges. Those who are able to surmount these barriers and
integrate automation into their everyday protocols can reap
significant reproducibility and efficiency benefits. It is essential
that future laboratory automation systems are designed for
flexibility to permit adaptation for changing laboratory needs
and prevent the stifling of protocol innovation. A wider range of
affordable bench top and remote automation options will steadily
increase the ubiquity of mechanisation in life science research.
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Such progressive adoption of automation will emphasise the
already growing interdisciplinary nature of research further
blurring the boundary between science and engineering.
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