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Abstract

A better understanding of the origin and natural reservoirs of resistance

determinants is fundamental to efficiently tackle antibiotic resistance. This paper

reports the identification of a novel 5.8 kb erythromycin resistance plasmid, from

Bacillus sp. HS24 isolated from the marine sponge Haliclona simulans. pBHS24B

has a mosaic structure and carries the erythromycin resistance gene erm(T). This is

the first report of an erythromycin resistance plasmid from a sponge associated

bacteria and of the Erm(T) determinant in the genus Bacillus.

Introduction

Antibiotic resistance is recognised as a major public health problem and resistance

determinants have been identified in a wide variety of different clinical and

environmental settings [1, 2, 3, 4, 5]. However, despite many years of research, the

origin of these resistance determinants remains elusive [6, 7]. Resistance genes are

frequently associated with promiscuous mobile genetic elements which drive their

evolution and facilitate their horizontal spread [8]. Knowledge on the prevalence

and nature of these in natural habitats is therefore fundamental to increasing our

understanding of the development of antibiotic resistance [9]. Additionally, these

plasmids can provide a backbone for the creation of new cloning vectors for use in
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the genetic manipulation of natural isolates, which are frequently refractory to the

uptake and integration of exogenous DNA [10].

While the marine sponge microbiota is attracting increasing interest, research

to date has primarily focused on the overall microbial diversity and

biotechnological potential of this unique microbial ecosystem [11, 12, 13, 14].

However the antimicrobial susceptibility of the sponge microbiota coupled with

their ability to act as a possible reservoir for antibiotic resistance determinants;

potentially transmissible to the food chain and clinical relevant bacteria [5], has

not to date been adequately examined [15, 16].

We have recently isolated a Bacillus sp. isolate, HS24, from the marine sponge

Haliclona simulans [17, 18]. Bacillus sp. HS24 displays resistance towards

erythromycin and tetracycline and was shown to contain two small plasmids, of

which, pBHS24 carries the tetracycline resistance determinant Tet(L) [17].

pBHS24 was shown to be almost identical to three other mobilisable tetracycline

resistance plasmids identified in the honey bee pathogen Paenibacillus larvae

(pMA67), in the anaerobe Lactobacillus sakei Rits 9, isolated from an Italian Sola

cheese (pLS55) and in the spore-former Sporosarcina ureae (pSU1), isolated from

the subsurface beneath a broiler chicken farm [17].

In this background, the aim of the present study was to characterise the nature

of erythromycin resistance of a halophilic Bacillus strain isolated from the marine

sponge Haliclona simulans.

Materials and Methods

Growth and antibiotic susceptibility testing

Sponge-associated Bacillus sp. HS24 was routinely grown and maintained

aerobically, on Difco marine agar/broth (MA/MB) (Difco 2216), at 30 C̊, unless

otherwise stated. Luria-Bertani medium was routinely used for growth and

maintenance of E. coli and B. subtilis 168.

Susceptibility to erythromycin was determined by spotting MB cultures onto

Muller–Hinton (MH, Merck, Darmstadt, Germany) plates supplemented with

different concentrations of erythromycin (Sigma-Aldrich, Munich, Germany) and

incubated aerobically at 30 C̊. Initial tests were performed with plates

supplemented with 0 to 0.5 mg ml21 erythromycin. The concentration range of

erythromycin was subsequently expanded, with plates supplemented with 1.0, 1.5,

2.0, 2.5, 3.0 and 3.5 mg ml21. MIC values are defined as the minimal

concentration of antibiotic able to inhibit the growth. As there are no specific

established antibiotic breakpoints values for marine sponge Bacillus isolates, the

breakpoint values used for categorizing strain HS24 as resistant were those

recommended by EFSA [19].
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DNA extraction, PCR amplification and transformation

Total genomic DNA of Bacillus sp. HS24 was extracted from 24 h MB cultures as

previously described [20]. Total plasmid DNA was extracted from overnight MB

cultures using the QIAprep Spin miniprep kit optimized for Bacillus (Qiagen

GmbH, Hilden, Germany).

Plasmid DNA isolated from isolate HS24 was used to transform B. subtilis 168

competent cells as previously described [21, 22].

The universal eubacterial primers 27f (59-AGA GTT TGA TCM TGG CTC AG-

39, M5C or A) and 1492r (59-GGT TAC CTT GTT ACG ACT T-39) [23] were

used to amplify the small-subunit rRNA (16S rRNA) gene sequence of Bacillus sp.

HS24. PCR mixtures (50 ml) contained 50 ng of genomic DNA as template, 16
BioTaq PCR Buffer (Bioline, London, UK), 1.5 mmol l21 of MgCl2, 0.2 mmol l21

of dNTPs, 0.5 mmol l21 of each primer and 2.5 U of BioTaq DNA polymerase

(Bioline). PCR was carried out under the following cycling conditions: initial

denaturation at 94 C̊ for 5 min, followed by 30 cycles of 94 C̊ for 30 s, 52 C̊ for

30 s and 72 C̊ for 45 s, with a final extension at 72 C̊ for 10 min.

DNA sequencing

The near complete 16S rRNA gene sequence of Bacillus sp. HS24 (1441 nt)

(GenBank JF803858) obtained with the primers 27f and HS24F2

(GTGAAATGCGTAGATATGTGG) (GATC Biotech AG, Germany) was com-

pared with sequences in the Genbank nucleotide sequence database (http://blast.

ncbi.nlm.nih.gov/Blast.cgi) using BLASTn [24, 25]. A Neighbour-joining phylo-

genetic tree was generated by analysing near complete 16S rRNA gene sequences

of Bacillus sp. HS24 and strains of closely related Bacillus species. The tree was

constructed using maximum composite likelihood and pairwise deletion.

Percentage bootstrap values (.50% only) from 1000 re-samplings are indicated at

each node. Bar, 5% estimated sequence divergence.

The pBHS24B plasmid was sequenced as follows: pBHS24B DNA restricted

with HindIII and EcoRI was cloned into the vector pUC18 and initial nucleotide

sequences obtained with the M13 primers (GATC Biotech AG, Germany), as

previously described for plasmid pBHS24 [17]. The complete nucleotide sequence

of the plasmid (GenBank KC991136) was subsequently determined by primer

walking, using pBHS24B as a template. The sequencing data was manually

assembled using Bioedit [26]. Open reading frames (ORFs) were determined and

annotated using ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html), and

Basic Local Alignment Search Tool (BLAST) at NCBI [27].

Nucleotide sequence accession numbers

The 16S rRNA gene sequence of Bacillus sp. HS24 and the complete nucleotide

sequence of plasmid pBHS24B have been deposited in the GenBank database with

the accession numbers JF803858 and KC991136, respectively.
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PLOS ONE | DOI:10.1371/journal.pone.0115583 December 30, 2014 3 / 11

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/gorf/gorf.html


Results and Discussion

Phylogenetic analysis of the 16S rRNA gene sequence of Bacillus sp. HS24

indicates a 99% sequence identity with the 16S rRNA gene of its closest relative,

the slightly halophilic Bacillus xiaoxiensis strain JSM081004 [28] (Fig. 1).

Although Bacillus sp. HS24 displays high levels of resistance to erythromycin

(MIC of 3 mg ml21), transformation of the erythromycin susceptible strain

Bacillus subtilis 168, with total plasmid DNA purified from isolate HS24, yielded

no colonies on LB medium supplemented with 5 mg ml21 erythromycin [17].

However, in the current study a large number of erythromycin resistant

transformants were obtained when selection was performed at a lower

concentration (1 mg ml21). As expected no colonies were observed on antibiotic

control plates when plasmid DNA was not added to cells. A single plasmid of

approximately 5.8 kb in size, here named pBHS24B, was purified from the

erythromycin resistance B. subtilis transformants (Fig. 2). While the level of

tetracycline resistance conferred by pBHS24 (.100 mg ml21) in the B. subtilis

background was significantly higher than that in strain HS24 (75 mg ml21) [17],

there was no difference in the level of erythromycin resistance conferred by

pBHS24B in the native and cloning hosts. Attempts to transform pBHS24B into

chemically competent E. coli DH5a or K12 MG1655 cells proved unsuccessful.

The pBHS24B sequencing data was manually assembled using Bioedit [26],

generating a circular element of 5837 nt (Fig. 3). A total of six putative open

reading frames (ORFs) were determined and annotated (Fig. 3, Table 1). Results

from BLASTx searches revealed that pBHS24B has a mosaic structure, which is

more than likely to have evolved through the occurrence of multiple

recombination events in one or more hosts. Different sections of the plasmid

appear to have assorted origins as indicated by the level of sequence homology to

different extra chromosomal elements from host strains isolated from a wide

range of environments and the different G/C content of the respective open

reading frames (Table 1, Fig. 3).

pBHS24B encodes a truncated copy of the recombinase/mobilisation gene, pre/

mob, whose deduced amino acid sequence shows the highest homology (47%

amino acid sequence identity) with the N-terminal 186 aa of the Pre/Mob protein

from plasmid pBM02 of Lactococcus lactis subsp. cremoris [29] (Table 1). The

shorter size of the pBHS24B Mob protein (196 amino acid) contrasts with the

usually larger Pre/Mob proteins of the pMV158 family (350–500 amino acid)

[30]. Although this region spans the three conserved motifs of the pMV158 family

of Pre/Mob proteins (Fig. 4) it is not clear as yet if the truncated protein is

functional. Sequence analysis suggest that a 894 bp segment of unknown origin,

which appears to encode a 297 amino acids hypothetical protein (ORF1), might

have integrated at this point in the plasmid resulting in the truncation of the

original pre/mob gene (Fig. 3, Table 1).

The putative replication region of pBHS24B is highly homologous to that of the

erm(B) encoding rolling circle-replication (RCR) plasmid pLFE1, from the raw

milk cheese isolate Lactobacillus plantarium M345 [31]. This includes the copy

Plasmid-Borne Erm(T) in a Marine Sponge Bacillus
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number control protein, CopG and the replication initiation protein, RepB (with

only one and two nucleotide differences between the copG and repB genes,

respectively, in the two plasmids) (Table 1). This homology also extends to a

580 bp region upstream of copG, which includes a putative replication initiation

site with a single-strand origin (sso)-like region and a characteristic pMV158

family double-strand origin (dso) (100% nt sequence identity) [31]. This again

suggests that pBHS24B belongs to the pMV158 family of plasmids [30], and

therefore is likely to replicate by a RCR mechanism, like many of the plasmids

derived from Gram positive hosts [32].

A second putative replication initiation protein with 83% amino acid sequence

identity to the putative RepL protein from Bacillus cereus MSX-A1 (Genbank

Fig. 1. Neighbour-joining phylogenetic tree generated by analysing near complete 16S rRNA gene
sequences of Bacillus sp. HS24 and strains of closely related Bacillus species. Accession numbers are
in parentheses. The tree was constructed using maximum composite likelihood and pairwise deletion.
Percentage bootstrap values (.50% only) from 1000 re-samplings are indicated at each node. Bar, 5%
estimated sequence divergence.

doi:10.1371/journal.pone.0115583.g001

Fig. 2. Comparison of plasmid DNA extracted from Bacillus sp. strain HS24 and B. subtilis 168
transformed with the tetracycline resistance plasmid pBHS24 and the erythromycin resistance
plasmid pBHS24B. Lane 1, DNA marker; Lane 2, Bacillus sp. HS24; Lane 3, B. subtilis 168 - pBHS24; Lane
4, B. subtilis 168 - pBHS24B; Multiple faint bands on lanes 2 to 4 correspond to the different conformational
forms of plasmid DNA.

doi:10.1371/journal.pone.0115583.g002
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accession number EJQ95744) is also present in pBHS24B (Fig. 3, Table 1).

Replication proteins of the RepL family are frequently found in small cryptic or

erythromycin resistance encoding RCR plasmids previously identified in

Staphylococcus and Bacillus species [33]. The presence of more than one

replication protein has previously been reported for other plasmids, such as the

Streptococcus faecalis plasmid pAMa1 [34] and the Bacillus plasmid pTB19

[35, 36].

Erythromycin resistance in pBHS24B is conferred by a macrolide-lincosamide-

streptogramin B (MLSB) resistance methylase Erm(T), which has been previously

reported only in the genera Enterococcus, Lactobacillus, Streptococcus and

Staphylococcus (http://faculty.washington.edu/marilynr/). The pBHS24B Erm(T)

protein shares 100% amino acid sequence homology with the Erm(T) of

pUR2940, pUR2941, pKKS25, pRW35, pGA2000, pGB2001 and pGB2002 isolated

Fig. 3. Graphical representation of the genomic structure of pBHS24B from Bacillus sp. HS24.
Restriction sites and regions with homology to previously reported sequences are indicated. Arrow heads
indicate the direction of transcription of the different open reading frames. The 525 bp region immediately
upstream from repL does not share homology to any other sequence in the database. MSX-A1, B. cereus
whole genome shotgun (WGS) entry; preliminary data, plasmid content unknown. Figure created using
Snapgene viewer.

doi:10.1371/journal.pone.0115583.g003

Table 1. Sequence homology of the proteins encoded by pBHS24B*.

ORF % G/C content No. aa&
Closest protein
homologue Strain/Origin % aa Identity E value# Accessio no.

1 44.7 297 –¥ – – – –

2 47 196 Mob like protein,
pBM02

Lactococcus lactis
subsp. Cremoris P8-2-47;
component of a German
industrial starter culture

47 2E-47 NC_004930

3 33.8 212 RepB, pLFE1 Lactobacillus plantarum
M345; raw-milk cheese

99 5E-157 NC_012628

4 30 59 CopG, pLFE1 Lactobacillus plantarum
M345; raw-milk cheese

97 8E-22 NC_012628

5 25 244 Erm(T), pRW35 Streptococcus pyogenes
RW35; nosocomial sample£

100 1E-174 NC_010423

6 36.6 152 Predicted RepL** Bacillus cereus MSX-
A1***

83 2E-85 EJQ95744

*Results are from a BLASTx search of the GenBank non-redundant protein database on 13/8/13. &aa, amino acids. #Expectation value.
£100% identity also found to other plasmids as described in the text.
**Whole genome shotgun (WGS) entry; preliminary data, plasmid content unknown. ***anthrax-like illness; isolated in Antarctica.
¥ORF1 shows a low homology hit (27%; E value 3E-05) with a Leishmania major structural maintenance of chromosome (SMC) protein domain (CAJ07774).

doi:10.1371/journal.pone.0115583.t001
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from Staphylococcus aureus, Streptococcus agalactiae and Streptococcus pyogenes

strains [34, 37, 38, 39, 40] (Table 1). The oriT sequence is located downstream of

erm(T) and should have the same origin as the resistance gene (Fig. 3). The

sequences encompassing the leader peptide-encoding sequence and the erm(T)

translational start regions of these plasmids are also identical [38]. Previous

comparisons of the erm(T) up- and downstream sequences in the streptococcal

pGB2002, pGB2001, pGA2000, pRW35 and the staphylococcal pUR2940,

pUR2941 plasmids, identified 56 to 58 bp long conserved imperfect direct repeat

(IDR) regions [39], which are believed to play a role in the acquisition of the

erythromycin resistance determinants. Although the downstream sequence is

clearly identifiable and relatively well conserved in pBHS24B (4437–4492 nt), the

acquisition of a 1730 bp fragment of DNA from plasmid pLFE1 (Fig. 3), appears

to have resulted in the deletion of the IDR region upstream of erm(T). Bacillus sp.

HS24 has not been screened for other previously described erythromycin

resistance determinants, nor has it been cured of plasmid pBHS24B, and

therefore, the concomitant existence of other erythromycin resistance gene(s) in

the genome of this strain cannot be excluded.

To our knowledge this is the first report of the erythromycin resistance Erm(T)

determinant in the genus Bacillus. Erythromycin resistance through methylation

of the 23S rRNA within this genus, has been previously associated with Erm(B),

Erm(C), Erm(D), Erm(G) and Erm(34), with evidence for specific species

association for some of the determinants (http://faculty.washington.edu/marilynr/

ermweb4.pdf) [41]. The erm(T) gene has previously been identified in bacterial

isolates from agricultural and clinical settings [42, 43, 44, 45], where the

widespread use of antibiotics is likely to have contributed to the development of

resistance within the associated microbiota. While the prevalence of erythromycin

resistance among marine sponge bacteria is unknown, B. licheniformis HS147, was

the only other Bacillus isolate from H. simulans to display resistance to this

antibiotic [18]. Antibiotics used in therapy and agriculture are known to

accumulate in the environment and to contaminate aquatic habitats where they

Fig. 4. Alignment of pBHS24B and selected pMV158-superfamily relaxases. pS86, Enterococcus
faecalis; pBM02, Lactococcus lactis; pBMY1, Bacillus mycoides; pTA1015, Bacillus subtilis; pMV158,
Streptococcus agalactiae. The three conserved motif sequences typical of the pMV158 family of Pre/Mob
proteins are identified [30]. Conserved amino acids within the motifs are highlighted in black.

doi:10.1371/journal.pone.0115583.g004
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can exert their selective pressure on the native flora [7, 46, 47]. Erythromycin in

particular is widely used to control the spread of infection in the aquaculture

industry [48]. Interestingly, the H. simulans sponge host of isolate HS24, was

recovered from Gurraig Sound in Kilkieran Bay, off the coast of Galway in Ireland

[49], in an area that is well known for aquaculture (Status of Irish Aquaculture

2007, http://www.marine.ie/home/Aquaculture.htm). Given that sponges are

known to filter large quantities of seawater, up to 24,000 L Kg21 per day; they are

thus likely to be susceptible to accumulate environmental contaminants, such as

heavy metals and antibiotics, which could ultimately drive the acquisition of

resistance by the associated microbiota [15]. Despite fears that intensive

aquaculture processes may contribute to the development and dissemination of

antibiotic resistance, little is known about this practise in comparison to animal

husbandry. The use of antibiotics to treat infection in aquaculture generally

focuses on specific fish pathogens and not the complex commensal microbiota of

the fish and surrounding marine environments [5].

The mosaic structure of plasmid pBHS24B supports the importance of these

elements in the evolution and acquisition of antibiotic resistance through

horizontal gene transfer. The question as to whether resistance in this habitat

arose as a consequence of environmental contamination or if resistance

determinants are a common part of the genome of environmental bacteria where

they have alternative functional roles remains highly debatable [9]. Although the

overuse and misuse of antibiotics is reported to be responsible for the spread of

antibiotic resistant bacteria, a large number of environmental strains produce

antibiotics and so potentially carry genes encoding resistance to these compounds.

As a result, antibiotics produced in the environment may exert a selective pressure

on neighbouring microorganisms [7].

In conclusion Bacillus sp. HS24 contains two antibiotic resistance plasmids, one

of which is nearly identical to plasmids from commensal and pathogenic bacterial

species from four different genera, isolated from quite distinct ecological habitats

[17]. The second plasmid shows a mosaic structure, which is likely to have been

derived as a result of multiple recombination events between different plasmids

within multiple hosts, the order of which remains unknown. Our results further

illustrate the promiscuity of the nature of antibiotic resistance and suggest that

sponge associated bacteria, as with other environmental bacteria; may represent a

reservoir of resistance genes with the potential to transfer resistance to the food

chain or indeed clinically relevant organism.
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