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Gene expression microarray data can be used for the assembly of genetic coexpression network graphs. Using mRNA samples
obtained from recombinant inbred Mus musculus strains, it is possible to integrate allelic variation with molecular and higher-order
phenotypes. The depth of quantitative genetic analysis of microarray data can be vastly enhanced utilizing this mouse resource
in combination with powerful computational algorithms, platforms, and data repositories. The resulting network graphs transect
many levels of biological scale. This approach is illustrated with the extraction of cliques of putatively coregulated genes and their
annotation using gene ontology analysis and cis-regulatory element discovery. The causal basis for coregulation is detected through
the use of quantitative trait locus mapping.

INTRODUCTION

The purpose of this paper is to describe novel research
combining

(i) emergent computational algorithms,

(ii) high performance platforms and implementations,

(iii) complex trait analysis and genetic mapping,

(iv) integrative tools for data repository and explo-
ration.

In this effort we employ huge datasets extracted from
a panel of recombinant inbred (RI) strains that were pro-
duced by crossing two fully sequenced strains of C57BL/6J
and DBA/2J mice [1]. The essential feature of these iso-
genic RI strains is that they are a genetic mapping panel.
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They can therefore be used to convert associative net-
works into causal networks. This is done by finding those
polymorphic genes that actually produce natural endoge-
nous variation in gene networks [2]. In this regard, RI
strains differ fundamentally from standard inbred strains,
knockout strains, transgenic lines and mutants. This ap-
proach, termed quantitative trait locus (QTL) mapping,
is usually limited to a single continuously distributed trait
such as brain weight or neuron number [3], or a behav-
ioral trait such as open-field activity [4]. In this paper,
however, we map regulators of entire networks, clusters,
and cliques [5].

We employ combinatorial algorithms and graph the-
ory to reduce the high dimensionality of this megavari-
ate data. Advances in clique finding algorithms generate
highly distiled gene sets, which we interpret using novel,
integrative bioinformatics resources. See Figure 1. Tools
of choice include GeneKeyDB [http://genereg.ornl.gov/
gkdb], WebQTL [6], and GoTreeMachine (GOTM) [7].

QTL MAPPING

Experimental design

Microarrays provide an extraordinarily efficient tool
to obtain very large numbers of quantitative assays from
tissue samples. For example, using the Affymetrix M430
arrays one can obtain approximately 45 000 measure-
ments of relative mRNA abundance from a whole tissue

http://genereg.ornl.gov/gkdb
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Figure 1. A process overview.

such as the brain or from a single cell population, such
as hematopoietic stem cells. In much of our recent work
we have used the Affymetrix U74Av2 array to estimate the
abundance of 12 422 transcripts from the mouse brain.
The design of our experiments is quite simple. We ex-
tract mRNA from three litter-mate mice of the same strain
and sex, pool the mRNA, and hybridize the sample to
the microarray. We do this three times for each strain
and sex (independent biological replicates). There is no
intentional experimental manipulation of the animals or
strains of mice. The essential feature to note in our exper-
imental design is that the isogenic strains of mice that we
study are all related yet genetically unique from one an-
other.

RI strains

These related strains of mice collectively form what
is called a “mapping panel.” The strain set that we use is
called the BXD mapping panel because all of the 32 strains
originate from the same two original progenitor strains:
C57BL/6J (the B strain) and DBA/2J (the D strain). The
32 derivative BXD strains are genetic mosaics of the two
parental strains. If one were to pick one of the 32 strains
at random and examine a piece of one particular chro-
mosome, there would be an approximately 0.5 probability
of that piece having descended down through the genera-
tions from the B or the D parental strain. If one looked
at the same part of a particular chromosome in all the
32 strains one would end up with a vector of genotypes.
For example, the tip of chromosome 1 of BXD strains
11 through 16 might read BDBBDD. Thus there are 232

or 4.29 × 109 possible combinations of these vectors of
genotypes. The chromosomes of individual BXD strains
actually consist of very long stretches of B-type or D-
type chromosomes. The average stretch is almost 50 mil-
lion base pairs long. The entire set of 32 BXD strains in-
corporate sufficient recombinations between the parental

chromosomes to encode a total of about 211 locations
across the mouse genome. This means that in the best case
one can only specify locations to about 1.27× 106 bp. An
amount 1.27 million bp will typically contain 17 genes.
(Of course, the locations of these recombinations is close
to a random Poisson process.)

Unlike other recombinant cross progeny used for QTL
analysis, all of the BXD strains are fully inbred. To make
these RI strains, full siblings were mated successively for
20 generations to produce each of the 32 strains. This has
been an expensive process that has made several strain
sets available to the research community by commercial
suppliers (The Jackson Laboratory, www.jax.org) or the
originating laboratory. Making fully RI strains from a
crossbreeding between the C57BL/6J and DBA/2J parental
strains has taken about eight years. These strains have
been used for over 20 years for the detection of QTLs in a
wide range of phenotypes [8]. Additional 45 strains have
been generated recently [9].

Finding the genetic regulatory locus

There are numerous genetic polymorphisms (allelic
variants) that exist between the two parental strains. As an
illustrative example, consider two alleles of a gene coding
for a product that is absolutely required to deposit pig-
mentation in the hair and eye. Further let us assume that
these two alleles act as a digital switch: the B allele inher-
ited from C57BL/6J is the active form and the D allele in-
herited from DBA/2J is the inactive form.

In the D state, the mice are albinos; in the B state,
they are normally pigmented. The vector of this pheno-
type across the strains might look PWWWWP (P, pig-
mented; W, white) for strains 11 through 16. A simple
comparison of this vector of phenotypes to the vector of
genotypes on the tip of chromosome 1 (BDBBDD) clearly
rules out this location since the vectors do not match par-
ticularly well. A vector of genotypes on chromosome 7 at
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77 million base pairs (Mb), however, is a perfect fit: BD-
DDDB. Depending on the coding convention that we use,
this will give a correlation either of 1 or of −1. This is the
central concept of mapping simple one-gene (monogenic)
traits to discover one or more genotype vectors (markers)
that have tight quantitative associations with the pheno-
type vectors across a large mapping panel. Recall however
that our particular 32-strain genotype vector only pro-
vides enough resolution to get us down to a genetic neigh-
borhood containing about 17 genes. We call this a genetic
locus (sometimes called a gene locus), although we have
to remember that we cannot yet assert which gene in this
locus is actually the pigmentation switch.

Up to this point we have considered a trait that can be
easily dichotomized. The vast majority of traits in which
we are interested, however, are spread continuously over
a broad range of values that often approximates a Gaus-
sian distribution. These traits are frequently controled by
more than a single genetic locus. Furthermore, environ-
mental factors typically introduce a complementary non-
genetic source of variance to a trait measured across a ge-
netically diverse group of individuals. Consider, for exam-
ple, body weight. This is a classic example of a complex
highly variable population trait that is due to a multifac-
torial admixture of genetic factors, environmental factors,
and interactions between genes and environment. Even a
trait such as the amount of mRNA expressed in the brains
of mice and measured using microarrays is a very com-
plex trait. We refer the interested reader to our previous
work [5, 7] for more information on this subject. The
abundance of mRNA is influenced by rates of transcrip-
tion, rates of splicing and degradation, stages of the circa-
dian cycle, and a variety of other environmental factors.
Many of these influences on transcript abundance exert
their effects via the actions of other genes. QTL mapping
of mRNA abundance allows one to detect these genetic
sources of variation in gene expression [5, 7, 10, 11].

COMPUTATIONAL METHODS

A clique-centric approach

Current high-throughput molecular assays generate
immense numbers of phenotypic values. Billions of in-
dividual hypotheses can be tested from a single BXD RI
transcriptome profiling experiment. QTL mapping, how-
ever, tends to be highly focused on small sets of traits and
genes. Many public users of our data resources approach
the data with specific questions of particular gene-gene
and/or gene-phenotype relationships [12]. These high-
dimensional datasets are best understood when the corre-
lated phenotypes are determined and analyzed simultane-
ously. Data reduction via automated extraction of coreg-
ulated gene sets from transcriptome QTL data is a chal-
lenge. Given the need to analyze efficiently tens of thou-
sands of genes and traits, it is essential to develop tools to
extract and characterize large aggregates of genes, QTLs,
and highly variable traits.

There are advantages of placing our work in a graph-
theoretic framework. This representation is known to be
appropriate for probing and determining the structure of
biological networks including the extraction of evolution-
arily conserved modules of coexpressed genes. See, for ex-
ample, [13, 14, 15]. A major computational bottleneck in
our efforts to identify sets of putatively coregulated genes
is the search for cliques, a classic graph-theoretic prob-
lem. Here a gene is denoted by a vertex, and a coexpres-
sion value is represented by the weight placed on an edge
joining a pair of vertices. Clique is widely known for its
application in a variety of combinatorial settings, a great
number of which are relevant to computational molecular
biology. See, for example, [16]. A considerable amount of
effort has been devoted to solving clique efficiently. An ex-
cellent survey can be found in [17].

In the context of microarray analysis, our approach
can be viewed as a form of clustering. A wealth of cluster-
ing approaches has been proposed. See [18, 19, 20, 21, 22]
to list just a few. Here the usual goal is to partition ver-
tices into disjoint subsets, so that the genes that corre-
spond to the vertices within each subset display some
measure of homogeneity. An advantage clique that holds
over most traditional clustering methods is that cliques
need not be disjoint. A vertex can reside in more than
one (maximum or maximal) clique, just as a gene prod-
uct can be involved in more than one regulatory network.
There are recent clustering techniques, for example those
employing factor analysis [23], that do not require exclu-
sive cluster membership for single genes. Unfortunately,
these tend to produce biologically uninterpretable factors
without the incorporation of prior biological information
[24]. Clique makes no such demand. Another advantage
of clique is the purity of the categories it generates. There
is considerable interest in solving the dense k-subgraph
problem [25]. Here the focus is on a cluster’s edge den-
sity, also referred to as clustering coefficient, curvature,
and even cliquishness [26, 27]. In this respect, clique is
the “gold standard.” A cluster’s edge density is maximized
with clique by definition.

The inputs to clique are an undirected graph G with
n vertices, and a parameter k ≤ n. The question asked
is whether G contains a clique of size k, that is, a sub-
graph isomorphic to Kk, the complete graph on k vertices.
The importance of Kk lies in the fact that each and every
pair of its vertices is joined by an edge. Subgraph isomor-
phism, clique in particular, is NP-complete. From this
it follows that there is no known algorithm for deciding
clique that runs in time polynomial in the size of the in-
put. One could of course solve clique by generating and

checking all
(
n
k

)
candidate solutions. But this brute force

approach requires O(nk) time, and is thus prohibitively
slow, even for problem instances of only modest size.

Our methods are employed as illustrated in Figure 2.
We will concentrate our discussion on the classic maxi-
mum clique problem. Of course we also must handle the
related problem of generating all maximal cliques once
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Figure 2. The clique-centric toolkit and its use in microarray analysis.

a suitable threshold has been chosen, which is itself often
a function of maximum clique size. There are a variety
of other issues dealing with preprocessing and postpro-
cessing. Although we do not explicitly deal with them in
the present paper, they are for the most part quite easily
handled and are dwarfed by the computational complex-
ity of the fundamental clique problem at the heart of our
method.

Fixed-parameter tractability

The origins of fixed-parameter tractability (FPT) can
be traced at least as far back as the work done to show, via
the graph minor Theorem, that a variety of parameterized
problems are tractable when the relevant input parameter
is fixed. See, for example, [28, 29]. Formally, a problem is
FPT if it has an algorithm that runs in O( f (k)nc), where
n is the problem size, k is the input parameter, and c is a
constant independent of both n and k [30]. Unfortunately,
clique is not FPT unless the W hierarchy collapses. (The
W hierarchy, whose lowest level is FPT, can be viewed
as a fixed-parameter analog of the polynomial hierarchy,
whose lowest level is P.) Thus we focus instead on clique’s
complementary dual, the vertex cover problem. Consider
G, the complement of G. (G has the same vertex set as G,
but edges present in G are absent in G and vice versa.) As
with clique, the inputs to vertex cover are an undirected
graph G with n vertices, and a parameter k ≤ n. The ques-
tion now asked is whether G contains a set C of k vertices
that covers every edge in G, where an edge is said to be
covered if either or both of its endpoints are in C. Like
clique, vertex cover isNP-complete. Unlike clique, how-
ever, vertex cover is also FPT. The crucial observation here
is this: a vertex cover of size k in G turns out to be exactly
the complement of a clique of size n − k in G. Thus, we

search for a minimum vertex cover in G, thereby finding
the desired maximum clique in G. Currently, the fastest
known vertex cover algorithm runs in O(1.2852k + kn)
time [31]. Contrast this with O(nk). The requisite expo-
nential growth (assuming P �= NP) is therefore reduced
to a mere additive term.

Kernelization, branching, parallelization,
and load balancing

The initial goal is to reduce an arbitrary input instance
down to a relatively small computational kernel, then
decomposing it so that an efficient, systematic search can
be conducted. Attaining a kernel whose size is quadratic
in k is relatively straightforward [32]. Ensuring a kernel
whose size is linear in k has until recently required much
more powerful and considerably slower methods that rely
on linear programming relaxation [33, 34].

In [35], we introduced and analyzed a new technique,
termed crown reduction. A crown is an ordered pair (I,H)
of subsets of vertices from G that satisfies the follow-
ing criteria: (1) I �= ∅ is an independent set of G, (2)
H = N(I), and (3) there exists a matching M on the
edges connecting I and H such that all elements of H are
matched. H is called the head of the crown. The width of
the crown is |H|. This notion is depicted in Figure 3.

Theorem (see [35]). Any graph G can be decomposed into
a crown (I,H) for which H contains a minimum-size vertex
cover of G and so that |H| ≤ 3k. Moreover, the decomposi-
tion can be accomplished in O(n5/2) time.

The problem now becomes one of exploring the ker-
nel efficiently. A branching process is carried out using a
binary search tree. Internal nodes represent choices; leaves
denote candidate solutions. Subtrees spawned off at each
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Figure 3. Sample crown decompositions.

level can be explored in parallel. The best results have gen-
erally been obtained with minimal intervention, in the ex-
treme case launching secure shells (SSHs) [36]. To main-
tain scalability as datasets grow in size and as more ma-
chines are brought on line, some form of dynamic load
balancing is generally required. We have implemented
such a scheme using sockets and process-independent
forking. Results on 32–64 processors in the context of mo-
tif discovery are reported in [37]. Large-scale testing using
immense genomic and proteomic datasets are reported in
[38].

SAMPLE COMPUTATIONAL RESULTS

We are now able to solve real, nonsynthetic instances
of clique on graphs whose vertices number in the thou-
sands. (Just imagine a straightforward O(nk) algorithm
on problems of that size!)

To illustrate, we recently solved a problem on Mus
musculus neurogenetic microarray data with 12 422 ver-
tices (probe sets). With expression values normalized to
[0, 1] and the threshold set at 0.5, the clique we returned
(via vertex cover) denoted a set of 369 genes that appear
experimentally to be coregulated. This took a few days to
solve even with our best current methods. Yet solving it
at all was probably unthinkable just a short time ago. Af-
ter iterating across several threshold choices, a value of
0.85 was selected for detailed study. For this graph, G, the
maximum clique size is 17. Because it is difficult to vi-
sualize G, we employ a clique intersection graph, CG, as
follows. Each maximal clique of size 15 or more in G is
represented by a vertex in CG. An edge connects a pair of
vertices in CG if and only if the intersection of the corre-
sponding cliques in G contains at least 13 members. CG is
depicted in Figure 4, with vertices representing cliques of
size 15 (in green), cliques of size 16 (in black), and cliques
of size 17 (in red). One rather surprising result is that
the gene found most often across large maximal cliques is
Veli3 (aka Lin7c). This appears not to be due to some so-
called “housekeeping” function, but instead because the
relatively unstudied Veli3 is in fact central to neurological
function [39, 40].

Figure 4. A clique intersection graph for a large microarray
dataset.

CLIQUES OF HIGHLY CORRELATED TRANSCRIPTS
AND BEHAVIORAL PHENOTYPES

We can infer that coexpression of genes in mice of
common genetic background is due to a shared regula-
tory mechanism, because the correlation is between trait
means from different lines of mice, rather than from
within an experimental group. Clique membership alone
does not tell us anything about the basis of common ge-
netic regulation. By combining clique data with QTL anal-
ysis, the regulatory loci underlying the shared genetic me-
diation of gene expression can be identified. This allows
us to determine the impact of genetic variability in gene
expression on other biological processes. Using the afore-
mentioned stringent correlation threshold of 0.85, the
most highly connected transcript identified was that of
Veli3. One maximal clique of seventeen highly associated
transcript abundances includes several nuclear proteins. A
single principal component of these transcripts accounts
for 95% of the total genetic sample variance.

No single QTL can be found for the members of this
clique, but a multiple QTL mapping analysis reveals an in-
teracting pair of loci on chromosomes 12 and X, at mark-
ers D12Mit46 (29.163 Mb) and DXMit117 (110.670 Mb).
See Figure 5, which shows the results from a search
for pairs of genetic loci that modulate expression of a
clique. Chromosomes 12, 19, and X are shown. Likelihood
ratio statistics for multiple QTL models are plotted on the
pseudocolor scale. The upper left triangle shows fit re-
sults for an interaction model, and the lower right trian-
gle shows fit results for a model containing both additive
and interaction effects of the two loci. The joint model in-
cluding markers on 12 and X is significant (P < .05) by
permutation analysis. A D allele at both loci results in low
levels of the phenotype and a B allele at both loci results in
a high level of the phenotype. The chromosome 12 locus is
the physical location of two clique members: B cell recep-
tor associated protein Bcap29, and myelin transcription
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Figure 5. Multiple QTL mapping analysis. In the upper left tri-
angle, a pseudo-color plot shows the likelihood ratio statistic for
each two-locus interaction. In the lower right triangle, a like-
lihood ratio statistic is depicted for the full two-locus model,
which fits additive effects for each pair of loci and their inter-
action. Significance was assessed by genome-wide permutation
analysis.

factor 1-like protein, Myt1l. An interesting functional and
positional candidate at the Chromosome X locus is inte-
gral membrane protein 1, Itm1. While this is not a mem-
ber of the clique we are analyzing here, it does frequently
cooccur along with Veli3 in many maximal cliques.

In addition to tens of thousands of transcript traits,
we have assembled a database of over 600 organismic phe-
notypes, including many morphometric traits. An under-
standing of the genetic control of these phenotypes can
help explain their evolution. In the present example, we
have found the previously mentioned clique to associate
with behavioral and metabolic phenotypes. This clique
correlates with both midbrain iron levels, and locomotor
behavior. Interestingly, one of the clique members, Gs2na
(GS2 nuclear autoantigen), that, at 46.048 Mb on chro-
mosome 12, is a little too far afield to be a positional QTL
candidate gene, is a striatin family member and the nega-
tive correlation we observe between clique expression and
locomotor behavior is consistent with literature reports of
locomotor impairment associated with decreased levels of
striatin [41]. At this point research becomes hypothesis
driven; indeed, the result of this collaborative analysis is a
simple testable hypothesis, extracted from many billions
of data relations. We are now in the process of evaluating
the hypothesis that genetic variation in iron metabolism
influences expression of the Veli3 clique members in the
brain and consequently affects locomotor activity.

INTEGRATIVE GENOMIC DATA MINING

GeneKeyDB

High-throughput, high volume data like these gene
expression data from genetically variant mice should be
examined in a biological context. The subsets of interest-
ing genes must be analyzed, in part, by using existing in-
formation that describe the role these genes play in bio-

logical processes. When computing and navigating these
data in terms of graphs and networks, we need to have a
way to manipulate various kinds of metadata about sets of
genes and gene products.

We have developed several such tools for genes and
gene products that are discovered from the clique and
QTL data analysis. Most gene-centered data resources
that are generally available for retrieving metadata about
genes are displayed and manipulated in a one-gene-at-
a-time format (eg, Entrez Gene). We have developed
a lightweight data mining environment that allows the
automated integration of various types of data about
sets of genes. This environment is called GeneKeyDB.
This system includes metadata from GenBank, Entrez
Gene, Ensembl, and several other well-established bio-
logical databases. GeneKeyDB uses a relational database
backend to facilitate interactions between tools and data.
Among other functions, GeneKeyDB automatically con-
verts the different database identifiers from these differ-
ent databases. It can, for example, start with GenBank
cDNA identifiers, locate the “sequence feature” informa-
tion from genome sequence data entries, and assist in re-
trieving sequences for detailed analyses. GeneKeyDB can
also obtain various kinds of homologs, functional annota-
tion, or other attributes of genes and gene products. Fur-
thermore, it serves as a repository for results that are cre-
ated by our computational tools.

We have devised two types of computational analyses
that are supported by the underlying GeneKeyDB system.

GoTreeMachine

Gene ontology (GO) produces structured, precisely
defined, common, controled vocabulary for describing
the roles of genes and gene products [42]. GO has
been used frequently in the functional profiling of high-
throughput data. We have developed a web-based tool,
GOTM, for the analysis and visualization of sets of genes
using GO hierarchies [7]. Besides being a stand-alone
functional profiling tool, GOTM can work with other
computational tools for gene set centered integrated anal-
ysis. GOTM has been employed in various ways in this
respect. This includes WebQTL’s use of GOTM to narrow
down candidate gene lists and generate functional profiles
for genes in a relevance network or genes correlated to
complex phenotypes.

We use ontology analysis to evaluate the functional
significance of the cliques found by our graph algorithms,
and prioritize the cliques for further study. Figure 6
depicts a clique of size eight that was detected within
the gene coexpression network constructed using the mi-
croarray data from the RI mouse lines. The five green ver-
tices denote genes that belong to the GO functional cate-
gory of “DNA binding.” The red vertices denote genes that
either have no annotation or are annotated as function
“unknown.” If we randomly pick five genes from all anno-
tated genes on the microarray, the expected frequency of
genes in the category DNA binding is only 0.9. The chance
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Figure 6. A relevant clique containing Veli3.

of finding all five genes in the category DNA binding is
P = .00051 as calculated by the hypergeometric test im-
plemented in GOTM. Out of the 5227 maximal cliques we
generated, ontology analysis has detected a total of 342 of
them that are significantly enriched in one or more GO
categories (P < .01). The clique shown in Figure 6 has a
P value less than .001, and is one of several cliques we are
studying. Note the presence of the gene Veli3.

Batch sequence analysis

We are also deploying integrative methods that at-
tempt to predict cis-regulatory elements (CREs) in the up-
stream regions from sets of genes that are putatively coreg-
ulated. These CREs are thought to be the DNA sites to
which protein regulatory transcription factors preferen-
tially bind in promoters or enhancers and exert regulatory
control of gene expression. We are combining a number of
analyses to look at sets of CREs that are found in a subset
of genes that seems to show strong coregulation and are
consistent with the clique and QTL data.

We have assembled a pipeline, batch sequence analysis
(BSA), that can retrieve the sequence data for the target
genes and their orthologous counterparts in other chor-
date organisms. This pipeline carries out a number of pro-
cesses that enable us to use both coregulated gene sets
and phylogenetic footprinting in an integrated pipeline
to identify putative CREs. An important advantage of the
pipeline is its ability to define the evolutionarily conserved
non-coding sequences, which are thought to contain most
of the CREs [43]. This should substantially reduce the
noise levels. BSA can be carried out in a high throughput,
automated process because of the underlying GeneKeyDB
infrastructure. BSA is routinely using both multiple Em
for motif elicitation (MEME) and motif alignment and
search tool (MAST) as part of the sequence analysis, but
other motif finding and searching methods are under de-
velopment. A set of CRE motifs can be found in cliques or
other interesting subsets of genes with motif searches (like
MEME). We can then use MAST or similar searching tools
to take those sets of putative CREs to do a global search for

all possible targets in a database that contains promoter
sequences from all human, mouse, and rat genes. The lat-
ter step could help define new genes that are targets of a
gene regulatory network that were not initially identified.
The BSA pipeline stores its results in the GeneKeyDB re-
lational database.

SUMMARY AND DIRECTIONS
FOR FUTURE RESEARCH

Our current work demonstrates the use of clique to
extract signal from large genetic correlation matrices. We
also employ genome-scale tools to interpret the shared
molecular function, biological process, cellular localiza-
tion, and sequence motifs of clique members. Despite
what has been accomplished in the BXD lines, the size of
existing RI strain sets limits the power and resolution of
this technique. The Complex Trait Consortium plans to
expand this set with the development of a 1024 RI strain
panel [44]. The creation of this resource will greatly in-
crease the depth of our analysis. The breadth of the anal-
ysis can be expanded almost indefinitely. Although the
work we have described here has been restricted to the
analysis of gene expression microarray phenotypes, any
attribute of these strains that can be measured can in
principle be incorporated into the genetic correlation ma-
trix. We already have a wealth of data on microscale and
macroscale biological phenotypes ranging from cellular
responses to behavior. Novel high-throughput molecular
phenotypes will greatly expand this collection. To acco-
modate such vast increases in data dimensionality, we are
currently in the process of porting our codes to supercom-
puters at Oak Ridge National Laboratory (ORNL) (Ten-
nessee, USA). These are difficult tasks indeed, given the
many novel features of our algorithms. Great care is re-
quired to manage processor and memory resources. Load
balancing can be especially problematic [37]. Initial tar-
gets include a 256-node SGI Altix and a 256-node Cray
X1. In the longer term, we aim to employ the tremen-
dously more powerful machines now under construction
and awarded to ORNL in the recent competition to build
the nation’s next leadership-class computing facility for
science. We believe that with our algorithms and these
platforms we can solve the problem instances previously
considered hopelessly out of reach.
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