
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Journal of Theoretical Biology 542 (2022) 111109
Contents lists available at ScienceDirect

Journal of Theoretical Biology

journal homepage: www.elsevier .com/locate /y j tb i
Contact tracing-induced Allee effect in disease dynamics
https://doi.org/10.1016/j.jtbi.2022.111109
0022-5193/� 2022 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Departamento de Ecología y Gestión Ambiental,
Centro Universitario Regional Este (CURE), Universidad de la República, Uruguay.

E-mail address: matiasarim@gmail.com (M. Arim).
1 Equal authorship.
Matías Arim a,b,1,⇑, Daniel Herrera-Esposito b,c, Paola Bermolen b,d, Álvaro Cabana b,e,
María Inés Fariello b,d, Mauricio Lima f,g, Hector Romero a,b,h,1

aDepartamento de Ecología y Gestión Ambiental, Centro Universitario Regional Este (CURE), Universidad de la República, Uruguay
bCICADA, Centro Interdisciplinario de Ciencia de Datos y Aprendizaje Automático, Universidad de la República, Uruguay
c Laboratorio de Neurociencias, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Uruguay
d Instituto de Matemática y Estadística Rafael Laguardia, Facultad de Ingeniería, Universidad de la República, Uruguay
eCenter for Basic Research in Psychology (CIBPsi) & Instituto de Fundamentos y Métodos, Facultad de Psicología, Universidad de la República, Uruguay
fDepartamento de Ecología, Pontificia Universidad Católica de Chile, Santiago, Chile
gCenter of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
h Laboratorio de Genómica Evolutiva, Dpto. de Biología Celular y Molecular, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Uruguay

a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 July 2021
Revised 22 March 2022
Accepted 24 March 2022
Available online 26 March 2022

Keywords:
SARS
Allee effect
Non-pharmaceutical interventions
Outbreak threshold
Alternative states
Super-spreading
Super-spreader
TEst-TRace-ISolate
TETRIS
Contact tracing, case isolation, quarantine, social distancing, and other non-pharmaceutical interventions
(NPIs) have been a cornerstone in managing the COVID-19 pandemic. However, their effects on disease
dynamics are not fully understood. Saturation of contact tracing caused by the increase of infected indi-
viduals has been recognized as a crucial variable by healthcare systems worldwide. Here, we model this
saturation process with a mechanistic and a phenomenological model and show that it induces an Allee
effect which could determine an infection threshold between two alternative states—containment and
outbreak. This transition was considered elsewhere as a response to the strength of NPIs, but here we
show that they may be also determined by the number of infected individuals. As a consequence, timing
of NPIs implementation and relaxation after containment is critical to their effectiveness. Containment
strategies such as vaccination or mobility restriction may interact with contact tracing-induced Allee
effect. Each strategy in isolation tends to show diminishing returns, with a less than proportional effect
of the intervention on disease containment. However, when combined, their suppressing potential is
enhanced. Relaxation of NPIs after disease containment--e.g. because vaccination--have to be performed
in attention to avoid crossing the infection threshold required to a novel outbreak. The recognition of a
contact tracing-induced Allee effect, its interaction with other NPIs and vaccination, and the existence of
tipping points contributes to the understanding of several features of disease dynamics and its response
to containment interventions. This knowledge may be of relevance for explaining the dynamics of dis-
eases in different regions and, more importantly, as input for guiding the use of NPIs, vaccination cam-
paigns, and its combination for the management of epidemic outbreaks.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Non-pharmaceutical interventions (NPIs) such as testing, con-
tact tracing and isolation (TETRIS), social distancing, and facemasks
have been applied with unprecedented strength and breadth in
managing the COVID-19 pandemic (Flaxman et al., 2020;
Hellewell et al., 2020; Li et al., 2020; Maier and Brockmann, 2020;
Peak et al., 2017; Peak et al., 2020;Walker et al., 2020b). As a general
rule, both observed dynamics and model projections indicate that
the implementation of strong NPIs significantly reduced the total
number of infections compared with uncontained outbreaks
(Dehning et al., 2020; Flaxman et al., 2020; Hsiang et al., 2020; Li
et al., 2020; Maier and Brockmann, 2020; Giordano et al., 2021;
Yang et al., 2021). The effectiveness of NPIs may determine two
alternative states: one of disease containment (Re < 1) and another
of disease outbreak (Re > 1) (Ferretti et al., 2020; Flaxman et al.,
2020; Hellewell et al., 2020; Siegenfeld et al., 2020). Contact tracing
in particular is likely to have significant impact at low infection
numbers (Hellewell et al., 2020; Klinkenberg et al., 2006), but its
effect on disease transmission fades away if the epidemic increases
largely surpassing contact tracing capacities (Hellewell et al., 2020;
Klinkenberg et al., 2006). This is because the larger the number of
infections, the lower the probability of testing all infected individu-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2022.111109&domain=pdf
https://doi.org/10.1016/j.jtbi.2022.111109
mailto:matiasarim@gmail.com
https://doi.org/10.1016/j.jtbi.2022.111109
http://www.sciencedirect.com/science/journal/00225193
http://www.elsevier.com/locate/yjtbi


M. Arim, D. Herrera-Esposito, P. Bermolen et al. Journal of Theoretical Biology 542 (2022) 111109
als, tracking all their contacts, and notifying all contacts for quaran-
tine (Hellewell et al., 2020; Klinkenberg et al., 2006). The fate of
some countries containing COVID-19, and also Ebola, was related
with the performance of their tracing systems (Lewis, 2020). Coun-
tries such as Vietnam, South Korea and Japan scaled tracing capac-
ities to unprecedented levels being able to efficiently handle large
outbreaks (Lewis, 2020). On the other hand, evidence suggesting a
poor performance of contact tracing was presented for the USA or
UK (Lewis, 2020). Beside these extreme scenarios, it is clear that
contact tracing reduces transmission rate, that its performance
depends on infection numbers, and that it interacts with other NPIs,
determining a complex and poorly understood relationship with
epidemic dynamics (Block et al., 2020; Chowell and Nishiura,
2014; Hellewell et al., 2020; Hsiang et al., 2020; Klinkenberg
et al., 2006; Maier and Brockmann, 2020; Moore et al., 2021; Peak
et al., 2017; Peak et al., 2020;Walker et al., 2020b; Yang et al., 2021).

Herewe focus on the positive feedback induced by the saturation
of contact tracing capacities and its interactions with other NPIs,
which has critical consequences in disease dynamics, particularly
at low numbers. This feedback loop connects the saturation of con-
tact tracing with the Allee effect, a central concept in population
biology characterized by the positive feedback between population
abundance and population growth rate at low numbers (Berryman,
1999; Courchamp et al., 1999; Keeling and Rohani, 2011). A strong
Allee effect can determine a transition from negative to positive
growth rate at a given abundance threshold (Courchamp et al.,
1999). In disease dynamics, this is interpreted as an epidemic break-
point, a tipping point below which the outbreak tends to diminish
(Re < 1), but above which the outbreak grows (Re > 1) (Alonso
et al., 2019). However, this phenomenon is not captured in themany
variants of SIR and logisticmodelswidely used for the analysis, fore-
casting and managing of COVID-19 and other emergent diseases
dynamics (Bjørnstad, 2018; Dehning et al., 2020; Flaxman et al.,
2020; Hsiang et al., 2020; Li et al., 2020; Maier and Brockmann,
2020;Wu et al., 2020). We contribute to filling this gap by formaliz-
ing the connection between saturating contact tracing capacities,
the strength of other NPIs, and disease dynamics. We mechanisti-
cally connect the saturation of contact tracing capacities with an
Allee effect, from which abrupt transitions in growth rate are
expected after a threshold in the number of infected individuals is
crossed. We also include the interaction of our model with vaccina-
tion levels. A consequence of the infection threshold is that the vac-
cination level for disease containment is significantly reducedwhen
combined with a strong TETRIS system and reinforced with addi-
tional NPIs as transmission barriers or reduction in mobility.

2. Methods

We analyzed the effect of saturation of contact tracing capaci-
ties with two complementary models. The first model shows a
mechanistic connection between contact tracing, its saturation
with the rise in infection number, and the emergence of a positive
feedback in disease growth rate--an Allee effect. The second one
incorporates this positive feedback in a SIR model in which trans-
mision and recovery rate depend on infection number. The first
model focuses on specific mechanisms that can generate the posi-
tive feedback between infections and growth rate, while the sec-
ond model focuses on the consequences of this feedback without
making its mechanisms explicit. Consequently we refer to these
models as mechanistic and phenomenological respectively.

2.1. Mechanistic effect of saturation in contact tracing on reproduction
number

To analyze the effect of contact tracing saturation on the epi-
demic reproductive ratio (Re), we introduce a model focused on
2

the forward tracing of contacts of detected infections
(Klinkenberg et al., 2006). This model attempts to explicitly
account for the main steps of the contact tracing system: detecting
infections, tracing contacts, and isolating individuals to stop trans-
missions. We focus on the timing of these events and its conse-
quence for disease transmission. In this sense, this model
provides a mechanistic connection between the contact tracing
system and the Allee effect.

First, we define Re
nq (nq: non quarantine) as the reproductive

number (or average number of secondary infections) of individuals
in the absence of contact tracing and quarantine. For clarity, we use
the term quarantine to refer to both ‘quarantine’ and ‘case isola-
tion’. The value of Re

nq is determined by the number of social links
accumulated during the infectious period (Lmax), the probability of
disease transmission in each link (blink), and the probability of hav-
ing a link with a susceptible individual (Psusceptible= (N-I-R-1)/(N-1),
with N being population size and I and R the infected and recov-
ered individuals respectively) thus Re

nq = Psusceptible�blink�Lmax

(Fig. 1A). While the value of blink is reduced by the use of face
masks, hygienic measures, and physical distancing (Prather et al.,
2020), the number of social links Lmax can be reduced through con-
tact tracing and subsequent quarantine (Hellewell et al., 2020;
Lewis, 2020). How much it can be reduced depends on how many
days after infection the individual is detected and quarantined
which depends on the contact tracing system capacity. To model
the limited capacity of the contact tracing and how it affects the
number of social links generated during the infection period, we
introduce a maximum number of cases (K) that can be detected
by the test and trace system in a day. Furthermore, following the
classical consumer-victim literature (Gotelli, 2008), we model the
fraction of infected individuals that are detected (fq) as a Type II
functional response of the number of infected individuals by the
equation fq = K/(I50,D + I),where I50,D is the number of infected cases
at which half the maximum detection capacity is reached. As fq
cannot be >1, we further considered that fq = min(1, K/(I50,D + I)).
This also leads to a total number of detected individuals given by
D = fq�I. The value of I50,D in contact tracing is proportional to the
inverse of the detection efficiency of an infected individual times
the handling time of each infected one (see Gotelli, 2008 pp136).
The total handling time of a case is determined by the time associ-
ated with testing, interviews to find out who was exposed and call-
ing or visiting those exposed individuals to tell them they need to
quarantine (Lewis, 2020). Further, the maximum number of cases
that can be detected (K) is the inverse of the handling time of each
case times the number of tracers. Consequently, the type II func-
tional response could be derived from the contact tracing capaci-
ties and explicitly connects main--and quantifiable--features of
the tracing system and its saturation with the rise in the number
of infections.

We also consider the effect that the increase in contact tracing
demand has in the time lag between infection and detection, and
how this affects secondary infections. For clarity, we refer to infec-
tion by the day of exposure not the day of becoming infectious. For
this, we first introduce a fixed number of calls (or visits) that can be
done by the tracing system each day to locate the detected individ-
uals (Ncalls), each with a probability (Pfind) of finding the individual.
Consequently, the expected number of calls made per detected
individual on a given day is Ncalls/D, which could be >1 (when the
system has idle capacity), and the probability of finding and quar-
antining an infected individual is Pq = 1-(1-Pfind)

Ncalls/D. Thus,
assuming that individuals can be traced immediately after getting
infected, the probability that an individual is contacted and quar-
antined on day d after the date of infection (isolation delay) follows
the geometric distribution P(d) = Pq(1-Pq)

d�1. Note that this proba-
bility decreases when d increases. Also, we assume that during this
period individuals establish social links with infectious potential



Fig. 1. Saturation of contact tracing and disease dynamics. (A) Effective reproduction number as a function of the proportion of the population infected Re(I). Without contact
tracing (green line) the per capita growth rate Re(I) decreases proportionally to I indicating a logistic dynamics. When contact tracing is in place (red and black lines) Re(I) first
increases with the proportion of infected individuals due to the saturation of the tracing system inducing an Allee effect (Eq. (1)). When the Allee effect is strong an epidemic
threshold at low numbers is observed. Arrows highlight the expected trend in infection numbers around the infection threshold. This figure presents an initial state of the
epidemic in which the number of recovered individuals is zero. The growth in recovery numbers–or the advance in immunization–translate these curves to lower
reproductive numbers–reducing the red area in B (e.g. Fig. 3B). For the green line with no NPI, the detection capacity in the model is set to 0, removing the effect of tracing. For
the red line with strong NPI-Allee effect, the model parameters are Pfind = 0.1, NCalls = 800, blink = 0.2, LMax = 14, K = 200 and I50 = 200. For the black line showing weak NPI-Allee
effect, the model parameters are the same as for the strong NPI-Allee effect, except for I50 which is set to 400. All examples use a total population size N of 2000 individuals.
(B) The alternative epidemic states of growth (Re(I) > 1, red) or containment (Re(I) < 1, blue) are determined by both the proportion of the infected population (vertical axis)
and the strength of the different NPIs (horizontal axis). All parameters are fixed to the same values as the strong NPI-Allee effect in panel (A), with the exception of the
parameter whose value was varied (indicated in the horizontal axis).
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according to the function L(d) = Lmax�d4/(d4 + 74) (see He et al., 2020)
and that the infection potential vanishes when the individuals are
isolated. This function assumes a humped distribution in the num-
ber of social links with infection potential with a maximum on the
seventh day after infection, when accumulated social links reach
half its maximum value (Lmax/2). This function accounts for the rise
and decay in virus load after infection (see He et al., 2020). The
increase in accumulated social links with time together with the
distribution of quarantine delays determines the expected number
of social links that an individual generates before quarantine:
L = Rd�1P(d)�L(d) in contrast with Lmax links generated by non quar-
antined individuals. Thus the effective reproductive number of a
quarantined individual is Re

q = Psusceptible�blink�L.
Finally, we can express the effective reproduction number in a

population with limited contact tracing as a function of the num-
ber of infected individuals, Re(I), by adding the mean secondary
infections of quarantined (fq) and non quarantined (fnq) infected
individuals, ponderated by their respective probabilities, as:

Re Ið Þ ¼ Rq
e f q þ Rnq

e f nq ¼ Psusceptible blink L f q þ Lmax f nq
� � ð1Þ

This formulation assumes that:

i. there is a maximum number of cases that can be processed
in a day by the contact tracing system.

ii. the number of cases effectively detected follow a type II
functional response.

iii. infected individuals are detected by the tracing system on
the day in which they were infected. At this moment starts
the effort to contact and isolate these individuals.

iv. transmission has a maximum seven days after the infection,
modeling the accumulation of social links with infectious
potential with a sigmoidal function.

v. the time frame of link accumulation is smaller than the time
interval between infection and second infections.

vi. the contact and isolation of one individual stops
transmission.
3

vii. infected cases not detected in a day will not be detected in
the future.

viii. information about contacts is immediately available to
tracers.

Note that the main messages of this model should not be
affected by changes in assumptions such as the shape of functional
response, the delay in infection and detection, or the rate of social
link accumulation, insofar as a maximum tracing capacity and
accumulation of social links through time persist. Similarly, devia-
tions from other assumptions are expected to reinforce the satura-
tion of the contact tracing system and the strength of the Allee
effect—i.e. positive feedback loop at low numbers.

The interaction between contact tracing and vaccination was
also analyzed for this model. Vaccination affects the probability
of having a link with a susceptible individual, which now has to
also be a non immunized individual. Adding this non-vaccinated
probability in Eq. (1) (Re(I) = Pnon-vaccinated|susceptible � Psusceptible � blink
� (L � fq + Lmax � fnq)) allows us to explore the effect of vaccination
on epidemic containment under different scenarios of contact trac-
ing capacities, social links--e.g. mobility--and adherence to face
masks and other physical distancing measures. We modelled vac-
cination as 100% effective and consequently that all infected indi-
viduals were not vaccinated. However, it should be noted that the
efficiency of vaccination for stopping transmission could explicitly
be included in a similar way adding a ‘‘non effective vaccination
probability”. In our analysis, the non-vaccinated probability may
be considered as the combined fraction of real non-vaccinated
individuals and the fraction of the population in which vaccination
did not elicit a fully protective immune response. The interaction
between vaccination and contact tracing capacities was explored
considering a gradient in the maximum number of cases that can
be detected in a day (K). The parameter I50 was equal to K for these
analyses. In addition, the interaction with other NPIs was evalu-
ated considering different levels of social links (Lmax) and probabil-
ity of disease transmission in each link (blink). For each combination
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of parameters we retain a ‘‘vaccination threshold”, which is the
fraction of individuals vaccinated in the population such that
Re < 1 for all values of I.

2.2. Model of disease dynamics with limited contact tracing

The saturation of contact tracing is translated into an increase in
the transmission rate and the duration of the infection period. Here
we assume that both, the rate of disease transmission, b, and the
average duration of the infection period, s, grow with the number
of infected individuals I(t), following the saturating functions
bt(I) = b0+(bmax-b0)�I(t)/(I50.b + I(t)) and st(I) = s0+(smax-s0)�I(t)/(I50.
s + I(t)) respectively (Fig. A.1). These functions capture the satura-
tion mechanisms considered in the previous model, but are not
limited to this specific scenario, accounting for several ones in
which containment capacity decreases with infection number
(e.g. Abdelrazec et al. 2016; Chowell and Nishiura, 2014; Gumel,
2012). The parameters I50.b and I50.s are the number of infections
at which transmission rate and infection period attain half of its
maximum values bmax and smax. b0 and s0 represent the smaller
transmission rate and infection period, which are attained at the
lower level of infection. The better the performance of a tracing
system is, the larger the I50.b and I50.s will be. These parameters
resume the different components of the tracing strategy. The
dynamics of the model then obey the following formulas:

dS=dt ¼ � bt Ið ÞIS=N ð2Þ

dI=dt ¼ bt Ið ÞI S=N � I=s Ið Þ

dR=dt ¼ I=s Ið Þ
The effective reproductive number in this model is determined

by Re = b(I)� (S/N)� s(I). Following the logic of the previous model,
we estimated the association between Re and I, as well as, its
dependence on the parameters bmax, I50.b, b0, smax, I50.s, and s0.
These parameters capture the saturation in contact tracing (I50.b,
I50.s), the strength of other NPIs (bmax, smax) and the maximum
effect of the intervention (b0 and s0). Nevertheless, an explicit
account for the mechanisms determining these variations is not
included. In this vein, is important to note that this model repre-
sents more generally any process in which the transmission rate
or the duration of the infectious period increases with I: a phe-
nomenon expected in different epidemiological scenarios (e.g.
Alonso et al., 2019; Chowell and Nishiura, 2014; Gumel, 2012).
3. Results

In Fig. 1, we show the relation between the effective reproduc-
tive number of the disease—per capita growth rate—and the pro-
portion of individuals infected at a given time, as obtained from
the mechanistic model of the effect of saturation on contact trac-
ing. These plots present an initial state of the epidemic in which
a fraction of the population was infected and thus there are no
individuals in the population who recovered from the disease.

In the absence of contact tracing the effective reproductive
number of the disease proportionally decreases with the number
of infections (Fig. 1A). This is the basic logistic dynamic (Gotelli,
2008), which supports the use of logistic models to forecast infec-
tion dynamics in different diseases (Chowell et al., 2019; Roosa
et al., 2020; Viboud et al., 2016). However, when contact tracing
is implemented, the effective reproductive number is reduced
and a positive relationship between the infected individuals in a
population and the epidemic reproduction is expected, conforming
an Allee effect (Berryman, 1999; Courchamp et al., 1999). In partic-
ular, when contact tracing is strong enough, it is expected that the
4

epidemic does not take off at low infection numbers (Re(I) < 1),
requiring a minimum level of infections (I*) to cause an outbreak
(Re(I) > 1). The magnitude of the contact tracing response (K, Ncalls,
see methods) has a nonlinear relationship with outbreak threshold
I* (Fig. 1B, upper row). In addition, interactions with other NPIs as
transmission barriers and social distancing (blink and Lmax respec-
tively, see methods) also produce a nonlinear relationship when
interacting with a saturating model of contact tracing (Fig. 1B,
lower row). Alternative states of growing or diminishing dynamics
were considered elsewhere for COVID-19 and other diseases as a
response to the strength of NPIs (Ferretti et al., 2020; Flaxman
et al., 2020; Hellewell et al., 2020; Siegenfeld et al., 2020; Grantz
et al. 2021). Here, we show that the transition from containment
to outbreak (i.e. Re(I) < 1 ) Re(I) > 1) may be also determined by
the number of infected individuals (Fig. 1A and B).

The same messages about the emergence of an Allee effect and
its dynamic consequences are obtained when the saturation mech-
anism is included in a general SIR model (Fig. 2). The saturation of
the contact tracing at high infection numbers (large I50.b and I50.s)
or strong implementations of other NPIs as transmission barriers
and reduction in social interactions (represented by the bmax) or
self isolation (smax), may determine alternative states of growing
or diminishing dynamics. However, alternative states are also
determined by the number of infected individuals (Figs. 1 and 2).
Figs. 1 and 2 may appear redundant; however, it is the consistency
in the messages obtained by the two complementary approaches
that has to be highlighted. Both, the mechanistic derivation of
the effect of contact tracing on Re and the phenomenological
derivation proposed in the SIR model, show that the infection out-
break depends not only on the strength of interventions, but also,
on the level of infection attained in the population. In addition,
both approaches indicate that the infection threshold and the pop-
ulation immunity present nonlinear interactions with other NPIs.

Contact tracing systematically reduces the fraction of the popu-
lation that has to be vaccinated to ensure epidemic containment
(Fig. 3). Further, a nonlinear relationship was observed with a steep
decrease in the required vaccination level to revert epidemic
growth rate when contact tracing and other NPIs are implemented.
The tracing strategy was found to interact with other NPIs, sug-
gesting that a strong contact tracing system, jointly with transmis-
sion barriers and reduction in mobility may promote the
containment of the epidemic at significantly lower levels of vacci-
nation than those required when vaccination is not combined with
a set of NPIs.
4. Discussion

NPIs have been historically used for the management of epi-
demics. However, the need for a much better understanding of
its connections with disease dynamics, and with other type of
interventions, was repeatedly claimed (Hellewell et al., 2020;
Klinkenberg et al., 2006; Lee et al., 2012; Markel et al., 2007;
Moore et al., 2021; Peak et al., 2017; Peak et al., 2020; Yang
et al., 2021). Here we focus on contact tracing and its dependence
on the number of infections (I), their interaction with other NPIs
and vaccination, and their effect on disease dynamics. In particular,
we formally connect the saturation of tracing capacities with the
emergence of a positive feedback in disease growth rate that con-
forms to an Allee effect. The modelling framework herein pre-
sented considers explicitly the synergistic effects of the contact
tracing system, alternative containment interventions, and
vaccination (Moore et al., 2021; Peak et al., 2020; Yang et al.,
2021). Distancing interventions are represented by the parameter
Lmax—social interactions—, barriers to transmission by the parame-
ter blink –transmission probability in each interaction—and the



Fig. 2. Saturation processes and disease dynamics. These results are similar to those presented in Fig. 1 but obtained from a general SIR model with a rise in transmission rate
(b) and infectious period (s) with I. (A) Effective reproduction number as a function of the proportion of the population infected Re(I). For the green line (SIR without NPIs), b
was fixed to bmax and swas fixed to smax. For the red line (model with saturable NPIs inducing strong Allee effect), the model parameters were: bmax = 0.7, smax = 4, I50,b = 100,
I50,s = 100, and b0 = s0 = 0. For the black line (model with staurable NPIs inducing a weak Allee effect), the same parameters as for the red line were used, except for the
modifications of b0 = 0.4 and s0 = 3. Arrows highlight the expected trend in infection numbers around the infection threshold. (B) The alternative epidemic states of growth
(Re(I) > 1, red) or containment (Re(I) < 1, blue) are determined by both the proportion of the infected population (vertical axis) and the transmission and infectious period
parameters. These parameters capture the saturation in contact tracing with the rise in infection number (I50.b, I50.s) and the strength of other NPIs (bmax, smax). Parameters
used were the same as for the strong Allee effect in panel A, with exception of the parameter varied in the horizontal axis.

Fig. 3. Interaction between immunization (vaccination and recovered population fraction) levels and contact tracing for different strengths of social interactions and
transmission barriers. (A) Vaccinated threshold for population immunity as a function of the contact tracing capacity (horizontal axis) and for different levels of social
interactions (left) and of hygienic measures (right), as indicated by the line colors. The estimates were obtained using the same model as for the strong Allee effect in Fig. 1A,
with the same model parameters, except for those that are varied in the plots. (B) Relation between reproductive value Re and proportion of infected individuals for different
levels of population vaccination assuming a 100% effective vaccine. Reduction in vaccine effectiveness has the same effect as vaccination in a reduced fraction of the
population. Estimates are obtained using the same parameter values as in Fig. 1A for the strong Allee effect.
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strength of the contact tracing system by the parameters K and
Ncalls—maximum number of cases that could be detected and calls
alerts in a day respectively. As it becomes evident in Fig. 1B, the
effect of contact tracing capacities on disease dynamics is contin-
gent to the strength of the other interventions. Models oriented
to forecast epidemic dynamics in alternative scenarios and guide
management strategies may have to consider the Allee effect to
properly capture the mechanisms that govern disease trajectories
(e.g. model 2).

Models may inform about the expected epidemic dynamic and
the potential performance of alternative containment strategies
(Bubar et al., 2021; Grantz et al. 2021; Moore et al., 2021; Yang
et al., 2021) but are frequently limited by the sparsity of data
(Fitzpatrick and Galvani, 2021). In this context, models capturing
basic mechanisms could be particularly important to provide a
general understanding of the epidemic dynamics and intervention
consequences (Fitzpatrick et al., 2019). On one hand, the two
models herein considered provide general insights about the
mechanisms determining epidemic dynamics when contact trac-
5

ing, other NPIs, and vaccination are involved. In particular, the
emergence of a positive feedback at low numbers may have large
dynamic consequences but it was not included in the SIR and logis-
tic models widely used for the analysis of COVID-19 dynamics. The
dependence of infection or recovery rates of the infection number
is probably a hypothesis that has to be included when epidemio-
logical models are fitted to observed dynamics; which may signif-
icantly enhance the descriptive and forecasting potential of
models. On the other hand, the first model considered the basic
mechanisms connecting tracing capacities with its saturation and
the Allee effect and the second model considered the incorporation
of this phenomenon in general SIR models--or its variants. These
two models do not demand large amounts of information and
may be parametrized with data that is frequently available. When
tracing systems are implemented, the information required to
parametrize our mechanistic model (Eq. (1)) is typically recorded,
and may be used to fit this model or alternative formulations
adapted to specific scenarios. Similarly, in the SIR model, the
relationship between infection number and the rates of disease
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transmission and case isolation can be empirically estimated by fit-
ting the SIR model with saturation (equation (2)) to epidemic data.
However, it should be highlighted that other nonlinear functions or
non monotonic functions could better describe the empirical rela-
tionship between transmission (b) and recovery (s) rates and the
infection number and should be also considered. For example,
the balance between saturation of containment capacities with
the increase in effectiveness in the detection of infected individuals
may determine more complex nonlinear relationships--e.g.
U-shaped or humped. Both their suitability in phenomenological
models are the proximal mechanisms involved may be a matter
of further theoretical and empirical attention.

4.1. Hysteretic behavior of epidemics

Our results emphasize the importance of timing in NPIs deploy-
ment (Pei et al., 2020). Interventions with capacity for epidemic
containment at low numbers, if implemented after the disease sur-
passed the threshold, will likely fail (Fig. 4, points i and iv) (Alonso
et al., 2019; Chowell and Nishiura, 2014; Hellewell et al., 2020).
Similarly, once a containment scenario is achieved through strong
measures, the relaxation of NPIs and contact tracing has to be done
in attention to the epidemic threshold in order to avoid outbreak
resurgence (Fig. 4, points i -> v). In this context, early warning indi-
cators of approaching these tipping points become crucial. For
example, when the disease is contained, the fraction of reported
infections with no epidemiological link (not detected by the tracing
system) and the time between individual exposure and quarantine
should decrease through time (Fig. A.2). A systematic increase in
these indicators may be an adequate early warning signal that con-
tainment could be compromised. It should be noted that the NPIs,
as modelled here, show diminishing returns (Gros et al., 2021;
Gross et al., 2006). This means that the effect of distancing, trans-
mission barriers and contact tracing on Re increases less than pro-
portional to the strength of the interventions. A consequence of
diminishing returns is that at low infection numbers a single inter-
vention may push the Re below 1, but at high infection numbers,
strengthening the intervention will produce a proportionally lower
effect on the containment of the disease. However, combining
alternative interventions may operate synergistically in reducing
Re. In our SIR model, the effect of interventions is represented by
Fig. 4. Relaxation strategies of NPIs and epidemic containment. In trajectory i ? ii ? iii ?
infections. Return to previous strength of NPIs fails to contain the outbreak. In trajectory
keeping epidemic under control.

6

the functional relationship between number of infections and the
recovery and transmission rates. Effective and combined interven-
tions will saturate at larger infection numbers, raising the outbreak
threshold, and consequently, improving the conditions for disease
containment.

The Allee effect may also interact with stochasticity and exter-
nal forcing in the course of the epidemics. The role of stochasticity
and the Allee effect have been addressed in biological invasions
(Taylor and Hastings, 2005). In the context of epidemics, super-
spreading events are considered as main drivers of disease dynam-
ics at low numbers (Lloyd-Smith et al., 2005; Zhang et al., 2020).
Our results suggest that these infection pulses may have qualita-
tively different effects when the Allee effect is involved. Indeed, a
super-spreading events may determine the surpassing of the infec-
tion threshold, I*, moving the disease into the outbreak zone, with
subsequent exponential increase in infections. Similarly, external
forces such as transmission barriers or variation in the number of
social links may induce changes in the relationship between the
effective reproduction number and the fraction of infected individ-
uals (Figs. 1-3). As a consequence, the effect of variation in mobility
or face mask usage on Re depends on the infection state, determin-
ing that their correlation--or lack of it—at some level of infection
may not directly extrapolate to other infection levels (Royama,
1992). In this sense, the observed variability in the correlation
between Re and mobility at different infection levels could be
related to real changes in their association at low numbers and
not only to changes in report quality (e.g. Leung et al., 2021). Sim-
ilarly, populations affected by a correlated external forcing--as
changes in mobility--tend to synchronize their dynamics (Moran
effect sensu Royama (Royama, 1992; Royama, 2021)), a scenario
in which the Allee effect may promote the simultaneous control
of the outbreaks or enable global resurgence. However, the Allee
effect can also determine a spatial mosaic in which some popula-
tions are over and others under the infection threshold, stabilizing
regional dynamics by means of preventing the spatial homogeniza-
tion (Taylor and Hastings, 2005). This could be related with the sta-
bilization and persistence of disease dynamics at low numbers
observed in COVID and other diseases. These phenomena should
not be ignored when considering strategies for controlling
COVID-19, such as the coordinated implementation of measures
among countries and regions (Ruktanonchai et al., 2020).
iv an abrupt relaxation surpasses the epidemic threshold provoking an increase in
i ? v the gradual relaxation of NPIs follows the decrease in the infected population
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4.2. NPIs and vaccination synergistic effect on reaching herd immunity

Understanding the interaction between vaccinations and NPIs
together with the relaxation of tracing systems (TETRIS) is a main
issue in Covid-19 management worldwide (Fitzpatrick and
Galvani, 2021; Moore et al., 2021; Yang et al., 2021). One striking
result of our models is the impact that NPIs, particularly contact
tracing, and the induced Allee effect, may have on the herd immu-
nity threshold. In Eq. (1), vaccination reduces the parameter Psuscep-
tible, proportionally reducing the expected Re for each value of I
(Fig. 3). Vaccination operates as an external forcing that induces a
proportional change in Re for each value of infections, that is, in
absolute values it is larger for larger values of Re. In population
dynamics, this kind of effect of an exogenous variable--
vaccination or recovery immunity in this case--is known as a non-
linear translation because it changes the shape of the Re – Infection
relationship (Royama, 1992). This improves conditions for reaching
a Re <1with vaccination (Fig. 3). This is particularly relevant because
combiningNPIswith vaccinationmay contain the epidemic atmuch
lower levels of immunization (see also Moore et al., 2021; Yang
et al., 2021). This also implies that herd immunity could be attained
in shorter times than those required with strategies exclusively
based on vaccination. Finally, this interaction between vaccinations
and NPIs determines that variations in NPIs strength, or in the com-
bination of containment strategies, among regions may produce
variation in the vaccination level required to attain herd immunity.

4.3. General remarks

In this work we focused on the saturation of contact tracing
capacities, however, other elements of the NPIs strategy may also
saturate with the number of infections. The effect of face masks,
hygiene measures, and physical distance is expected to decrease
with a higher pathogen load in the environment (Prather et al.,
2020). Indeed, for COVID-19 it was reported that among non-
household contacts the infection odds ratio when an individual is
exposed to more than one case is close to four (Ng et al., 2020).
The healthcare system’s saturation delays case isolation, extending
the infectious period, and may produce shortages of protective
material, increasing transmission rate (Abdelrazec et al., 2016;
Chowell and Nishiura, 2014). It is also true that awareness-
driven individual behaviour or reactive management strategies
may induce the opposite phenomenon, increasing the contact trac-
ing and other NPIs performance with the rise in infections (Leung
et al., 2021; Lewis, 2020; Weitz et al., 2020). In addition, the effi-
ciency of tracers in ‘‘capturing” infected individuals may increase
with the infection numbers. At low numbers contact tracing efforts
result in identifying non-infected individuals. However, as the
infectiousness burden goes up in the community, the probability
a contact is truly infected will also increase; this means that num-
bers of contagions stopped by the tracing system could be particu-
larly high. Even if tracers are not enough to revert the epidemic
growth, they may have a large role in the reduction of new cases,
thus in deaths and in the occupation of hospital facilities. This
decrease or increase in intervention effectiveness in response to
the state of the epidemic may generate positive and negative feed-
backs in disease growth rate (Berryman, 1999; Bjørnstad, 2018;
Elkington et al., 1995; Royama, 1992; Royama, 2021). In these
cases, NPIs operate as a reactive environment that may revert
disease growth rate but that may also induce cyclic dynamics,
particularly at low infection numbers when they have a strong
effect on disease transmission (Berryman, 1999; Lima, 2009;
Royama, 1992; Royama, 2021; Turchin, 2003; Weitz et al., 2020).
Large amplitudes in induced cycles may provide the conditions
for surpassing the infection threshold and the epidemic outbreak,
representing a phenomenon that should be better understood.
7

In spite of the large attention to the Allee effect in Ecology, its
detection on real population dynamics is recognized as a significant
challenge (Johnson et al., 2006; Tobin et al., 2007). Accelerations
with a qualitative change in disease growth rate were frequently
observed in COVID-19 epidemics (e.g. Carroll et al., 2020; Kang
et al., 2020; Laxminarayan et al., 2020). An Allee effect induced by
the saturation of contact tracing capacities or other NPIs may
explain some of these abrupt transitions in COVID-19 spreading.
However, temporal change in intervention strength (Li et al.,
2020), awareness-driven behavior (Weitz et al., 2020), change in
testing strategy (Omori et al., 2020) and aggregation of local dynam-
ics in a regional dynamic (Kang et al., 2020) can also determine the
observation of abrupt transitions in the disease growth rate. As is
the case for population dynamics studies, the quantification of the
Allee effect in disease dynamics may require novel approaches,
which could include the interaction with additional mechanisms
togetherwith idiosyncratic features and information from each par-
ticular system (Johnson et al., 2006; Tobin et al., 2007).

Amidst an ongoing worldwide outbreak of COVID-19, studies
connecting contact tracing and other NPIs with disease dynamics
are all the more needed (Block et al., 2020; Haug et al., 2020;
Hsiang et al., 2020; Maier and Brockmann, 2020; Moore et al.,
2021; Peak et al., 2017; Peak et al., 2020; Ruktanonchai et al.,
2020; Walker et al., 2020a; Yang et al., 2021). Our results link NPIs
in general, and contact tracing in particular, with the substantial
knowledge built around the Allee effect and tipping points in ecol-
ogy (Courchamp et al., 1999; Scheffer, 2009; Taylor and Hastings,
2005), and also with previous studies that related the saturation
of NPIs, reactive individual behavior, and positive feedbacks with
disease dynamics (Abdelrazec et al., 2016; Alonso et al., 2019;
Chowell and Nishiura, 2014; Funk et al., 2010; Gross et al., 2006;
Gumel, 2012). The recognition of a contact tracing-induced Allee
effect, its interaction with vaccination and the existence of tipping
points contributes to the understanding of several features of dis-
ease dynamics and its response to containment interventions. It
becomes clear that this result opens up interesting questions from
both the theoretical and the applied realms. This knowledge may
be of relevance for explaining the dynamics of COVID-19 and other
diseases in different regions and, more importantly, as input for
guiding the use ofNPIs relaxation strategies, vaccination campaigns,
and its combination for the management of epidemic outbreaks.
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Fig. A1. Relationship between transmission rate b(I) and infection period s(I) with the number of infected individuals in the SIR model with saturation of tracing capacities
analyzed in the article. Both parameters grow with the number of infected individuals I, following the saturating functions bt(I) = b0+(bmax-b0)�I(t)/(I50.b + I(t)) and
st(I) = s0+(smax-s0)�I(t)/(I50.s + I(t)) respectively. The parameters I50.b and I50.s are the number of infection numbers at which transmission rate and infection period attain half of
its maximum values bmax and smax. b0 and s0 represent the smaller transmission rate and infection period, which are attained at the lower level of infection. The saturation
parameters I50.b and I50.s summarize the different components of the tracing strategy: the better performance of a tracing system is, the larger the I50.b and I50.s values will be.
In this example, b0 = s0 = 0, bmax = 0.5 and smax = 4.

Fig. A2. Trends in the proportion of infections without epidemiological link (A) and on the time between case detection and isolation (B) with the rise of infection number.
The horizontal dashed lines indicate Re = 1 and the vertical dashed line the infection number at which Re suprass 1 determining the infection outbreak. The interceptions of
these vertical dashed lines and the black lines indicate the proportion of infections without epidemiological link (A) and the time to isolation (B) at which containment
capacities are surpassed by the infection number. The parameters used in the simulation are the same as in Fig. 1 in the main text: For the red line with strong NPI-Allee effect,
the model parameters are Pfind = 0.1, NCalls = 800, blink = 0.2, LMax = 14, K = 200 and I50 = 200 and N = 2000.
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