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AbstrAct
Lupus is a complex heterogeneous disease characterised 
by autoantibody production and immune complex 
deposition followed by damage to target tissues. Animal 
models of human diseases are an invaluable tool for 
defining pathogenic mechanisms and testing of novel 
therapeutic agents. There are perhaps more applicable 
murine models of lupus than any other human disease. 
There are spontaneous models of lupus, inducible models 
of lupus, transgenic-induced lupus, gene knockout induced 
lupus and humanised mouse models of lupus. These 
mouse models of lupus have contributed significantly to 
our knowledge of the pathogenesis of lupus and served 
as valuable preclinical models for proof of concept for 
new therapies. Despite their utility, mouse models of lupus 
have their distinct limitations. Although similar, mouse and 
human immune systems are different and thus one cannot 
assume a mechanism for disease in one is translatable 
to the other. Efficacy and toxicity of compounds can vary 
significantly between humans and mice, also limiting 
direct translation. Finally, the heterogeneous aspects of 
human lupus, both in clinical presentation, underlying 
pathogenesis and genetics, are not completely represented 
in current mouse models. Thus, proving a therapy or 
mechanism of disease in one mouse model is similar to 
proving a mechanism/therapy in a limited subset of human 
lupus. These limitations, however, do not marginalise 
the importance of animal models nor the significant 
contributions they have made to our understanding of 
lupus.

IntroduCtIon
Research into human diseases spans in vitro 
assessments to preclinical animal models of 
disease to in vivo human assessments and 
finally testing of therapeutics in humans. 
This step-by-step model has resulted in most 
of the major breakthroughs in new treat-
ments for disease. Perhaps more so in lupus 
than any other human disease, mouse models 
have contributed significantly to our under-
standing of the disease and the development/
testing of new treatments for the disease.1 For 
the last four decades, we have characterised 
spontaneous murine models of lupus that 
were defined genetically and immunologically 
and served as the initial step in supporting or 
not the progress of new treatments to clin-
ical trials for lupus.2 3 As science and medi-
cine progressed, transgenic techniques, gene 

knockout techniques, inducible knockouts 
and humanised mouse models were devel-
oped that allowed further insight into the role 
of a single gene or molecule in lupus patho-
genesis.4 5 Most of the mouse models of lupus 
produce autoantibodies and develop immune 
complex glomerulonephritis and thus provide 
insight into the mechanisms of loss of toler-
ance and the development of glomerulone-
phritis.5 No mouse model is completely repre-
sentative of human lupus, perhaps due to the 
fact that human lupus is so heterogeneous 
that not one inbred mouse model can mani-
fest the broad spectrum of disease present in 
human lupus.6 7 Despite this shortcoming and 
the growing trend to move more into studying 
humans rather than mice, murine models of 
lupus have and continue to provide signif-
icant insight into disease pathogenesis and 
treatment. In this review, we cover selected 
mouse models of lupus; however, there are 
many others that are not included due to the 
expanding number of knockout models and 
transgenic models that develop a disease with 
similarities to human lupus.

Spontaneous models of lupus
Spontaneous models of lupus were recog-
nised four decades ago beginning with the 
New Zealand Black crossed with the New 
Zealand White mouse, the NZB/NZWF1 
(BW) mouse.2 BW mice produce autoanti-
bodies (ANA and anti-dsDNA predominantly) 
and develop immune complex glomerulone-
phritis and mild vasculitis.3 Similar to humans, 
lupus develops primarily in females with lesser 
percentage and severity in male mice. They 
do develop splenomegaly and hypergam-
maglobulinemia.3 They do not manifest other 
clinical manifestations of lupus such as rash 
or arthritis. Disease develops slowly, primarily 
after 6 months of age, with 50% mortality 
in female mice at 9 months of age and in 
male mice at 15 months of age. BW mice 
were studied early on regarding mechanisms 
of loss of tolerance, autoantibody produc-
tion, impact of sex/gender/sex hormones 
on disease and pathogenic factors in renal 
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disease development.3 They were used in the preclinical 
testing of many of the therapeutics taken to clinical trials 
in lupus.8 9 One drawback for research of the BW mice is 
the long disease incubation time as well as the predomi-
nantly single-organ involvement. Investigators have used 
strategies to enhance disease expression including giving 
adenoviruses that express interferon (IFN)α leading to 
earlier disease expression or injecting toll-like receptor 
(TLR)7/9 agonists to accelerate disease development.10 11 
Another drawback is the need to breed the two strains 
together to get offspring for study. Nevertheless, they 
remain a useful staple for studies of lupus.

Related strains to the NZB/NZWF1 mice are the 
NZM strains. These mice were generated by mating of 
pairs of NZB/NZWF1 mice for multiple generations. 
Over 20 NZM strains were generated and characterised 
for manifestations of lupus-like disease.12 Two of them 
are used in lupus research laboratories today. One is 
the NZM2410 mouse. NZM2410 mice, like the parental 
NZB/NZWF1 mice, make autoantibodies and develop 
immune complex glomerulonephritis.13–16 They do not 
develop vasculitis. Different from B/W mice, the develop-
ment of lupus occurs more or less at the same time and 
similar severity in males and females, though there are 
differences. The NZM2410 mouse strain was used exten-
sively for defining the genetics of lupus. By backcrossing 
to C57BL6 mice, Mohan, Wakeland and Morel generated 
a series of congenic mice that contained the suscepti-
bility loci for lupus (sle1,2,3) mice.13 17 18 They further 
characterised the phenotype of immune abnormalities 
and disease expression for each of the three loci and fine 
mapped the genes involved, primarily focusing on the 
sle1 locus.16 There are a number of genes in this locus 
that they further characterised, including identifying 
complement receptor 2 as one of the candidate genes.19 
NZM2410 mice have the advantage over B/W mice in that 
they are a single strain that can be expanded by breeding 
to each other. They, like BW mice, are primarily a model 
of immune complex glomerulonephritis without skin 
disease or arthritis.14 Disease develops faster in NZM2410 
mice than in B/W mice with a 6-month 50% mortality 
rate. They are being used currently in preclinical trials 
of candidate drugs.20 They have significantly contributed 
to our understanding of multi-genic interactions in the 
pathogenesis of lupus. The congenic sle1,2,3 mice, which 
express the susceptibility loci of NZM2410 mice on the 
C57Bl6 background, are also used extensively.21 Different 
transgenes and gene knockouts can be more rapidly bred 
onto the sle1,2,3 background as most transgenes and 
knockouts are on the B6 genetic background. Thus, one 
can backcross a gene knockout or transgenic much more 
quickly onto the sle1,2,3 compared with the time-inten-
sive process of crossing to Murphy Roths Large (MRL)/
lymphoproliferation (lpr) or NZM2410 mice, allowing 
quicker assessment of the impact of the knockout or 
transgene on disease.22 23 One can derive congenic mice 
to study on the sle1,2,3 strain after only 3–4 generations, 

while it takes 10–12 generations of backcrosses to fully 
backcross to NZM2410 or other lupus strains.

The other NZM strain being studied is the NZM2328.12 24 
They also develop renal disease, produce anti-dsDNA anti-
bodies, but slower onset of disease with 50% mortality 
occurring at 9 months of age. This strain has the advan-
tage that disease is much more prevalent in females 
than males similar to BW mice and human disease.12 25 26 
The other interesting feature of this strain is that they 
have two-stage renal disease, acute glomerulonephritis 
followed by a more chronic nephritis.25 26 These mice 
were also used to show that autoantibodies, especially 
anti-dsDNA antibodies, are not required for development 
of renal disease.27 28

A third strain of mice, the MRL/lpr mouse was gener-
ated by intercrossing four different strains of mice (LG, 
B6, AKR and C3H).29 30 MRL/lpr mice are unique among 
lupus strains in that they develop a full panel of lupus 
autoantibodies (ANA, anti-dsDNA, anti-Sm, anti-Ro 
and anti-La) and have additional lupus manifestations 
including arthritis, cerebritis, skin rash and vasculitis.31–33 
The disease, however, is more prevalent and accelerated 
in females, but not as prominent as in B/W or NZM2328 
mice, with 50% mortality at 6 months. The background 
genetics of the MRL/lpr mouse is complex, but the lpr 
gene is a single-gene mutation in the Fas receptor gene.34 35 
This gene is important in apoptosis of B cells and T cells.36 
The defect in Fas thus leads to marked splenomegaly and 
lymphadenopathy, primarily made up of an unusual set 
of ‘double-negative T cells’ (CD3+CD4–CD8–).37 38 The 
role of these double-negative T cells remains unclear, 
but the lpr gene significantly accelerates development 
of disease compared with MRL/+ mice that lack the Fas 
mutation.39 40 A deficiency of Fas ligand (called gld) has a 
similar accelerating effect on lupus-like disease as the Fas 
receptor on the MRL background.41 It is of interest that 
although Fas-deficient humans have lymphadenopathy 
and other immune abnormalities they do not develop 
a lupus-like syndrome, perhaps due to their not having 
an otherwise susceptible genetic background.42 Simi-
larly, B6, BALB/c, C3H and AKR mice, onto which the 
lpr gene was bred, develop splenomegaly, autoantibodies 
and lymphadenopathy, but have very mild autoimmune 
disease.43 44 The MRL+ mouse lacks the lpr mutation. 
These mice develop a more benign lupus phenotype at 
a much later age (18 months) and are used primarily to 
study accelerants of disease.30 45 The MRL/lpr mouse is 
used extensively for assessments of candidate treatments 
for lupus due to the more rapid onset of disease and the 
multiple manifestations of disease.46–48 The mouse is not a 
perfect model for human lupus as, unlike in the majority 
of human lupus, disease is not primarily driven by IFNα, 
but more IFNγ, and the dominance of the lpr mutation 
in accelerating disease also differs from human lupus.10 49

Another spontaneous murine model of lupus is the 
BXSB mouse. This mouse model is different from all 
others as disease only occurs in male mice. The genetic risk 
for disease was mapped to a locus on the Y chromosome 
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referred to as Yaa.50 51 Two groups near simultaneously 
identified yaa as a translocation of a region of the X chro-
mosome onto the Y chromosome.52–54 This region was 
shown to contain the TLR7 gene and subsequent eloquent 
studies confirmed it is the duplication and resultant over-
expression of TLR7 that is required for lupus-like disease 
expression.53 The Yaa genetic locus was then bred onto 
other lupus-prone backgrounds and shown to accelerate 
and enhance disease expression.55 56 This discovery was 
critical in demonstrating the important role of TLR7-in-
ducing increased type I IFNs as a causative pathway for 
lupus.53 Disease in the BXSB mouse is limited, similar 
to most other models, to glomerulonephritis. There are 
other spontaneous lupus mouse models, including SNF1 
mice, whose disease expression is similar to that of BW 
mice.56 Use of SNF1 mice and other models is limited 
compared with the above-listed strains.

Most of these strains have served as preclinical models 
for the testing of potential new lupus therapies. Therapies 
directed at the BAFF/BLys axis, IFN, interleukin (IL)17, 
B cells, plasmablasts, T cells, dendritic cells and TLRs, 
among many others, were given to at least one of the 
murine lupus models.57–60 Unfortunately, efficacy in a 
mouse model of lupus does not always translate to efficacy 
in human lupus, as the therapies that failed in human 
trials, all had efficacy in preclinical mouse models.61 
Given that the mouse strains are genetically alike and 
experimental conditions and concomitant meds are easily 
controlled, compared with the heterogeneity of human 
lupus and confounders present in any human experi-
ment, success in mouse studies can only be considered a 
first necessary step in drug development.

Induced/accelerated models of lupus
The spontaneous models of lupus provided important 
insight into the complex genetics of lupus, as well as the 
potential for a single-gene mutation to markedly accel-
erate/enhance disease expression. Lupus in humans, 
however, is believed to be the result of an environmental 
factor triggering disease in a genetically prone individual. 
Identifying the environmental trigger has been as elusive 
or more so than defining the susceptibility genes. Perhaps 
the most widely used murine model of induced disease 
is the pristane-induced model.62 Pristane is a mineral oil 
that was given intraperitoneally in BALB/c mice to induce 
peritoneal irritation and enhance the yield of monoclonal 
antibodies from ascites when hybridomas were subse-
quently injected. Satoh et al noted that pristane-injected 
mice, after a number of months, developed a lupus-like 
disease with immune complex glomerulonephritis, mild 
erosive arthritis and many lupus-associated autoanti-
bodies.63 A number of strains of mice develop a lupus-
like disease following pristane injection. B6 mice, when 
injected with pristane, develop low-grade autoimmunity, 
but also develop pulmonary vasculitis and pulmonary 
haemorrhage, yielding a valuable animal model for stud-
ying this rare, but devastating complication of lupus.64–66 
A number of studies have identified key pathways involved 

in development of disease that are relevant to human 
lupus. Among other key findings, studies demonstrated 
that pristane-induced lupus is highly dependent on over-
production of type I IFNs, similar to over half of patients 
with lupus.67 68 This overproduction of type I IFNs requires 
expression of TLR7.67–70 Pristane-induced lupus is the 
best example of an environmental factor inducing lupus-
like disease in a strain that otherwise is not autoimmune.

A more recently developed mouse model for lupus 
used resiquimod cream administered to the ears of 
specific strains of mice.71 72 This cream, containing a 
TLR7 ligand, is in human use in management of pre-can-
cerous skin lesions. When repeatedly rubbed onto the 
ears of BALB/c mice and limited other strains, a lupus-
like disease develops in 2–4 weeks with autoantibody 
production, splenomegaly and immune complex glomer-
ulonephritis. The mice exhibit, as expected, heightened 
levels of type I IFN activity.71 72 Unfortunately, induction 
of disease in B6 mice is less predictable, thus limiting, 
to some extent, the ability to use this model to discern 
disease mechanisms and key pathways using transgenic or 
genetic knockout mice. The rapidity of disease onset is, 
however, attractive compared with the incubation time of 
other induced or spontaneous models.

Solvent exposure is thought to be a possible occupa-
tional risk factor for developing lupus. In particular, the 
degreasing solvent, trichloroethylene (TCE), has been 
most frequently implicated and most widely studied. 
TCE has been identified as a possible factor in studies 
of geographic lupus clusters in Arizona and North Caro-
lina near military bases where high levels of TCE were 
found in drinking water.73–75 Other potential environ-
mental exposures tested for their role in lupus include 
silica, persistent organic pollutants and heavy metals, 
most commonly mercury.76–79 Different gulf war environ-
mental exposures were also used to assess their impact 
on autoimmunity.80 In most of these cases, exposure of 
non-autoimmune-prone mice with these agents did not 
induce autoimmunity or lupus, though specific effects 
on immune cell subsets could be defined. Alternatively, 
most were found to accelerate development of lupus in 
lupus-prone mice such as MRL/+ mice.74 Defining the 
relevance of these studies to induction of human lupus 
via environmental exposure remains to be determined.

Another studied induced murine model of lupus is graft-
versus-host (GVH) disease, induced by performing bone 
marrow transplant experiments into F1 crosses, using as 
the donor one of the parental strains.81 Depending on the 
strains used in these experiments, one can induce acute 
GVH disease with autoantibodies and immune complex 
nephritis. Other combinations lead to development of 
chronic GVH disease. Given that GVH is primarily a T-cell-
driven disease, these models were informative in defining 
the role of T cell alloreactivity/autoreactivity in driving B 
cell autoantibody production and tissue damage.82 83

A specific, but rapid model of immune complex 
glomerulonephritis, developed by the Lefkowith group, 
can be generated by injecting anti-glomerular basement 
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membrane (GBM) antibodies into mice.84 85 These anti-
bodies are usually generated by injecting rabbits with 
mouse glomerular extracts and deriving their serum 
containing anti-mouse GBM antibodies. An even more 
robust disease, developed by Mohan and colleagues, can 
be induced by pre-immunising the mice with rabbit IgG 
subcutaneously inducing an anti-rabbit IgG response 
prior to then injecting the rabbit anti-GBM antibodies.86 87 
These induced models of glomerulonephritis are helpful 
for discerning the pathogenic factors in renal inflam-
mation and damage that occur downstream of immune 
complex deposition.

transgenic models of lupus
The advent of transgenic techniques allowed researchers 
to express or overexpress a gene product or protein to 
discern their role in lupus and immunity in general. One 
of the earliest uses of transgenic technology was to intro-
duce immunoglobulin heavy and light chain genes that 
code for autoantibodies (ie, rheumatoid factor or anti-
dsDNA antibodies).88 89 Since these antibodies were against 
self-antigens, insight was gained as to how tolerance is 
maintained by studying how an autoantibody-producing 
B cell is handled in a lupus-prone mouse versus a normal 
mouse. The concept of receptor editing was defined using 
transgenic mice expressing autoreactive antibodies. In 
normal immunity, a B cell expressing a heavy chain that 
is autoreactive when paired with a specific light chain will 
receptor edit, dropping the autoreactive light chain and 
replacing it with a different light chain that is not autore-
active.88 89 Lupus-prone mice were subsequently shown to 
not be as effective in receptor editing. Overexpression of 
the Ets factor Fli-1 gene led to a lupus-like disease among 
other models where overexpression of a gene can lead 
to disease (ie, TLR7 as in BXSB mice).90 91 Overexpres-
sion of genes that are immune modulatory (transforming 
growth factor (TGF)β, IL10, Bcl2) provided insight into 
the role of these factors in immune tolerance.20 Knock-in 
technology was developed that allowed putting a gene 
specifically into the genetic locus of the native gene. This 
technique is used to further define defects in immune 
function and autoimmune development in lupus.92–94

Knockout models of lupus
The technique of gene knockout has been used exten-
sively to study pathogenetic mechanisms in lupus. A 
large number of such knockout studies were performed 
on the MRL/lpr background and provided important 
understanding of the effects of certain genes and certain 
cells on disease. An example of new insight derived from 
MRL/lpr knockout studies were the experiments by the 
Shlomchik group on B cells. Total knockout of B cells 
ameliorated disease. Mice that have B cells, but cannot 
produce antibodies, had less disease, but not a complete 
lack of disease.95–98 These findings support that B cells 
play an important role in lupus independent of autoanti-
body production, including production of key cytokines, 
serving as antigen-presenting cells and being necessary 

for formation of lymphoid-like organs in target tissues 
such as the kidney and synovium.95–98 Another example is 
when the TLR7 and TLR9 knockouts were bred onto the 
MRL/lpr background. TLR7-deficient mice have signifi-
cantly less disease, do not produce anti-Sm or anti-RNP 
and have prolonged survival. TLR9-deficient mice, 
surprisingly, have accelerated disease despite lacking 
anti-dsDNA antibodies. TLR7/TLR9 double knockouts 
were protected, suggesting the TLR9-accelerant effect is 
dependent on TLR7.99–101 Using Cre recombinase and 
Floxed technology allowed specific deletion of a gene 
in a cell of choice, while allowing expression in all other 
cell types, thus allowing definition of the role of a specific 
gene in a specific cell type.102 Conditional knockout tech-
nology allowed one to induce the knockout at a specific 
time point in the mouse, thus allowing the immune system 
to develop and mature prior to knocking out the specific 
gene of choice. . Dozens of genes were knocked out, 
leading to autoimmunity including C1q, C4, DNAseIL3 
and TGFβ.103 104 Studies knocking out specific FcRs, 
apoptosis genes and cellular debris clearance genes have 
provided important insight into the role these different 
factors play in immunity and autoimmunity. Knockout of 
genes other than TLR7 (ie, factor B, Fli-1, IFNα, among 
others) resulted in decreased disease expression, implying 
a key role of these factors in disease development.4 103

The latest technology and perhaps most useful for 
studies of gene function is the CRISPR/Cas9 tech-
nique.104 This incredible gene editing technology allows 
one to specifically introduce point mutations into genes 
of choice that can either knockout gene function or 
alter gene function/expression.105 Thus, a specific lupus 
susceptibility single-nucleotide polymorphism can be 
introduced through this technique, allowing one to study 
the effect of that specific nucleotide change. An advan-
tage to this technology is that it can be applied to any 
strain of mice, whereas prior knockout work was very 
difficult unless done in the B6/129 strain. CRISPR/
Cas9 can be done in any strain, including MRL/lpr or 
NZM2410 mice, allowing rapid assessment of the impact 
of the genetic change without having to perform multiple 
genetic backcrosses. To study the dozens of identified and 
verified lupus susceptibility loci, a number of laboratories 
are using the CRISPR/Cas9 system to introduce the iden-
tified nucleotide change and study the effects in specific 
immune cells and systemic disease.

HumanISed mICe
A common concern and criticism of studies done in 
mice is that mice are not humans and the mouse and 
human immune systems differ in a number of different 
areas including TLR expression, complement protein 
and inhibitor differences, Ig differences and FcR differ-
ences, among others. Using immune-deficient mice, tech-
niques are available for establishing a humanised mouse 
immune system, including a lupus humanised mouse 
immune system.106 107 Once fully developed, these mice 
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will be useful in specific gene editing experiments and 
in preclinical testing of new therapeutics as the response 
to treatment in these mice will be more like the human 
response than the mouse response.

Summary
Lupus mouse models have proven an invaluable resource 
to study lupus over the last 40 years. Findings in these 
models have provided novel insight into the pathogenesis 
of lupus at the cellular and molecular level. They are valu-
able as preclinical models in discerning the possible ther-
apeutic value of a pharmacological intervention. Newer 
technologies, specifically CRISPr/Cas9 and humanised 
mice, will provide even more valuable as tools for dissecting 
lupus pathogenesis. Although mouse and human immune 
systems are different and efficacy of a treatment in mice is 
not always translatable to human lupus, studies of lupus in 
mice remain, and will continue to be, extremely valuable for 
understanding lupus pathogenesis and treatment (table 1).
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