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inTroDucTion

The impact of nationwide implementa-

tion of electronic health record (EHR†) sys-

tems will change the daily practice of

medicine as we know it. With medical

records in their current state, it is extremely

difficult to efficiently collate records and

mine clinical information to understand

trends in and differences between various pa-

tient populations. This limits the size of pa-

tient groups and thereby reduces the statistical

power of many research protocols [2]. The

EHR mandate will stimulate institutions to

digitize their records in common formats

amenable to collating data into large data-

bases. These databases with records from po-

tentially millions of patients can then be

processed using sophisticated data mining

techniques. There are numerous regulatory,

practical, and computational challenges to

creating and maintaining these databases that

will need to be appropriately addressed.

Many groups are already compiling large

databases of high quality patient information

with great success [3-11]. Based on its previ-

ous efforts, we expect the National Institutes

of Health (NIH) to fully support researchers

who seek to tackle the challenges of creating

EHR-based databases that include clinical

notes and other data points such as laboratory

results and radiological images. Such data-

bases will be invaluable to the development

of computer-aided diagnostic (CAD) tools

that, we believe, will be responsible for many

advances in the efficiency and quality of pa-

tient care [2]. CAD tools are automated pro-

grams that provide synthesized diagnostic

information to providers that are not other-

wise readily accessible. The rate of develop-

ment of CAD tools and the mining of medical

record systems has increased markedly since

2002 (Figure 1), and we expect the develop-

ment of large EHR-based databases will only

stimulate this activity further. In this article,

we provide an in-depth analysis of the effect

of the EHR mandate on the development of

databases that could be mined to create high

quality CAD tools. Further, we illustrate how

computer-aided diagnostics can be integrated

efficiently into daily medical practice.
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Figure 1. This figure illustrates the number of PubMed citations using each of the Mesh terms
listed. Since 2002, the number of publications regarding computer-aided diagnostics has in-
creased substantially. We are already seeing a commensurate increase in the number of publi-
cations regarding computerized medical record systems and electronic health records [1].



ManDaTes anD PoLicies Driving
The change

Although the growth of large digitized

databases is stimulated by numerous

sources, there are two key policy decisions

that have the potential to dramatically speed

this growth and change medical diagnostics

as we know it: the final NIH statement on

sharing research data in 2003 and the EHR

mandate in the American Recovery and

Reinvestment Act of 2009 (ARRA) [12,13].

The seed for developing large open

databases of medical information was

planted initially by the NIH statement on

sharing research data. In 2003, the NIH

mandated that “investigators submitting an

NIH application seeking $500,000 or more

in direct costs in a single year are expected

to include a plan for data sharing” [13]. A

large portion of academic medicine research

is funded through grants of this type, and

therefore, the amount of high quality infor-

mation about patients in the public domain is

growing rapidly. This may be one reason

why interest in computerized medical record

systems increased in 2003 (Figure 1). Un-

fortunately, the NIH has identified that this

policy has not led to the degree of data shar-

ing it anticipated, as evidenced by NOT-DA-

11-021 entitled “Expansion of sharing and

standardization of NIH-funded human brain

imaging data” [14]. The focus of this request

for information (RFI) was to identify the

barriers to creating an open-access database

for brain imaging data, including medically

relevant images. This RFI implies that the

NIH likely would support efforts to estab-

lish large, open digitized databases that in-

clude patient information.

Those who designed the ARRA pre-

sumably recognized the potential of digi-

tized medicine and decided to support its

development. In the ARRA, $20 billion was

provided to establish EHRs for all patients

treated in the United States [12]. Health care

providers that do not establish an EHR sys-

tem after 2014 will be subject to fines. This
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Figure 2. Even before the ARRA in 2009, the number of physicians utilizing EHR systems

was increasing. There are already a substantial percent of physicians using electronic

records. Consequentially, it is relatively inexpensive to combine and mine these EHR sys-

tems for high quality clinical information.
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Table 1. Prominent Medical Databases.

Database

ADHD-200

Alzheimer's 

Disease 

Neuroimaging

Initiative (ADNI)

Australian EEG

Database

Clinical Trials

Epilepsiae 

European Data-

base on Epilepsy

Healthfinder

Kaiser 

Permanente 

National 

Research 

Database

National 

Patient Care

Database

(NPCD)

Personal

Genome Project

(PGP)

PubMed

information 

contained

776 resting-state fMRI

and anatomical

datasets along and

accompanying pheno-

typic information from

8 imaging sites; 285

of which are from chil-

dren and adolescents

with ADHD aged 7-21

Information on 200

control patients, 400

patients with mild cog-

nitive impairment, and

200 with Alzheimer's

disease

18,500 EEG records

from a regional public

hospital

Registry and results

of >100,000 clinical

trials

Long-term recordings

of 275 patients

Encyclopedia of

health topics

Clinical information on

>30 million members

of the Kaiser Founda-

tion Health Plan

Veterans Health Ad-

ministration Medical

Dataset

1,677+ deep se-

quenced genomes.

Goal is 100,000

genomes

Article titles and 

abstracts

Funding

source(s)

NIH

NIH

Hunter Medical

Research Insitute

and the University

of Newcastle Re-

search Manage-

ment Committee

NIH

European Union

Department of

Health and

Human Services

Kaiser Foundation

Research Institute

U.S. Department

of Veterans Affairs

NIH and private

donors

NIH

access

Research

community

Public access

User access

required 

(administrator,

analyst, 

researcher,

student)

Public access

Research

community

Public access

Kaiser 

Permanente 

researchers

and collaborat-

ing non-KP re-

searchers

Research

community

Open consent

Public access

Website

fcon_1000.pro-

jects.nitrc.org/indi

/adhd200/index.ht

ml

www.adni-info.org/

aed.newcastle.ed

u.au:9080/AED/lo

gin.jsp

clinicaltrials.gov/

www.epilepsiae.eu/

healthfinder.gov/

www.dor.kaiser.or

g/external/re-

search/topics/Med

ical_Informatics/

www.virec.re-

search.va.gov/Dat

aSourcesName/N

PCD/NPCD.htm

www.person-

algenomes.org/

www.ncbi.nlm.nih

.gov/pubmed/

A quick summary of notable databases of high quality information that have been developed and are

being used for large scale studies.



was intended to further stimulate the trend

of increased utilization of EHR systems

(Figure 2). As stated in the bill, the reasons

for this mandate include reduction of med-

ical errors, health disparities, inefficiency,

inappropriate care, and duplicative care.

Further, the ARRA EHR mandate has and is

meant to improve coordination, the delivery

of patient-centered medical care, public

health activities, early detection, disease pre-

vention, disease management, and outcomes

[12,15]. To facilitate these advances, the

knowledge about and methods for bioinfor-

matics must be applied to millions of EHRs

to develop automated computer-aided diag-

nostic (CAD) tools. For example, one effi-

cient way to avoid inappropriate care is for

an automated program to produce an alert

when a health care provider attempts to pro-

vide questionable service. The development

of such CAD tools is not trivial; however,

large high-quality, open EHR databases will

greatly decrease development costs and ac-

celerate testing. Below, we discuss why it is

our firm belief that these databases will

make the implementation of computer-aided

diagnostics virtually inevitable.

Large DaTabases

There are a growing number of these

large databases populated with clinically rel-

evant information from patients suffering

from a diverse range of medical conditions,

some already including detailed multimodal

information from hundreds to millions of

patients. Here we will briefly review the

General Practice Research Database

(GPRD), the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI), the Personal

Genome Project (PGP), the European Data-

base on Epilepsy (EDE), and the Australian

EEG Database. These and other databases

are summarized in Table 1.

The GPRD includes quality text-based

records from more than 11 million patients

primarily from the United Kingdom but also

includes patients from Germany, France, and

the United States [4,16]. The database is

used primarily by pharmacoepidemiologists,

though other researchers are mining this

database actively to create automated tools

that extract, at base, the diagnostic conclu-

sions reported in each note [17,18]. Al-

though the recall and precision of these tools

was good — 86 percent and 74 percent, re-

spectively, in one study [17] — these tools

are constantly improving. We expect the in-

creasing size of this and other databases will

further stimulate high quality research in this

field and result in highly efficient and effec-

tive data extraction tools. This conclusion is

supported by the fact that more than 73

scholarly publications utilized the GPRD in

the first three quarters of 2011 alone [16].

This database, however, is limited to the text

of the clinical notes. 

Other databases go further by providing

complex data regarding large cohorts of pa-

tients. The ADNI database contains data

fields that track the rate of change of cogni-

tion, brain structure and function from 800

patients, including 200 with Alzheimer’s

disease (AD) and 400 with mild cognitive

impairment (MCI) [7]. Researchers are plan-

ning to add 550 more patients to this cohort

in ADNI2 [6]. The current ADNI database

includes full neuroimaging data from all of

these patients in the hope that this data can

be used to discover the early warning signs

for AD. ADNI has been used already to de-

velop machine learning (ML) tools to dis-

criminate between AD and “normal” aging

[19]. Another database compiled by the PGP

currently has 1,677 patients, and researchers

plan to expand this to include nearly com-

plete genomic sequences from 100,000 vol-

unteers using open-consent [3]. Researchers

involved in the PGP anticipate that this se-

quence information will be used to under-

stand risk profiles for many heritable

diseases [8]. Other similarly large databases

of complex data already exist; the EDE con-

tains long-term EEG recordings from 275

patients with epilepsy [10,11], and the Aus-

tralian EEG Database holds basic notes and

full EEG results from more than 20,000 pa-

tients [5,9]. These databases have been used

to develop sophisticated seizure prediction

and detection tools. Here at the University

of California, Los Angeles (UCLA), we are

compiling a database of clinical notes, scalp
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EEG, MRI, PET, and CT records from more

than 2,000 patients admitted for video-EEG

monitoring.

The existence of these databases con-

taining detailed clinically relevant informa-

tion from large patient cohorts confirms that

the international research establishment and

the NIH are extremely excited about and

supportive of large clinical databases. This

suggests that as the EHR mandate simplifies

collation of patient data, the limiting factor

in generating large databases of thousands

to millions of patient records will be for or-

ganizations to work through the practical

hurdles of consenting patients and making

data available for efficient searching and

processing.

anTiciPaTeD chaLLenges To
DaTabase creaTion

Our conclusion that large clinical data-

bases will continue to expand is based on

key assumptions that important regulatory

and computational hurdles will be over-

come. These challenges include, but are not

limited to: 1) patient consent, 2) IRB ap-

proval, and 3) consistent improvements in

processing these large datasets. We believe

the probability that these potential problems

will be solved is high.

Forming open databases requires that

patients consent to the sharing of pertinent

parts of their medical records. In the devel-

opment of the Personal Genome Project

(PGP), Church et al. established open-con-

sent so that all de-identified records can be

shared freely [3]. Patients in EHR databases

would likely utilize an identical open-con-

sent process. We have personal experience

analyzing datasets that require consenting

adult patients admitted for video-EEG mon-

itoring for epilepsy as well as pediatric

epilepsy patients undergoing assessment for

resective neurosurgery at UCLA. After we

explained that consent would have no im-

pact on their care, every patient admitted for

these reasons (716/716) consented to their

records being used for research. Weisman et

al. reported that 91 percent of respondents

would be willing to share their records for

“health research” and that most would be

more comfortable with an opt-in system

[20]. Other surveys of patients report a con-

sent rate of approximately 40 percent for

providing de-identified information to re-

searchers [21,22]. Even after consenting, pa-

tients are relatively uninformed about the

safeguards and risks to sharing their health

information [23]. A more detailed and care-

ful explanation of these procedures and the

potential impact of the research may result

in an increased consent rate. Any national

patient database is likely to face pushback

from a public already concerned about inva-

sions of privacy by corporations and the

government; therefore, we suspect consent

rates would be lower than what we have ex-

perienced. Additionally, the rate of consent

is likely to decline, in part, due to media

coverage of previous unethical practices in

research. A prime example is the book, The

Immortal Life of Henrietta Lacks by Re-

becca Skoot, published in 2010, that re-

counts how, due to lack of proper regulation

in 1951, Ms. Lacks’ cells were immortalized

without her consent and used widely for im-

portant advances in medical research [24].

We expect that patients and regulators sen-

sitive to the concept of information about

their care being stored indefinitely for re-

search use may not consent on the basis of

this and other salient examples. 

The key regulatory challenge to the cre-

ation of such large databases, however, is the

complex multicenter IRB approval process.

The most important concern that current

IRBs have expressed is whether the data

stream includes adequate de-identification of

all records before they are released for re-

search use, as illustrated in Figure 3. This

would likely require each contributing insti-

tution to develop a reliable and consistent

method of de-identifying all records. For

written records, this includes removing all

protected patient information (PPI) as defined

by HIPAA regulations and the Helsinki Dec-

laration [25,26]. In order to do this effec-

tively, numerous safeguards must be put in

place. For example, if a nationwide database

is updated in real time, malicious individuals

could potentially re-identify individual pa-
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tients by their treatment location, date, and

basic information as to what care they re-

ceived. One solution to minimize these risks,

suggested by Malin et al., is to granulize dates

and treatment locations to ensure that the po-

tential re-identification rate of patients re-

mains well below 0.20 percent [23]. This

granulation may also allow for inclusion of

patients older than 89, the maximum re-

portable age under HIPAA regulations [25].

Although specific dates and locations are im-

portant, especially to the Centers for Disease

Control (CDC), simply generalizing days to

months and towns to counties is required to

maintain patient privacy. When dealing with

more complex records as in neuroimaging, all

centers would be required to be proactive in

using the most up-to-date software for de-

identification including, but not limited to, the

removal of the bone and skin structure of the

face that can be used to recreate an image of

the patient’s face and thereby identify the pa-

tient. Automated software to do these com-

plex steps has already been made publicly

available by the Laboratory of Neuroimaging

(LONI) at UCLA [27]. Due to the unprece-

dented quality and applicability of these large

databases, we are confident that responsible

researchers will work to identify and address

these regulatory hurdles.

Lastly, the computational burden of uti-

lizing such large databases is not trivial. The

question is not if mining this database is pos-

sible, it is when. Moore’s law has accurately

predicted the biennial doubling of computer

processing power [28], and, though this rate

is showing signs of slowing, growth still is

exponential [29]. Current ML methods have

been effectively applied to the ADNI data-

base of 800 patients [19,30-32] and as well

as the GPRD of almost 12 million patients

from the United Kingdom [16]. This sug-

gests that if adequate computational tech-

nology does not already exist to effectively

mine U.S.-based EHR databases, it will be

available soon.
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Figure 3. The creation and utilization of EHR databases is complex; however, each of the

steps in the data and implementation stream are well defined. We expect that responsible

researchers will be capable of tackling each of these steps to create unparalleled data-

bases and develop high quality, clinically applicable CAD tools.



currenT aPPLicaTions anD
beneFiTs oF caD

The application of CAD to patient data

is not a novel idea. Numerous CAD tools

have been demonstrated to be extremely

useful to clinical medicine, but few have

been approved for routine clinical use [2,33-

48]. In general, these tools attempt to pre-

dict the outcome of more expensive or

practically infeasible gold standard diagnos-

tic assessments. Humans are capable of

weighing at most 30 factors at once using

only semi-quantitative modeling [49]. The

key exception to this is visual processing in

which the visual heuristic reliably removes

noise from images to readily detect the un-

derlying patterns [50]. This exquisite pattern

detection, however, is limited by our inabil-

ity to detect relationships separated widely

in space or time or whose patterns evolve

out of changes in randomness. Further,

human performance is highly variable due

to the effects of expertise, fatigue, and sim-

ply human variation [51]. Computational

analysis, on the other hand, can integrate

complex, objective modeling of thousands

to millions of factors to reliably predict the

outcome of interest [52]. During validation,

the performance of a CAD tool is described

in detail to understand its strengths and

weaknesses. Unlike manual analysis, given

a similar population of test samples, a CAD

tool can be expected to perform exactly as it

did during validation. In some cases, the

constantly updating algorithms inherent in

human decision-making may result in devi-

ation from the previously studied ideal. It is

not certain that this deviation always results

in improved sensitivity and specificity. The

cost of expert analysis of clinical informa-

tion also is increasing continually. Effective

implementation of automated screening

tools has the potential to not only increase

the predictive value of clinical information

but also to decrease the amount of time a

provider needs to spend analyzing records.

This allows them to review more records per

day and thereby reduce the cost per patient

so that the effective public health impact of

each provider is increased [53]. This will

complement the numerous potential benefits

quoted above. Here we review the success

of implemented CAD tools and highly

promising new tools that have demonstrated

the potential for wider application. In par-

ticular, CAD tools have been applied to aid

in the diagnosis of three extremely prevalent

maladies in the United States: heart disease,

lung cancer, and Alzheimer’s disease (AD).

The most widely recognized CAD tool

in clinical medicine is built into electrocar-

diogram (EKG) currently available software

and reads EKG records and reports any de-

tected abnormalities. These algorithms are

responsible for the lifesaving decisions

made daily by automated electronic defib-

rillators (AEDs). The diagnosis of more

complex cardiac abnormalities is an ex-

tremely active area of research [33-44,54-

56]. In one recent example, a CAD tool

differentiated between normal beats, left and

right bundle block (LBBB and RBBB), and

atrial and ventricular premature contraction

(AVP, PVC) with more than 89 percent ac-

curacy, sensitivity, specificity and positive

predictive value [35]. This and other auto-

mated algorithms detect subtle changes in

the shape of each beat and variations in the

spectral decomposition of each beat over an

entire EKG recording that often includes

thousands of beats. As a result of this accu-

racy, conventional EKG readouts in both

hospitals and clinics frequently include the

results of this entirely automated analysis.

When taught to read EKGs, providers are in-

structed that the automated algorithm is

largely correct, but to better understand the

complex features of the waveforms,

providers must double check the algorithm

using their knowledge of the clinical con-

text. This CAD tool was the first to be

widely applied because, in part, EKG analy-

sis is simplified by the presence of the char-

acteristically large amplitude QRS wave that

can be used to align each beat. Other modal-

ities do not necessarily have features that are

as amenable to modeling.

One example of overcoming this lack of

clear features is the semi-automated analysis

of thoracic X-ray computed tomography

(CT) images to detect malignant lung can-

cer nodules. This tool segments the CT into

370 Kerr et al.: The future of medical diagnostics: large digitized databases



bone, soft tissue, and lung tissue, then de-

tects nodules that are unexpectedly radiolu-

cent and assesses the volume of the solid

component of non-calcified nodules [48].

This method effectively detected 96 percent

of all cancerous nodules with a sensitivity of

95.9 percent and a specificity of 80.2 per-

cent [48]. Even though this tool is not part of

routine care, Wang et al. demonstrated that

when radiologists interpret the CTs after the

CAD tool, they do not significantly increase

the amount of cancer nodules detected [48].

In fact, they only increase the number of

false positive nodules, indicating that the

CAD tool is operating on meaningful fea-

tures of the nodules that are not reliably ob-

servable even by trained radiologists. This

suggests that in some cases, computer-aided

diagnostics can reduce the number of im-

ages that radiologists have to read individu-

ally while maintaining the same high quality

of patient care.

The success of CAD tools in Alzheimer’s

disease (AD) shows exactly how automated

tools can utilize features not observable by

trained radiologists by reliably discriminating

AD from normal aging and other dementias.

Because of its unique neuropathology, AD re-

quires focused treatment that has not been

proven to be effective for other dementias

[57]. The gold standard diagnostic tool for AD

is cerebral biopsy or autopsy sample staining

of amyloid plaques and neurofibrillary tangles

[57]. The clear drawback of autopsy samples

is that they cannot be used to guide treatment

and cerebral biopsy is extremely invasive. An

alternative diagnostic is critical for reliably

distinguishing between the two classes of pa-

tients at a stage that treatment is effective. In

2008, Kloppel et al. demonstrated how a sup-

port vector machine (SVM)-based CAD tool

performed similarly to six trained radiologists

when comparing AD to normal aging and

fronto-temporal lobar dementia (FTLD) using

structural magnetic resonance imaging (MRI)

alone [58]. Numerous other applications of

ML on other datasets all have achieved simi-

lar accuracies ranging from 85 to 95 percent

[19,31,32,59,60]. All of these tools do not re-

quire expertise to read; therefore, they can be

applied both at large research institutions and

in smaller settings as long as the requisite

technology is available. These tools, with ap-

propriate validation using large databases,

could indicate which patients would benefit

most from targeted treatment and therefore

substantially reduce morbidity.

These cases are exemplary; however,

many other attempts to develop CAD tools

have had more limited success. In particu-

lar, the automated analysis of physician’s

notes has proven particularly difficult. In a

2011 publication using a total of 826 notes,

the best precision and recall in the test set

were 89 percent and 82 percent, respectively

[61]. These values are extremely encourag-

ing when considering a similar study in

2008 that attempted to measure the health-

related quality of life in 669 notes and

achieved only 76 percent and 78 percent

positive and negative agreement between

the automated algorithm and the gold stan-

dard [62]. When viewing these accuracies in

terms of the potential of applying these tools

to patients, these accuracies are far from ad-

equate. Physicians can quickly scan these

notes and immediately understand the find-

ings within them, and therefore, these CAD

tools would not improve upon the standard

of care if used to summarize the note. Nev-

ertheless, note summaries are useful in an

academic setting. It is possible that these

tools can be used to interpret thousands of

notes quickly and without using any physi-

cian time. Even though more than 10 per-

cent of the interpretations are inaccurate, the

findings of the CAD tool could be used in a

research setting to estimate the risk of other

outcomes in these patients, including their

risk for cardiovascular disease and even

death.

beneFiTs anD chaLLenges oF
DaTabases in The DeveLoPMenT
oF caD TooLs

The establishment of databases made

possible by the EHR mandate has enormous

potential for the development of CAD tools.

A telling quotation from Rob Kass, an ex-

pert in Bayesian statistics, reads: “the accu-

mulation of data makes open minded
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observers converge on the truth and come to

agreement” [63]. In this setting, the accu-

mulation of a gigantic body of clinical data

in the form of EHR databases will be in-

valuable for the description of numerous

clinical syndromes and disease. If these

databases are unbiased, high quality samples

of patients from the general population,

there will be no better dataset with which to

apply bioinformatics methods to understand

the epidemiology, co-morbidities, clinical

presentation, and numerous other features of

most syndromes and diseases. In addition to

quantifying what is known already, these

large databases can facilitate the develop-

ment of new hypotheses regarding neurobi-

ological and genetic underpinnings of these

conditions through machine learning ap-

proaches [64]. One of the constant factors

that limit many clinical and research studies

is the steep cost of obtaining high quality

data that can be used to develop and test

continually updated hypotheses. EHR data-

bases would drastically reduce this cost and

thereby allow more funds to be dedicated to

the development of models that better eluci-

date the biology underlying each condition. 

In addition to facilitating more applica-

ble and statistically powerful modeling, in-

creased sample size also results in increased

machine learning performance. In theory, as

sample size increases, the amount of de-

tected signal grows, resulting in an accuracy

that is a sigmoid function of sample size.

Each feature would therefore have a maxi-

mum discriminatory yield that can only be

achieved with a sufficiently large training

sample size. Using the ADNI database, Cho

et al. confirmed this theoretical result by

demonstrating that the accuracy of all tested

discriminations increased monotonically

with the number of training subjects [19].

Therefore, in order to develop the most ac-

curate and therefore applicable CAD tool,

one must train it on as large a representative

sample size as can be obtained. As noted by

van Ginneken et al. [2], if one CAD tool is

already FDA approved, securing adequate

funding to prove a new tool performs better

is a major hurdle. Large EHR databases

would lower this barrier and foster innova-

tion that will benefit patient care. If even 10

percent of U.S. patients consented to the ad-

dition of their records to databases, millions

of cases would be available. It is important

to note, however, that the accuracy of a tool

developed on an infinite sample is not 100

percent. Instead, it is limited by the ability

of the model to understand trends in the data

and the discriminatory power of the features

used in the model. This discriminatory

power, and thereby CAD tool performance,

is based on a few key assumptions about the

databases. 

The most important assumption is that

the gold standard reported in the database is

definitive. At best, supervised machine

learning can only recreate the performance

of the gold standard. If, for example, clini-

cians consistently misdiagnose bipolar dis-

order as depression, then any database

would confuse the two disorders and repli-

cate this misdiagnosis. Thereby, any CAD

tool can only be as good as the experts used

to train it. This suggests than when training

CAD tools, the developers should limit the

training and validation sets to clear exam-

ples of each condition to minimize but not

eliminate this bias. This limitation also

leaves space for research groups to develop

improved gold standards or clinical proce-

dures that could outperform the CAD tool.

Thereby, we expect that CAD tools cannot

replace the great tradition of continual im-

provement of clinical medicine through re-

search or the advice of the national and

international experts that study and treat spe-

cific conditions.

Another key assumption is that the

training sample is an unbiased representa-

tion of the population in which the CAD tool

will be applied. Correction of this bias is

critically important because a supervised

CAD tool is only as applicable as its training

and validation set is unbiased. We expect

that these databases will endow modern sta-

tistical methods the power needed to iden-

tify, quantify, and control for possible

sources of bias that have not been appreci-

ated in smaller databases [65]. In many clin-

ical research protocols, it is common

practice to ignore this assumption because
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the practical cost of obtaining a truly unbi-

ased sample is prohibitive. For example, it

is often the case that patients recruited at

large academic medical centers have more

severe disease than at other centers. This as-

sumption of an unbiased sample is justified

because, in most cases, there is little evi-

dence that the pathophysiology underlying

disease in research subjects or patients with

severe disease differs from the full popula-

tion. Because of their size, EHR-based data-

bases would be expected to include patients

who would not ordinarily be recruited into

research studies. Research based on these

databases would then be more representative

of the affected population than current re-

search methods. 

Current experimental design methods

produce high quality clinical information

that minimizes noise in the sampled data. As

the number of patients increases, so does the

number of independent health care providers

and institutions that collect data associated

with each patient. This in turn substantially

increases the number of possible sources of

uninformative noise that must be adequately

controlled. Controlling for some of these

sources of noise is simply a statistical exer-

cise, but others require more complex bio-

statistical modeling. One particularly

egregious source of noise is if providers at

particular institutions do not write clinical

notes that fully represent the patient’s symp-

toms and the provider’s findings. No matter

how effective CAD tools become, providers

will always need to speak to patients, ask the

right questions, and provide consistent, high

quality care. Patients are not trained, unbi-

ased observers. Patients frequently omit per-

tinent details regarding their complaints

unless they trust the provider and the

provider asks the right question in the right

way. On the scale of the entire database, de-

tecting low quality or biased information is

difficult because it requires testing if the data

from each institution varies significantly

from the trends seen in the rest of the

dataset. These differences, however, could

reflect unique characteristics of the patient

population being treated at that institution.

The development of reliable techniques to

identify and control for these sources of

noise will be critical to the effective mining

of the EHR databases.

The FuTure oF MeDicaL 
DiagnosTics

The key hurdle to deploying CAD tools

in academic and clinical medicine is the ef-

ficient implementation of these tools into

software already utilized by clinicians. As

stated by van Ginneken et al., the require-

ments of a CAD are that it has sufficient per-

formance, no increase in physician time,

seamless workflow integration, regulatory

approval, and cost efficiency [2]. We have

already discussed how the sheer size of the

EHR database will substantially improve the

performance and applicability of CAD tools.

The improvements that were the basis for

the ARRA EHR mandate — which we be-

lieve will be implemented using computer-

aided diagnostics — provide clear evidence

for the issue of cost effectiveness. Each of

the improvements from the reduction of du-

plicative or inappropriate care to the in-

crease in early detection, will decrease the

cost of health care nationwide [12]. Given

these benefits and improved performance, it

would only be a matter of time before these

tools would be given regulatory approval.

The only facet of CAD implementation left

would be efficient implementation that does

not increase physician time. This is a con-

tent strategy problem.

Before seeing a patient, many providers

scan the patient note for information such as

the primary complaint given to the intake

nurse, if available, and the patient’s history.

A CAD tool could provide a formatted sum-

mary of such notes, making it more accessi-

ble. Reviewing other test data is also routine.

A CAD tool that pre-reads radiological im-

ages could simply display the predicted re-

sult as part of the image header. Radiologists

could then see and interpret the results of the

CAD tool as well as confirm these results

and provide additional details in their sub-

sequent clinical note. Outputs similar to

these could be provided at the top or bottom

of reports for EEGs, metabolic panels, and
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other medical procedures. Regardless,

physicians should have access to the raw

data so that they can delve deeper if they de-

sire more detailed information [2].

During a patient visit, the CAD tool

could help remind the physician of key is-

sues to cover that are related to previous

clinical notes to address patterns that the

computer notices but the physician may

have overlooked. The Agile Diagnosis soft-

ware is already exploring how best to design

this type of tool [66].

After the visit, the tool could then oper-

ate on the aggregate information from this

patient and provide recommendations and

warnings about medications and treatments.

The inclusion of citations that verify the ev-

idence-based efficacy of the recommended

medications and warnings is simple and re-

quires very little space and processing power

though frequent updating may be necessary. 

Although the CAD reminders would

likely be ignored by experienced providers,

their constant presence could serve as a

quality assurance measure. As discussed by

Dr. Brian Goldman, MD, at his TED talk, all

providers make mistakes [67]. These CAD-

based reminders have the potential to im-

prove upon the rate at which these mistakes

are made and important details are missed.

The most impactful benefits of CAD, how-

ever, are not in improving the care given by

experienced providers who rarely make mis-

takes or miss details. Instead, these CAD

tools will help inexperienced providers,

those with limited medical training or spe-

cial expertise, or experienced practitioners

who lack current expertise to provide basic

health care information to underserved pop-

ulations. In this way, the development of

CAD tools could reduce the magnitude of

health disparities both inside the United

States and worldwide.

concLusions anD ouTLook

The EHR mandate will likely have

widespread beneficial impacts on health

care. In particular, we expect that the cre-

ation of large-scale digitized databases of

multimodal patient information is imminent.

Based on previous actions of the NIH, we

expect it to substantially support the devel-

opment of these databases that will be un-

precedented in both their size and quality.

Such databases will be mined using princi-

pled bioinformatics methods that have al-

ready been actively developed on a smaller

scale. In addition to other potential impacts,

these databases will substantially speed up

the development of quality, applicable CAD

tools by providing an unprecedented amount

of high quality data at low cost upon which

models can be built. We believe that these

tools will be responsible for many of the im-

provements quoted in the motivation for

passing ARRA, including the reduction of

medical errors, inefficiency, inappropriate

care, and duplicative care while improving

coordination, early detection, disease pre-

vention, disease management, and, most im-

portantly, outcomes [12].

The development of widespread CAD

tools validated on large representative data-

bases has the potential to change the face of

diagnostic medicine. There are already nu-

merous examples of CAD tools that have the

potential to be readily applied to extremely

prevalent, high profile maladies. The major

limiting factor is the validation of these

methods on large databases that showcase

their full potential. The development, vali-

dation, and implementation of these tools,

however, will not occur overnight. Impor-

tant regulatory, computational, and scientific

advances must be achieved to ensure patient

privacy and the efficacy of these automated

methods. The problem of mining large data-

bases also introduces numerous statistical

problems that must be carefully understood

and controlled.

The goal of these methods is not to re-

place providers but to assist them in deliv-

ering consistent, high quality care. We must

continue to respect the science and art of

clinical medicine. Providers will always be

needed to interact with patients, collect

trained observations, and interpret the un-

derlying context of symptoms and findings.

In addition, providers will have the unique

ability to understand the applicability of

computer-aided diagnostics to each patient.
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Thereby, we believe that bioinformatics and

machine learning will likely support high

quality providers in their pursuit of continual

improvements in the efficiency, consistency

and efficacy of patient care.
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