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Oligodendrocyte lineage is severely affected 
in human alcohol‑exposed foetuses
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Abstract 

Prenatal alcohol exposure is a major cause of neurobehavioral disabilities. MRI studies in humans have shown that 
alcohol is associated with white matter microstructural anomalies but these studies focused on myelin abnormali-
ties only after birth. Only one of these studies evaluated oligodendrocyte lineage, but only for a short period during 
human foetal life. As data are lacking in humans and alcohol is known to impair oligodendrocyte differentiation in 
rodents, the present study aimed to compare by immunohistochemistry the oligodendrocyte precursor cells express-
ing PDGFR-α and immature premyelinating/mature oligodendrocytes expressing Olig2 in the ganglionic eminences 
and the frontal cortex of 14 human foetuses exposed to alcohol from 15 to 37 weeks’ gestation with age-matched 
controls. The human brains used in this study were obtained at the time of foetal autopsies for medical termination of 
pregnancy, in utero or post-natal early death. Before birth, PDGFR-α expression was strongly increased in the gangli-
onic eminences and the cortex of all foetuses exposed to alcohol except at the earliest stage. No massive generation 
of Olig2 immunoreactive cells was identified in the ganglionic eminences until the end of pregnancy and the density 
of Olig2-positive cells within the cortex was consistently lower in foetuses exposed to alcohol than in controls. These 
antenatal data from humans provides further evidence of major oligodendrocyte lineage impairment at specific and 
key stages of brain development upon prenatal alcohol exposure including defective or delayed generation and 
maturation of oligodendrocyte precursors.

Keywords:  Oligodendrocyte precursors, PDGFR-α, Olig2, Myelination defects, Human foetal brain, Foetal alcohol 
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Introduction
Prenatal alcohol exposure (PAE) is a major non genetic 
cause of central nervous system (CNS) abnormalities 
resulting in irreversible life-long consequences which 
associate mental retardation or more specific neurocog-
nitive disorders and behavioural disabilities [43]. Foetal 
Alcohol Syndrome (FAS) is a part of foetal alcohol spec-
trum disorders (FASD) which represents its most severe 

form. The diagnosis of FAS is based on three charac-
teristics including in utero growth retardation (IUGR), 
craniofacial dysmorphism and CNS dysfunction. Chil-
dren with FASD often suffer from motor delays, deficits 
in attention, learning and memory as well as in executive 
functioning and language with other less overt conse-
quences of PAE that make up the constellation of CNS 
adverse outcomes. Nevertheless, children with FASD do 
not present the characteristic craniofacial dysmorphism 
and growth retardation [41].

In the mature brain, heavy chronic or binge drink-
ing is responsible for a variety of brain injuries, notably 
a disproportionate loss of cerebral white matter which 
accounts for white matter atrophy, as glial cells are major 

Open Access

*Correspondence:  florent.marguet@hotmail.fr

1 Department of Pathology, Normandy Centre for Genomic and Personalized 
Medicine, Laboratoire d’Anatomie Pathologique, Pavillon Jacques Delarue, 
CHU, Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University 
Hospital, 1 Rue de Germont, 76031 Rouen Cedex, France
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-7306-0520
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40478-022-01378-9&domain=pdf


Page 2 of 14Marguet et al. Acta Neuropathologica Communications           (2022) 10:74 

targets of alcohol [48]. Alcohol has not only teratogenic 
properties but also devastating neurotoxic effects on the 
developing brain. Over the last decade, imaging stud-
ies with diffusion tensor imaging (DTI) have revealed 
changes in the organization and microstructure of cal-
losal white matter with diffusion abnormalities extending 
beyond the corpus callosum in rodents and in humans 
with FASD, suggesting that several specific white mat-
ter regions, especially commissural, cingular and tem-
poral connections along with deep grey matter areas 
are sensitive to PAE [25, 26, 31, 32, 34]. Microstructural 
abnormalities assessed by fractional anisotropy occur 
throughout the corpus callosum and have been corre-
lated with impaired cognition in children with prenatal 
alcohol exposure [49]. A few years ago, it has been sug-
gested in one human MRI study that PAE is associated 
with reduced white matter microstructural integrity 
from the neonatal period [10]. Whereas all these stud-
ies focused on newborns, children and adolescents with 
FASD, no human antenatal data concerning the genera-
tion of oligodendrocytes (OLs) in FAS or FASD have been 
reported so far, except for one human study concerning 
cases restricted to a short foetal period (12.2–21.4 weeks 
of gestation) [9]. As imaging studies indicate widespread 
white matter fibre tract anomalies in children and adults 
with FASD, it has been emphasized that PAE likely 
impacts on the programming of oligodendrocyte precur-
sor cells (OPCs) [18, 48]. In the CNS, myelin is formed 
by processes emanating from OLs which are engaged or 
are preparing to engage in myelination [7, 39]. Myelina-
tion is one of the final stages of brain development, and 
apart from the brainstem and cerebellum which are pro-
gressively myelinated from the second half of pregnancy, 
this process takes place mainly during the first 30 years of 
postnatal life in humans [4, 25, 50].

OLs originate from neural stem cell-derived OPCs 
which express platelet-derived growth factor receptor-α 
(PDGFR-α), then differentiate into immature premyeli-
nating OLs (pre-OLs) expressing oligodendrocyte lineage 
factor 4 and eventually into mature OLs expressing mye-
lin oligodendrocyte glycoprotein, phospholipid protein 
and myelin basic protein (MBP) which contact axons and 
begin to produce myelin [7, 13]. Proliferating neural stem 
cells commit to the OL lineage under the influence of the 
transcription factors Olig1, Olig2, Nkx2.2, and Sox10 [13, 
47]. In vitro studies have also revealed a primary role of 
Sonic Hedgehog (Shh) signalling by promoting expansion 
and specification of pluripotent progenitors into Olig2-
positive late OPCs and immature OLs [35].

In rodents, the first wave of OPCs originates in the 
anterior entopeduncular area followed by two other 
waves arising from the lateral and caudal ganglionic emi-
nences (LGE and CGE) [24]. OPCs require vessels as a 

physical substrate for migration and human OPCs have 
been shown to emerge from progenitor domains and to 
associate with the ab-luminal endothelial surface of blood 
vessels via Wnt-Cxcr4 (chemokine receptor 4) allowing 
them to “crawl along and jump between vessels” [45].

PDGF signalling is essential for the control of OPCs’ 
proliferation and differentiation [5]. These mitotic pro-
genitors/precursors express a characteristic set of mark-
ers including PDGFR-ɑ. The first PDGFR-α expressing 
precursors have been identified in the forebrain of 
human foetuses 10  weeks of gestation (WG) onwards, 
and are predominantly produced in higher numbers in 
the ganglionic eminences (GE) around 15 WG [22]. In 
monkeys and humans, OPCs are produced in the outer 
subventricular zone just when the upper layer neurons 
are generated, allowing for a rapid expansion and folding 
of the cortical surface [37]. PDGFR-ɑ is rapidly down-
regulated when OPCs differentiate into non-proliferating 
OLs, contrary to oligodendrocyte lineage transcription 
factor 2 (Olig2) which is expressed in OPCs, pre-OLs 
and OLs, knowing that the increase in OL number dur-
ing development depends on OPC proliferative capacities 
[11, 42]. OL lineage progression in cerebral white matter 
occurs similarly in humans and in rodents and is mostly 
composed of pre-OLs around 18–27  weeks of gestation 
in humans and of increasingly abundant MBP-positive 
OLs in full-term infants [3].

Human antenatal data concerning the generation and 
differentiation of OLs upon PAE are lacking even though 
alcohol is known to impair OL differentiation in other 
species. Therefore, we hypothesised that during the foetal 
period alcohol prevents the differentiation of PDGFR-α+ 
OPCs into Olig2+ pre-OL or mature OL, which could 
explain, at least partially, the myelination defects 
observed on imaging studies. To test this hypothesis, 
we compared using immunohistochemical techniques 
PDGFR-α and Olig2 expression in the GE and cortical 
plate (CP) of foetuses antenatally exposed to alcohol with 
age-matched controls. The objective was to confirm the 
pre-existing results in humans and to provide informa-
tion regarding oligodendroglial lineage development over 
an extended neurodevelopmental period.

Patients and methods
Patients
As previously reported [28], the brains used in this study 
belong to the collection which has been declared to the 
French Ministry of Health (collection number DC-2015-
2468, cession number AC-2015-2467, located in A. 
Laquerrière’s Pathology Laboratory, Rouen University 
hospital). In each case, the parents gave their informed 
written consent for neuropathological studies. Autopsies 
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were carried out in accordance with our local ethic com-
mittee and the French law.

Ten foetal control brains ranging from 16 to 36 WG 
were selected. Main clinical and morphological charac-
teristics are presented in Table 1. In 6 out of the 10 cases, 
a medical termination of pregnancy (TOP) was carried 
out for pathologies other than cerebral. Two out of the 
10 cases were in utero foetal death (IUFD), 2 cases were 
perpartum or immediate postpartum death with a cause 
other than cerebral or with no found cause after care-
ful examination of the placenta and foetal organs. In all 
cases, the brain was macroscopically and microscopically 
free of detectable abnormalities. Despite the absence of 
lesions, patients who had been antenatally suspected of 
central nervous system anomalies or who had been clini-
cally suspected of dying of neurological causes were sys-
tematically excluded.

Fourteen foetal FAS or FASD brains ranging from 15 
to 37 WG whose clinical and morphological character-
istics are presented in Table 2 were also studied. Causes 
of death were IUFD in 6 cases, TOP for foetal malforma-
tions in 7 cases and post-natal early death in the remain-
ing case.

Methods
Autopsies had been performed according to standard-
ized protocols [20]. Developmental age was evaluated by 
means of organ weights [17], skeletal measurements and 
by the histological maturational stages of the different 
viscera.

Neuropathological studies
Brain growth was evaluated according to the biometric 
data of Guihard-Costa and Larroche [16]. Macroscopic 
analysis of gyration was assessed by means of the atlas 

of Feess-Higgins and Larroche [14]. After fixation into a 
zinc-10% formalin buffer solution for at least one month, 
brain sections were obtained from all cortical areas and 
deep subcortical structures. Seven-micrometer paraffin 
embedded sections were stained using Haematoxylin–
Eosin. The morphology of the different brain structures 
analysed was consistent with the foetal age.

Immunohistochemistry
Immunohistochemical analyses of OPCs and pre-OLs 
were carried out on six-micrometer sections obtained 
from paraffin-embedded material according to standard-
ized protocols using antisera directed against Olig2 (Rab-
bit polyclonal, 1/200; Clinisciences, Nanterre, France) 
and anti-PDGFR-α (Rabbit polyclonal, 1/100; Ther-
mofisher Scientific F67403 Illkirch Cedex, France). Note-
worthy, some markers of mature oligodendrocytes such 
as myelin basic protein (MBP), myelin oligodendrocyte 
glycoprotein (MOG), phospholipid protein (PLP), adeno-
matous polyposis coli complex (APC) and cyclic nucleo-
tide phosphodiesterase (CNPase) could not be used as 
they work on frozen tissues.

Immunohistochemical procedures included a micro-
wave pre-treatment protocol to aid antigen retrieval 
(pre-treatment CC1 kit, Ventana Medical Systems Inc, 
Tucson AZ). Incubations were performed for 32  min at 
room temperature using the Ventana Benchmark XT sys-
tem. After incubation, slides were processed by means 
of the Ultraview Universal DAB detection kit (Ventana). 
Semi-quantitative analyses of the density in Olig2 and 
PDGFR-α positive cells in the GE as well as in the differ-
ent layers of the frontal CP were evaluated and scored 
blindly by two neuropathologists (FM and AL), and 
together reanalyzed in case of discrepant results. Immu-
nolabellings were scored as follows: 0: no cell labelled; 

Table 1  Gestational age and cause of death of selected control cases

IUFD in utero fetal death, TOP medical termination of pregnancy, WG weeks of gestation

*According to the morphometric criteria of Guihard-Costa and Larroche [17]

Case number Term Cerebral maturation* TOP Cause of death

1 16 WG 16 WG Yes Isolated sacral myelomeningocele

2 22 WG 20 WG No IUFD

3 22 WG 22 WG Yes Obstructive uropathy

4 24 WG 24 WG No IUFD

5 26 WG 26 WG Yes Hereditary bilateral microphtalmia

6 28 WG 28 WG Yes Severe distal arthrogryposis

7 30 WG 30 WG No Cord prolapse

8 32 WG 32 WG Yes Complex cardiac malformation

9 34 WG 34 WG Yes Suspected vermis hypoplasia (not confirmed)

10 36 WG 36 WG No Dilated cardiomyopathy
Dead at day 2
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Table 3  Details of antibodies used for confocal analysis

Antibodies Reference Purified species Supplier Dilution Target Solution of incubation

GABA A2052 Rabbit Sigma-Aldrich 1/400 Neurotransmitter 1% BSA, 3% Triton X-100 in PBS

GFAP Ab10062 Mouse Abcam 1/200 Intermediate filament protein 1% BSA, 3% Triton X-100 in PBS

MAP2 M4403 Mouse Sigma Aldrich 1/100 Brain microtubule-associated protein 1% BSA, 3% Triton X-100 in PBS

Olig2 AF2418 Rabbit R&D System 1/200 Oligodendrocyte lineage transcription factor 
2

1% BSA, 3% Triton X-100 in PBS

PDGFRα AF1062 Goat R&D System 1/200 Platelet derived growth factor subunit α 1% BSA, 3% Triton X-100 in PBS

Fig. 1  Schematic representation of PDGFR-α and Olig2 expressing cells in the GE and CP of FASD and control brains. Semi-quantitative 
evaluation of PDGFR-α immunoreactive OPCs in the GE displaying a delayed production at 16 WG and an increased density until the physiological 
disappearance of GE by comparison with control brains (a), as well as in the cortical plate of all FASD brains compared to control brains from 20 
WG which persisted until 37 WG (b). Semi-quantitative evaluation of Olig2-expressing OPCs and pre-OLs in the GE in which the density of Olig2 
immunoreactive cells was drastically reduced up to 24 WG in FASD brains, followed by an increasing trend to the production/differentiation 
between 24 and 30 WG (arrows) in FASD brains though the number of OPCs and pre-OLs remained low until regression of GE by 34 WG by 
comparison with control brains (c). In the cortical plate a lower density of Olig2-expressing cells in all FASD brains was observed regardless of the 
developmental stage compared with control brains (d). Dotted blue line: control brains; dotted red line: PAE exposed brains; black triangles: second 
FASD case available at a given stage
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+: less than 10% of cells labelled; ++: between 10 and 
25% of cells labelled; +++: between 25 and 50% of cells 
labelled and ++++: more than 50% of the cells labelled.

Confocal analyses
In order to identify more precisely the different Olig2-
positive populations, double immunolabelling was per-
formed using Olig2 and either PDGFR-α, GABA, MAP2 
or GFAP within the GE at 15–16 WG, a developmental 
stage in which some Olig2 positive cells could belong 
to other lineages than OL. The antibodies used for con-
focal analyses are described in Table  3. Brain sections 
were incubated overnight at 4  °C with various primary 
antibodies diluted in a buffer solution (PBS contain-
ing 1% BSA and 3% Triton X-100). Fluorescent-conju-
gated antibodies Alexafluor-488 and -592 were obtained 
from Molecular Probes (Eurogene, Or, USA). Sections 
were then rinsed three times with PBS for 10  min and 
incubated with the same incubation buffer containing 
the appropriate secondary antibody. Coverslips were 
mounted in DAPI-containing Vectashield (Vector labo-
ratories, Cambridgeshire, UK). Non-specific binding of 
the secondary antibody was evaluated by omitting the 
primary antibodies. Images were acquired with the Leica 
laser scanning confocal microscope TCS SP2 AOBS 
(Leica Microsystems, Wetzlar, Germany). Analyses were 
carried out using the FIJI Is Just Image J (FIJI) software.

Results
FAS Patient’s clinical and morphological characteristics
Among the 14 cases exposed to alcohol, 3 (21%) had intra 
uterine growth retardation (IUGR). All but 2 cases (86%) 
had cranio-facial dysmorphism which was characteristic 
of FAS in half of these cases, associating short palpebral 
fissures, smooth philtrum and thin vermillion border 
[40]. Five cases (36%) had microcephaly with a brain 
weight ≤ 3rd percentile. Nine cases (57%) had other CNS 
anomalies already described in FAS and FASD patients, 
such as myelomeningocele, arhinencephaly, polymicro-
gyria, neuronal heterotopias and cerebellar anomalies 
(see Table  2). Clastic lesions were observed in 5 cases 
(36%) and five other cases had associated visceral anoma-
lies (anterior coelosomia, hydronephrosis, unilateral pel-
vic dilatation and tetralogy of Fallot), which are known to 
occur in case of PAE.

Daily chronic alcohol intake throughout the pregnancy 
was self-reported by 7 mothers/ 14 (50%). Three out of 
the 7 mothers also consumed episodic high doses of alco-
hol named «binge drinking». In the other 7 cases, mater-
nal alcohol intake was suspected on the basis of reports 
by their relatives (family and/or friends) or clinically 
suspected at the time of foetal autopsy according to the 
criteria established by Riley et  al., i.e., craniofacial dys-
morphism characteristic of FAS (6/7 suspected cases), 

Table 4  Semi-quantitative analysis of immunohistochemical 
data with PDGFR-ɑ and Olig2 antibodies

CP cortical plate, CTRL control, FASD fetal alcohol spectrum disorder, GE 
ganglionic eminences, NA not analyzed

Term FASD/
Ctrl

GE CP

PDGFR-ɑ Olig2 PDGFR-ɑ Olig2

15 
WG

FASD 30%+++ 40%+++ 20%++ 30%+++

16 
WG

CTRL 60%++++ 60%++++  > 60%++++ 80%++++

20 
WG

FASD 80%++++ 30%+++ 60%++++ 20%++

CTRL 20%++ 40%+++ 40%+++ 40%+++
22 
WG

FASD 
1

70%++++ 10%+ 60%++++ 5%+

FASD 
2

60%++++ 10%+ 50%+++ 5%+

CTRL 30%+++ 50%++++ 40%+++ 40%+++
24 
WG

FASD 
1

60%++++ 2%+ 40%+++ 1%+

FASD 
2

80%++++ 30%++ 40%+++ 10%+

CTRL 10%+ 10%+ 30%+++ 40%+++
26 
WG

FASD 
1

60%++++ 20%++ 50%+++ 30%+++

FASD 
2

60%++++ NA 40%+++ 5%+

CTRL 5%+ 5%+ 30%+++ 35%+++
29 
WG

FASD 70%++++ 5%+ 60%++++ 5%+

28 
WG

CTRL 20%++ 20%++ 50%+++ 20%++

30 
WG

FASD 80%++++ 20%++ 60%++++ 5%+

CTRL 20%++ 10%+ 40%+++ 40%+++
31 
WG

FASD 
1

30%+++ 10%+ 60%++++ 3%+

FASD 
2

30%+++ 5%+ 50%+++ 1%+

32 
WG

CTRL 20%++ 10%+ 40%+++ 20%++

33 
WG

FASD Absent Absent  > 60%++++ 5%+

34 
WG

CTRL Absent Absent 50%+++ 20%++

37 
WG

FASD Absent Absent 60%++++ 1%+

36 
WG

CTRL Absent Absent 40%+++ 30%+++
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microcephaly (3/7 suspected cases), other CNS lesions 
(5/7 suspected cases) and IUGR (2/7 suspected cases) 
[40]. Ten mothers (71%) had co-morbidities notably mul-
tidrug addiction, antiepileptic drugs and psychotic traits.

Semi‑quantitative analysis of PDGFR‑α and Olig2 
immunohistochemistry in the cortical plate and ganglionic 
eminences
Semi-quantitative evaluation of PDGFR-α and Olig2 
immunolabellings are summarised in Fig.  1 and in 
Table 4.

PDGFR-α expression was strongly increased in the GE 
and in the CP of all FASD brains in comparison with con-
trols whatever the developmental stage with the excep-
tion of the earliest stage (Fig.  1a, b). Indeed, at 15–16 
WG, PDGFR-α expression remained lower in the medial 
ganglionic eminences (MGE), LGE and CP of FASD 
brains contrary to controls (Fig.  2a–d) in which more 
than 60% of cells were observed. At 20 WG and at all 

later stages, PDGFR-α cell numbers were higher than in 
controls in all structures studied (Fig. 2e–l).

At 16 WG, more than 60% Olig2-positive precur-
sors and pre-OLs were identified in the MGE and LGE 
of the control brain, whereas Olig2-positive cells were 
less numerous in the FASD brain (Fig. 3a, b). Moreover, 
Olig2 immunoreactivity was essentially identified in the 
MGE of the FASD brain and not yet in the LGE. At 22 
WG, Olig2-positive cell density was drastically reduced 
in the GE of FASD brains (Fig. 3c–f), and remained low 
until the regression of GE that normally occurs around 
34 WG. No massive generation of Olig2 immunoreac-
tive cells was identified in FASD brains until the end of 
the pregnancy, except for three small peaks of generation 
in FASD brains between 24 and 30 WG (Figs. 1c, 3g, h), 
contrary to controls in which a major production was 
observed between 16 and 24 WG.

At all developmental stages, the density of Olig2-pos-
itive cells within the CP was consistently higher in each 

Fig. 2  PDGFR-ɑ immunoreactivities in the GE and CP of FASD and control brains. Lower densities of PDGFR-ɑ expressing OPCs in the GE of FASD 
brain at 15 WG by comparison with the control aged 16 WG in which most of the cells were immunolabelled (OM X20) (a, b), with a similar 
pattern observed in the CP of FASD and control brain (c, d). But from 20 WG, higher densities of PDGFR-ɑ expressing OPCs in the GE of FASD brains 
compared with control brains (OM X20) (e, f), as observed in the CP (g, h), with the same pattern found at 30 WG in the GE (OM X20) (i, j) and in the 
CP (k, l). (OM: original magnification; scale bar: 0.35 mm)
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Fig. 3  Olig2 immunoreactivities in the GE of FASD and control brains. Lower densities of Olig2 expressing cells in the GE of FASD brain at 15 WG by 
comparison with the GE of control brain at 16 WG in which more than 50% of Olig2 positive cells were observed (a, b) the most striking differences 
between FASD and control GE being observed at 22 WG (c, d). Similar differences, though less pronounced, were also noted at 24 WG in the FASD 
brain (case 5) compared to the control (e, f) contrary to what was noted in the FASD brain (case 6), in which an intense immunoreactivity was 
observed arguing for a delayed production/differentiation starting from this term (g, h)
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control brain in comparison with FASD brains (Figs. 1d, 
4), with the highest density in the control cortical plate 
(around 80% of the cells) observed at 16 WG, contrast-
ing with the paucity of immunolabelled cells in FASD 
(Fig. 4a, b).

Confocal analyses
At early stages, a diffuse and intense immunolabelling 
of cells with Olig2 antibody was identified. As Olig2 is 
known to be also expressed in immature neurons and 
interneurons as well as in a subpopulation of astrocytes, 
we performed double immunolabellings using Olig2 and 
either MAP2, GABA, GFAP or PDGFR-α to evaluate 
more precisely the percentage of Olig2-positive OPCs 
[22, 23, 30]. No co-expression of Olig2 with MAP2, 
GABA, GFAP or PDGFR-α within the GE and CP was 
observed (Additional file 1: Fig. S1).

Discussion
In living children with FASD aged from 10 to 17, imag-
ing studies have revealed lower white matter volumes and 
sometimes a complete lack of myelination of major white 
matter tracts in the brain as well as white matter micro-
structure alterations [39, 48, 49]. However, the impact of 
alcohol on oligodendrocyte lineage and by extension on 
myelination has essentially been studied using in  vitro 
experiments or animal models. Alcohol can disrupt mye-
lination at any stage of OL development but targets par-
ticularly OPCs which are more vulnerable to excitotoxic 
damage, free radicals and pro-inflammatory cytokines 
than mature OLs [2, 39]. Furthermore, it has been shown 
in a study performed on primary mouse OL cultures 
that acetaldehyde, the metabolic byproduct of alcohol is 
lethal to OLs which are much more sensitive to acetalde-
hyde than to alcohol, particularly upon long-term alcohol 
exposure [6].

To our knowledge, no study concerning the effects of 
alcohol during human brain development has focused on 
OPC production from the GE. Nevertheless, using in vivo 
and in  vitro mouse models, it has been demonstrated 
that alcohol hinders basal progenitor proliferation in the 
ventricular zone/subventricular zone (VZ/SVZ) by inter-
fering with the cell cycle at G1-S transition from early 
development [38]. It might therefore be suggested that 
a similar mechanism occurs in the LGE and CGE, which 

could explain defective or delayed production of OPCs 
during foetal life. Finally, only one study by Darbinian 
et al. has been published concerning oligodendroglial lin-
eage generation and differentiation in FAS human brains 
over the period covering the second trimester of preg-
nancy, from 12.2 to 21.4 WG [9]. By means of mRNA and 
flow cytometry analyses, these authors showed that etha-
nol (EtOH) exposure was associated with an increased 
proportion of cells that express protein markers for early 
OL progenitors and with a reduced proportion of cells 
expressing mature OL markers. Nevertheless, the use of 
brain homogenates in this study did not make it possible 
to determine in which specific regions oligodendrocyte 
production was affected, i.e., CP and/or GE. The present 
study shows not only that oligodendrocyte production 
is delayed in the GE but also that the proportion of cells 
expressing maturing OL markers is reduced in FAS brains 
later in development, supporting the hypothesis that this 
defect in differentiation persists at least until birth. Such 
alterations could be partly explained by an enhanced 
apoptosis as caspase-3 activation has been shown to be 
substantially increased in EtOH exposed human foetuses 
[9]. During rodent brain development, alcohol has also 
been shown to impair astrocyte and oligodendrocyte dif-
ferentiation and to increase apoptosis [51]. Furthermore, 
a study performed in foetal macaque brains exposed to 
alcohol has shown that the decrease in OLs observed in 
comparison with control brains was linked to massive 
apoptosis, a single in utero alcohol exposure trigger-
ing widespread acute apoptotic death of OLs through-
out white matter regions at a rate higher than 12 times 
compared to the physiological OL apoptosis rate [7]. This 
study also highlighted the fact that OLs become sensi-
tive to the apoptogenic effect of alcohol at the time they 
are beginning to generate myelin constituents in their 
cytoplasm, i.e., when they become positive for MBP and 
negative for PDGFR-α, a fact we could not confirm in our 
human cohort, as myelination starts from birth only [7]. 
From this study, it could be suggested that in addition to 
a defective and/or delayed generation of OPCs, apopto-
sis also likely contributes to the decrease of Olig2 positive 
cells observed in human FASD brains, which was also 
observed by Darbinian et al. [9]. Epigenetic mechanisms 
could play an additional role in cell fate specification of 
brain precursor cells as alcohol is known to induce oxida-
tive stress that alters gene expression, in particular Shh, 

Fig. 4  Olig2 immunoreactivities in the CP of FASD and control brains. Significantly lower densities of Olig2-positive cells in FASD brains compared 
to control brains at 15–16 WG (OM X10) (a, b) with a similar pattern observed at 20 WG (OM X10) (c, d). At 30 WG, Olig2-positive cells remained 
scarce in the FASD brain contrary to the control, in which Olig2-positive cells were located in all layers of the cortical plate (OM X20) (e, f) with 
an increase in density in the superficial layers at 33 WG in the control cortical plate only (OM X20) (g, h). (OM: original magnification; scale bar: 
0.35 mm)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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which promotes expansion and specification of multipo-
tent progenitors into OPCs and immature OLs [12, 35]. 
Upon alcohol exposure, several other signalling pathways 
through which alcohol may directly disrupt OPC differ-
entiation and survival have also been implicated, such as 
PDGFRα, Wnt3a and Wnt5a, which regulate OL cell fate 
specification, differentiation and proliferation [21, 27, 
46]. The increase in PDGFR-α positive OPCs observed 
in our study could therefore be related to a deregulation 
of Wnt signalling, preventing OPCs from progressing 
towards OL differentiation.

Whereas changes in OL morphology, maturation, dif-
ferentiation and survival have been reported in third 
trimester-equivalent preclinical models of FASD [7, 8, 
52], very little is known about the deleterious effects 
of alcohol on OL lineage derived from distinct telence-
phalic germinal zones [15, 18]. In 2017, Newville et al. 
found a drastic decrease in the number of mature OLs 
and proliferating OPCs within the corpus callosum of 
alcohol-exposed mice at postnatal day 16, but neither 
mature OLs nor OPCs derived from the postnatal SVZ 
were numerically affected, indicating ontogenetic het-
erogeneity in susceptibility to alcohol [33]. Several 
studies performed in rodents have demonstrated that 
myelination is delayed upon PAE, consisting in a weak 
expression of MBP, reduced myelin thickness and mye-
lin alterations at the ultrastructural level, which impair 
the formation of neuronal circuits and conduction of 
neuronal signals [18, 32, 36].

Another mechanism which regulates the formation of 
myelin around axons consists in interactions between 
OPCs which receive excitatory and inhibitory inputs 
mediated by glutamate and GABA, and developing 
axons. Recent studies have demonstrated that a sig-
nificant proportion of grey matter myelin in the cortex 
forms on the axons of local inhibitory interneurons in 
both rodents and humans [29, 44]. During develop-
ment, GABA likely acts as a local environmental cue to 
control myelination and thus influences the conduction 
velocity of action potentials in the CNS. Nevertheless, 
data remain controversial since endogenous GABA 
by interacting with GABAA receptors has been shown 
either to increase or to decrease proliferation, apopto-
sis and consequently oligodendrocyte numbers, as well 
as shortening internode length, which allows for faster 
saltatory conduction velocities. Similar discrepancies 
have also been observed regarding glutamate which 
blocks proliferation and progression of OPCs but also 
promotes myelin formation [19, 53].

It has long been acknowledged that in rodents, Olig2 
expressing progenitors in the MGE give rise to GABAer-
gic interneurons at early developmental stages and oligo-
dendrocytes thereafter [30]. In humans, Olig2 has been 

mainly detected in the proliferative zones of the ganglionic 
eminences between 5–15 post-conceptional weeks prior 
to the expression of oligodendrocyte precursor markers. 
By 20 WG, these cells spread throughout the cortex, and 
co-express markers for immature neurons, neurogenic 
radial glia and intermediate progenitors [22, 23]. Using 
immunohistochemistry on 8–12 post-conceptional week 
human sections, Olig2 immunoreactivity has been shown 
to be expressed in GABAergic cells of the proliferative 
zones of the MGE and septum [1]. In the present study, 
the detection of more than 60% of Olig2 immunoreac-
tive cells at the earliest stage could correspond to OPCs 
admixed with other nerve cell populations. Confocal stud-
ies together with quantitative analyses allowed us to show 
that Olig2 was specifically expressed in maturing OL from 
an early developmental stage and was not co-expressed 
with MAP2, GABA, GFAP or PDGFR-α.

Conclusion
The present study provides further evidence that there is 
major oligodendrocyte lineage impairment at all stages 
of brain development upon PAE, consisting in defective/
delayed generation, migration and maturation of oligo-
dendrocyte precursors. Since oligodendrocyte develop-
ment and myelin are a target of alcohol, the disruption of 
oligodendrocyte differentiation and of myelination process 
is very likely responsible for inadequate establishment of 
neuronal networks and inefficient conduction of neuronal 
signals. Disruption of oligodendrocyte generation and dif-
ferentiation, together with GABA interneuronopathy that 
we previously identified [28], most likely contribute to 
developmental encephalopathy and subsequent life-long 
neuro-behavioural disabilities.
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