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Host colonisation by lymphotropic gammaherpesviruses

depends critically on the expansion of viral genomes in

germinal centre (GC) B cells. Yet, host and virus molecular

mechanisms involved in driving such proliferation remain

largely unknown. Here, we show that the ORF73 protein

encoded by the murid herpesvirus-4 (MuHV-4) inhibits

host nuclear factor-kappa B (NF-jB) transcriptional activ-

ity through poly-ubiquitination and subsequent proteaso-

mal-dependent nuclear degradation of the NF-jB family

member p65/RelA. The mechanism involves the assembly

of an ElonginC/Cullin5/SOCS (suppressors of cytokine

signalling)-like complex, mediated by an unconventional

viral SOCS-box motif present in ORF73. Functional dele-

tion of this SOCS-box motif ablated NF-jB inhibitory effect

of ORF73, suppressed MuHV-4 expansion in GC

B cells and prevented MuHV-4 persistent infection in

mice. These findings demonstrate that viral inhibition

of NF-jB activity in latently infected GC centroblasts is

critical for the establishment of a gammaherpesvirus

persistent infection, underscoring the physiological

importance of proteasomal degradation of RelA/NF-jB as

a regulatory mechanism of this signalling pathway.
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Introduction

Being obligatory intracellular parasites, viruses have evolved

a variety of mechanisms to modulate specific host signal-

transduction pathways to favour their own replication. One of

such mechanisms targets nuclear factor-kappa B (NF-kB), a

family of ubiquitously expressed transcription factors that

bind specific DNA sequences, kB sites, in the promoter region

of a variety of genes, to modulate their rate of transcription/

expression. In mammalian cells, the NF-kB family comprises

five members—p65/RelA, RelB, c-Rel, p105/p50 and p100/

p52 (Blank et al, 1992)—that can form homo- or heterodi-

mers (Saccani et al, 2003). Under homoeostasis, NF-kB

dimers are sequestered in the cytoplasm by the inhibitory

IkB proteins, which include IkBa, IkBb and IkBe. These mask

the nuclear localisation signal of the NF-kB dimers, impairing

their nuclear translocation. Once exposed to pro-inflamma-

tory stimuli, mammalian cells activate an IkB kinase (IKK)

complex that phosphorylates IkB molecules leading to their

poly-ubiquitination and proteasomal degradation. This, in

turn, promotes nuclear translocation of NF-kB dimers,

where they bind to euchromatised kB sites to activate target

gene transcription (Karin and Ben-Neriah, 2000).

Genes regulated through NF-kB are involved in critical

biological functions, including inflammation and apoptosis as

well as cell proliferation. One essential aspect of the NF-kB

signal-transduction pathway is that it must be tightly regu-

lated to afford a fast response to a given stimulus, terminating

this response as soon as the stimulus is no longer present.

Although mechanisms regulating NF-kB activation have been

studied extensively, those regulating its termination are less

well perceived. Termination of NF-kB activity was initially

thought to rely exclusively on the de novo expression of IkB

molecules. Once resynthesised, IkBa enters the nucleus

where it dissociates NF-kB dimers from kB sites, shuttling

NF-kB dimers back to the cytoplasm (Arenzana-Seisdedos

et al, 1997). However, in recent years, it has become apparent

that many other mechanisms control the extent of NF-kB

activation, including direct poly-ubiquitination and subse-

quent proteasomal degradation of promoter-bound RelA

(Saccani et al, 2004). This mechanism is regulated through

the activation of multimeric E3 ubiquitin-ligases, which

accept ubiquitin from E2 ubiquitin-conjugating enzymes,

and transfer it to specific substrates promoting their degrada-

tion by the proteasome (Weissman, 2001). Two cellular

proteins, PDLIM2 (Tanaka et al, 2007) and SOCS1 (suppres-

sors of cytokine signalling 1; Ryo et al, 2003), have been

identified as mediators of RelA poly-ubiquitination. In the

case of SOCS1, this protein functions as the substrate recog-

nition component of an ECS (ElonginC–Cullin2/5–SOCS) E3

ubiquitin-ligase (Ryo et al, 2003). SOCS proteins comprise

several family members each of which share a C-terminal

40-amino-acid module that is known as the SOCS-box, which

mediates the interaction with ElonginB/C and Cullin2/5

modules, bridging the substrate of ubiquitination to the E2
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ubiquitin-conjugating enzyme (Yoshimura et al, 2007). By

virtue of assembling an ECSSOCS1 ligase and interacting with

NF-kB subunits, SOCS1 directs ubiquitination and proteaso-

mal degradation of promoter-bound NF-kB members and

efficient termination of transcriptional responses (Ryo et al,

2003; Saccani et al, 2004).

Viruses have evolved several mechanisms to modulate

NF-kB activity (Hiscott et al, 2006). One example is the

NS5B protein of hepatitis C virus that targets the IKK complex

resulting in IKK inhibition and suppression of NF-kB activity

(Choi et al, 2006). Another strategy relies on the expression of

viral IkB-like proteins that stably interact with NF-kB dimers,

but lack the consensus serine residues phosphorylated by

IKK. Thus, these viral inhibitors are not degraded in response

to IKK activation, which prevents NF-kB translocation to the

nucleus and the subsequent NF-kB-driven gene transcription.

This is the case for the A238L IkB-like protein of African

swine fever virus (Powell et al, 1996; Revilla et al, 1998; Tait

et al, 2000). In addition, host NF-kB dimers can be targeted

directly for degradation by viral proteins, as exemplified by

the 3C-encoded protease of poliovirus that cleaves the trans-

activation domain (TAD) of RelA to inhibit NF-kB signalling

(Neznanov et al, 2005).

In this study, we describe a novel viral mechanism to

suppress NF-kB activity. We provide conclusive evidence

that the latency-associated protein ORF73 encoded by murid

herpesvirus-4 (MuHV-4), a gammaherpesvirus genetically re-

lated to the human pathogens Epstein–Barr virus (EBV) and

Kaposi’s sarcoma-associated herpesvirus (KSHV) (Simas and

Efstathiou, 1998), targets nuclear RelA for proteasomal degra-

dation. Gammaherpesviruses are among the most prevalent of

human pathogens owing to their ability to cause persistent

infections (Rickinson and Kieff, 2001). Persistent infection is

associated with both lymphoid and epithelial tumours, which

occur with increased incidence following immune suppression

(Damania, 2004; Sunil-Chandra et al, 1994). Thus, the control

of gammaherpesvirus infections represents a major clinical

goal. A critical determinant of persistence is the ability to

establish latency in memory B cells. Access to this cell type is

gained by virus-driven lymphoproliferation of germinal centre

(GC) B cells (Thorley-Lawson, 2001). During expansion of

latency in B cells, viral genomes replicate in step with normal

cell division. This process is mediated by viral episome main-

tenance proteins, which include Epstein–Barr nuclear antigen-

1 (EBNA-1) of EBV (Yates et al, 1985) and ORF73 of gamma-2-

herpesviruses (Ballestas et al, 1999; Hall et al, 2000). ORF73

proteins have also been shown to function as nuclear regula-

tors of transcription and to interact with several cellular

proteins to modulate host functions, postulated to be involved

in latency regulation (Verma et al, 2007). The new mechanism

here described underlying ORF73-mediated RelA degradation,

involves the assembly of an EC5S complex mediated by an

unconventional SOCS-box-like motif present in ORF73. We

found that EC5S
ORF73 mimics the host ECSSOCS1 ubiquitin-

ligase inhibiting tumour necrosis factor (TNF)-induced

NF-kB activation. Infection with recombinant viruses, bearing

disruptive mutations in the ORF73 SOCS-box-like motif, ren-

dered these viruses incapable of inducing lymphoproliferation

in GC B cells and prevented persistent infection in mice. This

finding emphasises the physiological importance of proteaso-

mal degradation of NF-kB as a prompt terminator of this

signalling pathway.

Results

Identification of ORF73 as an inhibitor of NF-jB

transcriptional activity

Experiments were designed to investigate whether NF-kB

transcriptional activity was modulated in mammalian cells

transiently expressing ORF73. Human HEK 293T cells were

transiently co-transfected with a synthetic NF-kB reporter

containing three copies of kB consensus sequences driving

the expression of firefly luciferase (Winkler et al, 1996), with

or without ORF73. TNF was used as a prototypical stimulus

leading to NF-kB activation. Control cells, which did not

express ORF73, responded in a dose-dependent manner to

TNF; that is, the higher the TNF concentration the higher the

luciferase activity (Figure 1A, filled bars). In contrast, cells

expressing ORF73 were unable to respond effectively to

TNF, even at the highest concentration tested (50 ng/ml)

(Figure 1A, open bars), an indication that the viral protein

impairs TNF-driven NF-kB activation.

We next assessed whether ORF73 would be modulating the

NF-kB inhibitor IkBa by interfering with its degradation and/

or resynthesis kinetics. Control transfected or ORF73-expres-

sing cells, exposed to TNF, were monitored by western blot

for the expression of IkBa. The pattern of IkBa degradation

was similar in control versus ORF73-expressing cells

(Figure 1B, first panel, lanes T0 and T1), indicating that

ORF73 does not modulate the signal-transduction pathway,

driven by TNF receptor 1 (TNFR1), that leads to IkBa
degradation. However, IkBa resynthesis was severely com-

promised in ORF73-expressing cells (Figure 1B, first panel,

lanes T2–T4). These results are in good agreement with the

inhibitory effect observed for the reporter assay, as IkBa is

one of the primary targets of NF-kB transcriptional activity.

ORF73 directly targets the Rel homology domain of RelA

Next, we hypothesised that ORF73 was directly targeting one

or more members of the NF-kB family. We performed reporter

gene assays where the primary NF-kB family member, RelA,

was transiently overexpressed in different combinations with

p50 and c-Rel, in the presence or absence of ORF73.

Overexpression of these NF-kB family members over-rides

the sequestering effect of endogenous IkB molecules

(Anrather et al, 1999), as revealed by a significant fold

induction of NF-kB transcriptional activity (Figure 1C,

filled bars). Co-expression of ORF73 resulted in the inhibition

of the transcriptional activity in all NF-kB combinations

tested (Figure 1C, open bars), an indication that ORF73

directly targets NF-kB proteins to inhibit their transcriptional

activity.

The Rel homology domain (RHD) is a consensus sequence

shared by all NF-kB proteins: RelA, RelB, c-Rel, p105/p50 and

p100/p52. RelA, RelB and c-Rel contain an additional TAD

responsible for interaction with the basal transcriptional

machinery (Chen and Greene, 2004). To investigate which

functional RelA domain was targeted by ORF73, we used two

artificial fusion proteins depicted in Figure 1D (Anrather et al,

1999). The RelA(RHD)–VP16 fusion protein is composed of

the RHD of RelA (aa 2–320) in frame with the TAD derived

from the herpes simplex virus VP16 protein. The construct

Tet–RelA(TAD) has the DNA-binding domain from the bacter-

ial tetracycline repressor fused to the C-terminal portion of

RelA (aa 286–551), which includes its TAD. The transcrip-
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tional activity of the two chimaeric proteins was assessed on

transient co-transfection with the NF-kB-responsive promoter

(kB-luc; Figure 1E), or with a reporter containing seven

tetracycline operons (TetO-luc; Figure 1F). ORF73 impaired

the transcriptional activation of RelA(RHD)–VP16, as assayed

with the kB-luc promoter (Figure 1E). In clear contrast, the

transcriptional activity of Tet–RelA(TAD) was not inhibited

by ORF73 expression, as assessed with the promoter TetO-luc

(Figure 1F). In this case, a higher luciferase activity was

observed, though this was not a specific effect of ORF73 on

the TAD of RelA, as expression of the viral protein resulted in

an analogous increase of Tet-VP16 transcriptional activity

(data not shown). These results indicate that ORF73 inhibits

the activity of NF-kB proteins by a mechanism that specifi-

cally targets their RHD domain.

RelA nuclear levels are diminished in ORF73-expressing

cells

We proceeded to investigate whether ORF73 would be func-

tioning at the nuclear level by impairing the binding of NF-kB

to DNA kB sites. We performed electromobility shift assays

(EMSA) in the presence of oligonucleotides bearing the

consensus kB site from the immunoglobulin promoter region.

Cells were transiently transfected with ORF73, or control

transfected, and NF-kB activation was induced by TNF. As

illustrated in Figure 2A, NF-kB DNA-binding levels were

Figure 1 ORF73 inhibits NF-kB transcriptional activity by directly targeting NF-kB subunits. (A) ORF73 inhibits TNF-driven NF-kB activity.
HEK 293Tcells were transiently transfected with a NF-kB luciferase reporter vector and with an ORF73-expressing plasmid as indicated. ORF73-
transfected cells (open bars), or control cells (filled bars), were incubated with the indicated TNF concentrations. NF-kB transcriptional activity
associated with each sample was assayed using a luminometer. Error bars represent standard deviations of the mean from four independent
experiments. A representative immunoblot is shown (bottom) to demonstrate appropriate and equivalent ORF73 expression in all samples.
(B) Reduced levels of IkBa resynthesis in ORF73-expressing cells. HEK 293T cells were transiently transfected to express ORF73, or control
transfected, and after 24 h were treated with 50 ng/ml of TNF as indicated (top). Total cellular extracts were resolved by SDS–PAGE and
analysed by immunoblotting with anti-IkBa (first panel), anti-Myc (second panel) and anti-Actin (third panel) antibodies. Densitometry
analysis of IkBa levels present in each experimental condition, normalised to actin, is shown (bottom). (C) ORF73 is able to inhibit RelA
transcriptional activity as homo- or heterodimers. Cells overexpressing the indicated NF-kB proteins, co-transfected with (open bars) or
without (filled bars) ORF73-expressing plasmid, were assayed for NF-kB activity as described in (A). (D–F) ORF73 specifically targets the Rel
homology domain (RHD) of RelA to inhibit its transcriptional activity. HEK 293T cells were transiently co-transfected with (E) a NF-kB
luciferase reporter vector, or (F) a Tet operon responsive construct, together with the indicated chimaeras (depicted in (D)). Filled bars
represent control cells (without ORF73 expression), whereas open bars represent cells transfected with an ORF73-expressing plasmid. The
transcriptional activity associated with each sample was assayed as described above. Error bars represent the standard deviations of the mean
in three independent experiments. �, without; þ , with; a, anti; WB, western blotting.
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reduced in ORF73-expressing cells. This decrease did not

reflect ORF73 interference with NF-kB DNA binding to kB

sites but rather correlated with diminished levels of nuclear

RelA, as assessed by immunoblotting (Figure 2A, second

panel, compare lanes 2 and 4, and densitometry analysis).

To assess whether ORF73 could itself bind to kB sites, a

supershift assay was performed in the presence of antibodies

directed against RelA (positive control), Actin (unrelated

antibody) or ORF73. The addition of anti-RelA antibody to

the binding reaction caused a supershift in the NF-kB/oligo-

nucleotide complex, which indicates that these complexes

contain RelA protein (Figure 2B, lane 3). In contrast, in the

presence of anti-ORF73 serum no supershift was observed, as

well as when an unrelated antibody was added to the binding

reactions (Figure 2B, lanes 2 and 4), indicating that ORF73

does not bind to kB sites. Taken together, these data raise the

hypothesis that ORF73 may be exerting its inhibitory activity

towards NF-kB by promoting its degradation in the nucleus.

When transiently expressed in resting HEK 293T cells,

ORF73 localised primarily to the nucleus, as assessed by

immunofluorescence (Figure 2C, panel e). TNF treatment

did not affect ORF73 nuclear localisation (Figure 2C, panels

f and h), whereas it caused prompt translocation of RelA from

the cytoplasm to the nucleus (Figure 2C, panels a and b).

However, in cells expressing ORF73, there was a significant

decrease in the levels of nuclear RelA after TNF stimulation,

without concomitant accumulation of this protein in the

cytoplasm (Figure 2C, panels d and h). These results are in

Figure 2 RelA nuclear levels are diminished in ORF73-expressing cells. (A) Reduction of NF-kB binding to kB sequences in ORF73-expressing
cells correlates with diminished levels of nuclear RelA. HEK 293T cells were transiently transfected with an ORF73 expression plasmid, or
control transfected. After 24 h of culture, cells were stimulated with TNF for 40 min, or left unstimulated. Nuclear extracts were prepared and
subjected to electromobility shift assays (EMSAs) using the NF-kB consensus oligonucleotide from the immunoglobulin promoter region. The
percentage of NF-kB binding present in each condition is shown. Nuclear extracts were analysed by immunoblotting to determine the input of
RelA and ORF73 present in each binding reaction. Densitometry analysis of RelA nuclear levels present in each experimental condition,
normalised to the nuclear protein LaminB, is shown. (B) ORF73 protein does not bind to kB sequences. Nuclear extracts from HEK 293T cells
expressing ORF73 were subjected to a supershift assay using the specified antibodies. (C) Immunofluorescence analysis of ORF73-expressing
cells. HEK 293T cells were stimulated with 50 ng/ml of TNF for the times indicated and then subjected to immunostaining with anti-RelA and
anti-ORF73 antibodies. �, without; þ , with; a, anti; WB, western blotting.
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good agreement with the approximately 75% decrease in

NF-kB DNA-binding activity in ORF73-expressing cells

observed in Figure 2A, which likely reflect the reduced over-

all levels of nuclear RelA (approximately 70% decrease).

Taken together, these data suggest that ORF73 targets nuclear

RelA in a manner that decreases its level of nuclear expres-

sion after TNF stimulation.

ORF73 triggers poly-ubiquitination and degradation

of nuclear RelA

As RelA nuclear degradation through poly-ubiquitination is

one of the mechanisms through which NF-kB activity can be

downmodulated (Saccani et al, 2004), we investigated

whether ORF73 was targeting nuclear RelA for poly-ubiqui-

tination/degradation. By performing a nickel-nitrilotriacetic

acid (Ni-NTA) pull-down, in the presence of histidine-tagged

ubiquitin, we observed that ORF73 expression significantly

enhanced RelA poly-ubiquitination similarly to SOCS1 over-

expression (Figure 3A, compare lanes 5 and 6), an effect

enhanced by the proteasome inhibitor MG132 (Figure 3B,

lane 4), indicating that ORF73-mediated RelA poly-ubiquiti-

nation targets RelA to proteasome degradation. To further

confirm this activity in a more relevant biological context, we

tested the ability of ORF73 to mediate the poly-ubiquitination

of endogenous RelA following stimulation with TNF. Under

the influence of the proteasomal inhibitor MG132, in com-

parison with control transfected cells, higher levels of poly-

ubiquitinated RelA were detected in the presence of ORF73

(Figure 3C, compare lanes 3 and 6). These data suggest that

ORF73 promotes the ubiquitination of nuclear RelA and its

subsequent proteasomal-dependent degradation.

ORF73 immunoprecipitates exhibit E3 ubiquitin-ligase

activity

As ORF73 does not possess known catalytic domains that

could justify poly-ubiquitination activity, we investigated

whether ORF73 could be part of a cellular E3 ubiquitin-ligase.

To that end, ORF73 was immunoprecipitated from control

transfected, or ORF73-expressing cells, and the respective

immunoprecipitates were subjected to an in vitro ubiquitina-

tion reaction in the presence of exogenous ubiquitin-activat-

ing (E1) and conjugating enzyme (E2) UbcH5a, together with

GST–RelA as a substrate. The presence of ligase activity

directed towards RelA was analysed by immunoblot with an

anti-GST serum. As shown in Figure 3D, in the presence of

ATP, ORF73 immunoprecipitates specifically catalysed the

poly-ubiquitination of RelA, indicating that ORF73 is a com-

ponent of a cellular E3 ubiquitin-ligase with substrate speci-

ficity towards RelA.

ORF73 interacts with ElonginC and Cullin5

reconstituting an E3 ubiquitin-ligase

Recently, LANA encoded by ORF73 from KSHV was also

shown to possess E3 ubiquitin-ligase activity, acting as a

SOCS protein responsible for substrate recognition and spe-

cificity (Cai et al, 2006). As E3 ubiquitin-ligases must interact

physically with their targets to exert their function, we

investigated whether ORF73 was associated with RelA

in vivo. In cells overexpressing RelA and co-expressing

ORF73, the latter protein was able to efficiently co-immuno-

precipitate RelA (Figure 4A).

We proceeded to test whether ORF73 could associate

with other cellular components known to interact with

SOCS-box-containing proteins, namely ElonginC and

Cullin5. Transiently expressed ORF73 was able to co-immuno-

precipitate with endogenous levels of ElonginC and Cullin5

(Figure 4B). The ability of ORF73 to promote RelA poly-

ubiquitination, combined with its ability to interact with

ElonginC and Cullin5, suggested that the inhibitory effect of

ORF73 on NF-kB activity resided on its ability to assemble an

EC5S E3 ubiquitin-ligase complex.

To confirm that inhibition of NF-kB by ORF73 was depen-

dent on ElonginC and Cullin5, we tested whether ORF73

would inhibit NF-kB activity in cells in which the expression

of those E3 ubiquitin-ligase components was suppressed

using small interfering RNAs (siRNAs). Specific targeting of

ElonginC and Cullin5 by siRNA was confirmed by a decrease

in the expression levels of these two proteins (Figure 4C).

When endogenous ElonginC and Cullin5 expression was

inhibited, the ability of ORF73 to promote RelA poly-ubiqui-

tination was considerably reduced (Figure 4D), suggesting

that the mechanism used by ORF73 to inhibit NF-kB is

dependent on the recruitment of cellular proteins to recon-

stitute an E3 ubiquitin-ligase.

Mutation of the SOCS-box-like motif in ORF73

abrogates its inhibitory effect on NF-jB transcriptional

activity

SOCS-box-containing proteins interact with ElonginB/C and

Cullin5/Rbx2 modules through specific degenerated amino-

acid sequences referred as BC and Cul boxes, respectively

(Kamura et al, 2004). Analysis of MuHV-4 ORF73 primary

structure and by comparison with the previously identified

BC and Cul5 boxes from LANA of KSHV (Cai et al, 2006),

ORF73 appears to lack an obvious BC box. However, close to

the C-terminal end, ORF73 presents a sequence homologous to

LANA Cul5 box: VSCLPLVPGTTQQCVTY (Figure 5A). To

determine whether this region was involved in ORF73 E3

ubiquitin-ligase functions, we substituted SOCS-box consensus

amino acids (underlined) with alanines, and named this ORF73

mutant protein ORF73–SOCS. Immunofluorescence experi-

ments were performed to analyse whether the introduced

mutations affected the subcellular localisation of the protein.

As observed in Figure 5B, ORF73–SOCS localises in the nucleus

of transfected cells. Strikingly, in ORF73–SOCS-expressing cells,

and upon TNF stimulation, RelA nuclear levels are normal and

comparable to those observed in control transfected cells

(Figure 5B, panels d and f). Moreover, in TNF-stimulated

cells, RelA and ORF73–SOCS colocalised in the nucleus

(Figure 5B, panel f), demonstrating that the introduced muta-

tions did not affect ORF73 subcellular localisation, whereas

they affected the ability of ORF73 to promote RelA nuclear

degradation. Immunoprecipitation experiments revealed that

ORF73–SOCS still interacted with RelA (Figure 5C), whereas

lost the ability to recruit ElonginC (Figure 5D) and to a lower

extent Cullin5 (Figure 5E). Taken together, these data revealed

the existence of two distinct functional domains in ORF73: a

domain involved in RelA interaction, which is distinct from the

motif implicated in the recruitment of ElonginC and Cullin5.

Although the latter can be attributed to the ORF73 SOCS-box,

the former remains to be identified.

Further experiments showed that the ORF73–SOCS mutant

was unable to potentiate RelA poly-ubiquitination
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(Figure 6A), confirming that the amino-acid substitutions

introduced disrupted the ORF73 SOCS-box domain, and that

the presence of this motif is essential for ORF73 to function as

a mediator of RelA poly-ubiquitination. To investigate

whether ORF73–SOCS failure to promote RelA poly-ubiquiti-

nation would be reflected by its inability to suppress NF-kB

transcriptional activity, we performed gene reporter assays in

ORF73–SOCS-expressing cells. The effect of the expression of

ORF73–SOCS on NF-kB transcriptional activity, in conditions

of TNF stimulation, was assessed by quantifying the lucifer-

ase activity present in each experimental condition

(Figure 6B). We observed that disruption of the ORF73–

Figure 3 ORF73 mediates RelA poly-ubiquitination through E3 ubiquitin-ligase activity. (A) ORF73 promotes RelA poly-ubiquitination
similarly to SOCS1 overexpression. HEK 293T cells were transiently transfected with the indicated plasmids (top). After culture, total cellular
lysates were obtained and ubiquitinated proteins were pulled down using Ni-NTA beads. The levels of poly-ubiquitinated RelA in each
condition were assayed using an anti-RelA antibody. (B) Proteasome inhibition significantly enhanced ORF73-mediated RelA poly-ubiquitina-
tion. Cells transfected with the indicated expression plasmids were treated with the proteasome inhibitor MG132 (10mM) for 8 h, or left
untreated. RelA poly-ubiquitination present in each condition was assayed as described in (A). (C) ORF73-mediated poly-ubiquitination of
endogenous RelA. HEK 293T cells transiently expressing ORF73 or control cells were stimulated with TNF (50 ng/ml) for 3 h or left
unstimulated with or without an additional hour of treatment with MG132 (10mM). Total cell lysates were subjected to immunoprecipitation
with an anti-RelA antibody. Immunoprecipitates were analysed by immunoblotting using an anti-ubiquitin (Ubiq) antibody. (D) ORF73
immunoprecipitates exhibit E3 ubiquitin-ligase activity in vitro. HEK 293Tcells were transfected with or without an ORF73-expressing plasmid,
as indicated. After culture, cells were lysed and total cellular extracts were subjected to immunoprecipitation using anti-Myc.
Immunoprecipitates were incubated with recombinant ubiquitin-activating enzyme (E1) and conjugating enzyme (E2) UbcH5a, together
with ubiquitin and GST–RelA as substrates. The reactions were resolved by SDS—PAGE, and the presence of ubiquitinated RelA was analysed
by immunoblotting with an anti-GSTantibody.�, without; þ , with; a, anti; IP, immunoprecipitation; PD, pull down; TCL, total cellular lysates;
WB, western blotting.
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SOCS-box motif impaired ORF73 ability to inhibit NF-kB-

mediated signalling.

Taken together, the data obtained with the ORF73–SOCS

mutant corroborate that ORF73 functions as a SOCS-box-

containing protein to assemble an EC5S
ORF73 E3 ubiquitin-

ligase that recognises RelA and promotes its poly-ubiquitina-

tion. This leads to the subsequent proteasomal-dependent

degradation of RelA, resulting in a strong termination of

RelA/NF-kB activity.

Inhibition of NF-jB signalling is essential for MuHV-4

latency

To directly investigate the biological relevance of inhibition of

NF-kB signalling in gammaherpesvirus pathogenesis, we

generated a recombinant MuHV-4 in which the ORF73 gene

was modified to recapitulate the amino-acid substitutions of

the ORF73 SOCS-box mutant, designated vSOCS. To assure

that any phenotypic alteration in vSOCS was due to the

engineered mutations in the SOCS-box and not from any

spurious mutation introduced during mutagenesis, a second

independent recombinant virus was engineered (vSOCSi). To

characterise the role of the introduced mutations in a natural

context of infection, we started to compare the kinetics of

viral replication in vitro and during the acute phase of

infection in lungs of Balb/c mice following intranasal inocu-

lation. For comparative purposes, the viruses analysed in-

cluded the vSOCS mutants alongside wild-type MuHV-4

(vWT) and a previously described (Fowler et al, 2003)

Figure 4 ORF73 mediates the assembly of an endogenous EC5S E3 ubiquitin-ligase to promote RelA poly-ubiquitination. (A, B) ORF73 protein
co-immunoprecipitates with RelA, Cullin5 and ElonginC. HEK 293T cells were transiently transfected with the combinations of plasmids
encoding the indicated proteins (top). After culture, cells were lysed and total cellular extracts were subjected to immunoprecipitation using an
anti-ORF73 serum. Immunoprecipitates were analysed by immunoblotting using the indicated antibodies. In addition, representative aliquots
of the total cellular lysates were used to detect the appropriate expression of RelA (A, bottom panel), Cullin5 (B, fifth panel), and ElonginC
(B, bottom panel). (C, D) ElonginC and Cullin5 are required for ORF73-mediated poly-ubiquitination of RelA. (C) HEK 293T cells were
transiently transfected with pools of small interfering (si) RNAs against ElonginC, Cullin5 or non-targeting oligonucleotides. After 48 h of
culture, total cellular lysates were obtained and assayed for ElonginC and Cullin5 expression by immunoblotting. (D) ORF73-mediated
ubiquitination of RelA is dependent on endogenous ElonginC and Cullin5 expression. HEK 293T cells were transiently transfected with the
pools of siRNAs indicated above along with the indicated combinations of expression plasmids. Corresponding cellular lysates were obtained
and subjected to Ni-NTA pull down as described in Figure 3A. �, without; þ , with; a, anti; IP, immunoprecipitation; PD, pull down; TCL, total
cellular lysates; WB, western blotting.
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ORF73 frameshift mutant (v73FS) that encodes only the 163

amino acids of the N-terminus of the protein. All these

viruses were analysed for genome integrity (Supplementary

Figure S1) and showed identical in vitro growth

(Supplementary Figure S2), as well as normal replication in

acutely infected lungs (Figure 7A). Next, we proceeded to

investigate the role of the introduced mutations for the ability

of MuHV-4 to induce the expansion of latency in GC B cells.

To this end, we used three independent, but complementary,

experimental assays: ex vivo explant co-culture assays to

measure latent infection in total splenocytes, flow cytometry

coupled to limiting dilution and real-time PCR to quantify the

frequency of viral DNA-positive GC B cells, and in situ

hybridisation analysis to identify virally infected cells within

the spleen, as described earlier (Pires de Miranda et al, 2008).

All three assays used were concurrent in that disruption of

the SOCS-box motif in ORF73 leads to a severe latency deficit,

characterised by its inability to induce the expansion of

latent infection in GC B cells and persistence in the host

(Figure 7B–D). This phenotype was comparable to the pre-

viously reported phenotype (Fowler et al, 2003) of a MuHV-4

lacking a functional ORF73 (v73FS in Figure 7B–D). Thus, at

day 14 post-infection, the levels of the explant co-culture

assay (Figure 7B) and the frequencies of infection in GC B

cells (Figure 7C) obtained for the SOCS-box mutants were

identical to those obtained for v73FS and significantly lower

Figure 5 ORF73 interacts with Cullin5 and ElonginC through its SOCS-box-like motif. (A) Schematic representation of LANA and ORF73
proteins with the putative SOCS-box motifs indicated. The two proteins are aligned according to the shared primary sequence homology,
corresponding to amino acids 95–274 and 963–1162 of ORF73 and LANA, respectively (Grundhoff and Ganem, 2003). In the lower panel,
ORF73 primary sequences from different Rhadinoviruses are depicted, showing their consensus SOCS-box motif. Identity and similarity
between amino acids is depicted as dark and light shading, respectively. KSHV, Kaposi’s sarcoma-associated herpesvirus; HVS, herpesvirus
saimiri; RRV, rhesus monkey rhadinovirus. (B) Subcellular localisation of ORF73–SOCS. HEK 293Tcells were stimulated with 50 ng/ml of TNF
for the times indicated. After 24 h, cells were fixed and subjected to immunostaining with anti-RelA and anti-ORF73 antibodies. (C) The
ORF73–SOCS mutant interacts with RelA. HEK 293T cells were transfected with the expression plasmids indicated (top). Cellular lysates were
subjected to immunoprecipitation with anti-ORF73 polyclonal serum and the presence of co-immunoprecipitated RelA was assessed by
immunoblotting using anti-RelA antibodies. (D, E) ORF73 SOCS mutant does not co-immunoprecipitate with ElonginC (D) and shows low
affinity towards Cullin5 (E). HEK 293T cells were transiently transfected with the plasmid combinations indicated (top). The respective total
cellular lysates were subjected to immunoprecipitation using an anti-ElonginC (D) or anti-Cullin5 (E) antibodies. Immunoprecipitates were
resolved by SDS–PAGE and analysed by immunoblotting using the indicated antibodies. �, without; þ , with; a, anti; IP, immunoprecipitation;
TCL, total cellular lysates; WB, western blotting.
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when compared with vWT. In good agreement, in situ

hybridisation analysis of spleen sections from vSOCS- or

v73FS-infected mice exhibited a complete lack of expansion

of latently infected cells (Figure 7D, panels b and c). This was

in clear contrast with vWT where large clusters of latently

infected cells were observed within GCs (Figure 7D, panel a).

Discussion

In this study, we provide compelling evidence that the ORF73

protein from the lymphotropic gammaherpesvirus MuHV-4 is

a strong terminator of NF-kB-dependent transcription.

Several viral proteins have been shown to interfere with the

NF-kB pathway (Hiscott et al, 2006). Here, we report the first

example of a viral protein modulating NF-kB signalling/

activity in the nucleus by mimicking a physiological regula-

tory pathway of NF-kB response termination. We show that

the mechanism involves the assembly by ORF73 of an EC5S

E3 ubiquitin-ligase. This complex targets nuclear-activated

RelA for poly-ubiquitination and subsequent proteasomal

degradation. The recruitment of ElonginB/C and Cullin5 is

directed through an unconventional SOCS-box present in

ORF73, whereas RelA recognition is mediated through an

independent, as yet, unidentified structural motif. Thus,

MuHV-4 has evolved to encode a protein that, in a manner

equivalent to cellular SOCS1 (Ryo et al, 2003), efficiently

terminates the NF-kB response. Taking into account that

herpesviruses have co-evolved with their hosts, this finding

emphasises the physiological relevance of the recently

described regulation of the NF-kB pathway through poly-

ubiquitination and proteasomal degradation of promoter-

bound RelA. This regulatory mechanism has been proposed

to function in synergy with resynthesised IkBa to efficiently

terminate NF-kB responses (Saccani et al, 2004). The advan-

tage to the virus is obvious. Independently of the nature of

the stimulus, MuHV-4 directly targets activated NF-kB dimers

bound to kB sites efficiently shutting down transcription of

specific genes. This specificity is unique to MuHV-4 and

contrasts with other viral mechanisms of NF-kB inhibition

that modulate upstream signalling events, such as the IKK

complex, thus affecting collateral cellular signalling path-

ways. However, this property of a viral protein assembling

an EC5S E3 ubiquitin-ligase is not exclusive to ORF73 of

MuHV-4. The Vif protein encoded by human immuno-

deficiency virus-1 (Mehle et al, 2004), the E4ORF6 from

adenovirus (Querido et al, 2001) and the ORF73 homologue

LANA from KSHV (Cai et al, 2006), have recently been shown

to assemble EC5S E3 ubiquitin-ligase complexes through

unconventional SOCS-box motifs. In the case of LANA,

poly-ubiquitination is directed towards the cellular proteins

p53 and VHL. The authors suggested that manipulation of

these tumour suppressors by LANA could potentially create

a propitious environment for the maintenance of latent

infection and progression of KSHV-associated tumours.

Owing to the absence of an amenable animal model of

infection, the direct in vivo role of this LANA function was

not possible to assess.

Unlike KSHV, the biological significance of the inhibition of

NF-kB signalling by ORF73 of MuHV-4 for the pathogenesis of

gammaherpesvirus infections can be directly addressed due to

the availability of a murine animal model of infection (Simas

and Efstathiou, 1998). Here, we show that a MuHV-4 recombi-

nant virus with a disrupted SOCS-box motif abrogated the

ability of the virus to expand in GC B cells and persist in the

host. Although we cannot formally exclude that mutating four

amino-acid residues in the SOCS-box motif in ORF73 of MuHV-

4 is compromising its putative role as a viral episome main-

tenance protein, the findings presented here sustain the inter-

pretation that inhibition of NF-kB activation is critical for

amplification of latent virus in GC B cells and for persistence

in the host. Notably, it has been recently shown that blocking

the inhibition of NK-kB signalling mediated by EBV in latently

infected cell lines results in the loss of virus genome copy

number (Lu et al, 2008), providing evidence of a link between

viral genome maintenance and NK-kB inhibition.

Initiation of a GC reaction is reliant not only on specific

antigen stimulation through the immunoglobulin B-cell

receptor but also on the interaction between the TNFR family

Figure 6 SOCS-box disruption reverts ORF73 inhibition of NF-kB
transcriptional activity. (A) ORF73–SOCS mutant is unable to
promote RelA poly-ubiquitination. HEK 293T cells were transfected
with the different combinations of plasmids (top). After culture,
poly-ubiquitination of RelA was assessed as described in Figure 3A.
�, without; þ , with; a, anti; PD, pull down; TCL, total cellular
lysates; WB, western blotting. (B) ORF73–SOCS mutant is unable to
inhibit TNF-driven NF-kB transcriptional activity. HEK 293T cells
were transfected with the NF-kB luciferase reporter together with
the plasmids allowing the expression of the indicated proteins
(bottom). Transfected cells were either stimulated with (open
bars) or without (filled bars) 50 ng/ml of TNF. NF-kB activity
associated with each condition was assayed using a luminometer.
Error bars represent the standard deviations of the mean in three
independent experiments.
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member CD40, expressed in B cells, and its ligand CD154,

expressed by helper T cells. This molecular event triggers the

activation of NF-kB transcription factors, the main down-

stream effectors of CD40 signalling. However, in the GC the

gene expression profile of B cells changes markedly. In clear

contrast with what is observed in naı̈ve B cells, GC B cells fail

to express most CD40 and NF-kB target genes (Basso et al,

2004; Klein and Dalla-Favera, 2008; Shaffer et al, 2001).

Moreover, in GC B cells, the proteins c-Rel and RelA are

localised in the cytoplasm, an indication of NF-kB inactivity

and absence of CD40 signalling (Basso et al, 2004). It is noted

that within the light zone of GCs and in memory B cells

NF-kB members are again localised in the nucleus (Basso

et al, 2004), which is indicative that activation of these

transcriptional factors is needed for exiting from the prolif-

erative GC stage promoting further B-cell differentiation.

Taken together, these data suggest that during B-cell

responses, NF-kB signalling needs to be transiently switched

off during GC proliferation. Putting our present data into this

context, we propose that inhibition of NF-kB by ORF73 is

essential to promote the proliferation of latently infected

B cells within GCs. According to our premise, ORF73 function

relies on prior NF-kB activation and translocation of tran-

scriptionally active dimers to the nucleus, which is critical for

B-cell activation and initiation of GCs. This interpretation

concurs with a previous study showing that constitutive

inhibition of NF-kB from the initial stages of MuHV-4 infec-

tion impairs the establishment of latency (Krug et al, 2007).

Hence, MuHV-4 modulation of NF-kB signalling must be

tightly regulated to support GC formation, which needs

transcriptionally active NF-kB, whereas progression into,

and maintenance of a proliferative GC reaction requires the

Figure 7 ORF73–SOCS virus shows a strong latency deficit. (A) ORF73–SOCS recombinant virus exhibits normal replication in the lung. Wild-
type BALB/c mice were intranasally infected with 104 p.f.u. of the indicated viruses. At the indicated days post-infection, lungs were removed
and infectious viruses were titrated by plaque assay. (B) BALB/c mice were intranasally infected with 104 p.f.u. of the indicated viruses. At day
14 post-infection, latent viruses in spleens were titrated by infectious centre assay. Each point represents the titre of an individual mouse. The
dashed line represents the limit of detection of the assay. (C) BALB/c mice were intranasally infected with 104 p.f.u. of the indicated viruses. At
14 days post-infection, reciprocal frequencies of viral infection in purified GC B cells (B220þ/PNAhigh) were determined by limiting dilution
and real-time PCR. Data were obtained from pools of five spleens per group. Bars represent the frequency of viral DNA-positive cells with 95%
confidence intervals. (D) BALB/c mice were intranasally infected with 104 p.f.u. of the indicated viruses. At day 14 post-infection, spleens were
removed and processed for in situ hybridisation using probes derived from viral miRNAs 1–6. Panels (a–c) show representative spleen sections
from each group of viruses. All sections are magnified � 200.
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prompt termination of the NF-kB response. Thus, while

ORF73 promotes the proliferation of MuHV-4-infected cells

preventing premature differentiation, another yet unidenti-

fied signal must exist, viral or foreign, supporting further

differentiation of latently infected centroblasts into long-lived

memory B cells. Such timely regulation is consistent with the

pattern of ORF73 transcription that we have shown before to

be restricted to GC B cells but not to newly formed or

follicular B cells (Marques et al, 2003).

Effective colonisation of the host by gammaherpesviruses

requires the proliferation of latently infected B cells

(Stevenson, 2004). Herein, we provide evidence for a novel

ORF73 function, as a mediator of NF-kB activity termination

through the assembly of an Elongin/Cullin/SOCSORF73

ubiquitin-ligase that targets the NF-kB subunit RelA. By

mimicking GC physiological inhibition of NF-kB, ORF73

promotes the development of MuHV-4-driven GC-like reac-

tions to expand the host pool of latently infected cells. Given

the intimate association of lymphoproliferative disease with

gammaherpesvirus persistent infection, this study reinforces

NF-kB as a putative target for therapeutic intervention in such

virus-driven malignancies.

Materials and methods

Plasmids
ORF73 expression plasmid was amplified by PCR from MuHV-4
genome, and the respective PCR product was cloned into pCMV-
Myc (Clontech). pCMV-Myc encoding ORF73–SOCS was generated
by site-directed mutagenesis using QuickChange kit (Stratagene).
Myc-tagged versions of RelA, p50 and c-Rel; RelA chimaeras; and
pC45 (kB-luc) or pBI-5 (TetO-luc) were described earlier (Winkler
et al, 1996; Anrather et al, 1999). Histidine-tagged ubiquitin
plasmid was kindly offered by Dr D Bohmann. Flag-tagged ElonginC
and SOCS1 expression plasmids were provided by Dr E Burstein.
Dr X-F Yu provided the Myc-tagged version of Cullin5.

Immunological reagents
ORF73 antiserum was generated by immunisation of New Zealand
white rabbits (Abcam) with purified GST–ORF73 protein. Anti-
RelA, anti-IkBa, anti-Cul5, anti-EloC, anti-ubiquitin and anti-
LaminB antibodies were purchased from Santa Cruz Biotechnology.
Antibodies directed to c-Myc and Flag epitopes were from Clontech
and Sigma, respectively. Actin was detected with a rabbit anti-actin
polyclonal antibody (Sigma). Anti-GST and horseradish peroxidase-
conjugated secondary antibodies were from Amersham Biosciences.
Fluorochrome-labelled secondary antibodies were from Jackson
Immunoresearch.

Tissue culture, DNA/siRNA transfection
HEK 293Tand NIH-3T3-CRE cells were cultured in DMEM plus 10%
FCS, 2 mM glutamine, and 100 U/ml of penicillin–streptomycin.
BHK-21 cells were cultured in GMEM supplemented as above plus
10% tryptose phosphate broth. Plasmid DNA and siRNAs were
delivered to HEK 293T cells using Fugene 6 (Roche). The
nucleofection system (Amaxa) was used to maximise transfection
efficiencies for experiments presented in Figures 1B and 2A,
according to the manufacturer’s instructions. Using this system, a
near pure population of transfectants was obtained. In all
transfections, empty vector was used to normalise the total amount
of plasmidic DNA.

Reporter gene assays
For reported gene assays, HEK 293T cells were transiently
transfected with 300 ng of reporter vectors, 900 ng of each NF-kB
member and 900 ng of ORF73/ORF73–SOCS expression plasmids.
In all transfections, a b-galactosidase expression plasmid (300 ng)
was used to normalise luciferase values. After 48 h in culture, cells
were left unstimulated or stimulated with appropriate TNF
concentrations for 7 h. Cells were washed in PBS and lysed

in 120 ml of reporter assay lysis buffer (Promega). Luciferase and
b-galactosidase activities were assayed using Luciferin (Promega)
and Galacton (Tropix), respectively. Light emission in each sample
was quantified in a luminometer. Results are shown as the fold
induction relative to luciferase activity measured in unstimulated or
control transfected cells.

EMSAs
EMSAs were performed using the Lightshift Chemiluminescent
EMSA kit (Pierce) for the NF-kB consensus oligonucleotide probe
(50-AGTTGAGGGGACTTTCCCAGGC-30, from the immunoglobulin
promoter) 50 end-labelled with biotin (Thermo Scientific Biopoly-
mers). Binding reactions were made in a total volume of 20 ml by
adding 5mg of nuclear extracts to 20 fmol of probe in binding buffer
(20 mM HEPES (pH 8.0); 50 mM NaCl; 1 mM EDTA; 5% glycerol;
0.05mg/ml poly [dI–dC] and 0.5 mM DTT). After incubation at room
temperature (r.t.) for 30 min, the electromobility of the probe was
analysed in 6% native PAGE. For the supershift assays, antibodies
recognising RelA, ORF73 or Actin were added to nuclear extracts at
a final concentration of 0.05mg/ml, and incubated at r.t. for 1 h,
prior to the addition of the probe 50 end-labelled with [g32P]ATP
(Amersham Life Science).

Immunofluorescence analysis
HEK 293T cells grown on poly-L-lysine-coated coverslips were
transiently transfected with 1mg of ORF73-expressing plasmid. After
24 h, cells were incubated with medium alone or stimulated with
TNF (50 ng/ml) for 15 min. Cells were incubated in fixing solution
(5% formaldehyde and 2% sucrose in PBS) for 15 min, and
permeabilised (0.1% Triton X-100 in PBS) for 5 min. Immunostain-
ing was performed with the appropriate antibodies diluted in PBS.
Following staining, coverslips were washed and mounted onto
microscope slides with Mowiol.

Immunoprecipitations
Transiently transfected HEK 293T cells with expression plasmids
encoding RelA (3 mg), Cullin5 (4mg), ElonginC (2 mg) and/or ORF73
(3 mg) were disrupted in ice-cold lysis buffer containing 10 mM
Tris–HCl (pH 7.5), 150 mM NaCl, 1% Triton X-100, 1 mM NaF,
100mM Na3VO4 and a cocktail of protease inhibitors (Complete;
Roche). Cleared supernatants were processed for immunoprecipita-
tion essentially as described (Pires de Miranda et al, 2008).

RelA ubiquitination in vivo
For analysis of endogenous RelA ubiquitination, total cellular
lysates, prepared with lysis buffer as above, were immunoprecipi-
tated with anti-RelA antibody and analysed by immunoblotting with
anti-ubiquitin antibody. Levels of in vivo ubiquitinated over-
expressed RelA were determined by pull-down of histidine-tagged
ubiquitin (His6–ubiquitin) with Ni-NTA agarose beads. Cells were
transfected with expression plasmids carrying His6–ubiquitin
(4 mg), RelA (3mg) and/or ORF73 (3mg). When appropriate, cells
were incubated in the presence of 10mM of MG132 (Calbiochem).
Transfected cells were lysed with ice-cold urea buffer containing
8 M urea, 50 mM Tris–HCl (pH 7.5), 300 mM NaCl, 1% Triton X-100,
10 mM imidazole, 1 mM Na3VO4 and Complete. Cleared lysates
were incubated for 3 h at 41C with Ni-NTA beads. After incubation,
beads were collected by centrifugation and washed three times with
urea buffer. Proteins were eluted and denatured by boiling in
Laemmli’s buffer and analysed by immunoblotting with anti-RelA
antibodies.

RNA interference
All oligonucleotides were purchased from Ambion. Pre-designed
siRNAs for human ElonginC or Cullin5 were transiently transfected
into HEK 293T cells, at a final concentration of 30 nM each. Non-
targeting siRNAs were used as controls. At 48 h post-transfection,
cells were processed for Ni-NTA pull down.

In vitro ubiquitination assay
Cell lysates from HEK 293T cells transiently expressing ORF73, or
control transfected, were subjected to immunoprecipitation with
anti-Myc. Immunoprecipitates were resuspended in reaction buffer
(40 mM HEPES (pH 7.4), 60 mM potassium acetate, 1 mM EDTA,
2 mM DTT, 5 mM MgCl2 and 10% glycerol) supplemented with
recombinant ubiquitin (2.5mg) (Biomol International), E1 (50 ng),
UbcH5a E2 (100 ng) (Calbiochem), GST–RelA (2.5 mg) and/or
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ATP-regenerating buffer (Biomol International). Reactions were
incubated for 1 h at 301C, resolved by SDS–PAGE and analysed by
immunoblotting with anti-GST antibody.

Generation of recombinant viruses
MuHV-4 vSOCS/vSOCSi recombinant viruses (with the amino-acid
residues at positions 199, 202, 203 and 206 mutated to alanines)
were independently generated by mutagenesis of the viral genome
cloned as a bacterial artificial chromosome (BAC) (Adler et al,
2000). pCMVmyc-ORF73–SOCS was digested with HindIII and PciI
to isolate the fragment harbouring the desired mutations, which
was inserted into the BamHI-G genomic clone. Recombinant
BamHI-G fragment was subcloned into the BamHI site of pST76K-SR
shuttle plasmid. Shuttle plasmid was transformed into an Escher-
ichia coli strain (DH10B) containing the wild-type MHV-68 BAC
(pHA3). Following a multistep selection procedure, recombinant
BAC clones were identified by the loss of the internal ORF73 KpnI
restriction site. Both viruses were reconstituted as described (Pires
de Miranda et al, 2008). v73FS recombinant virus was reported
earlier (Fowler et al, 2003).

Analysis of recombinant viruses
BALB/c mice (Instituto Gulbenkian de Ciência, Portugal) with 6–8
weeks of age were intranasally inoculated with 104 p.f.u. in 20ml of
PBS under halothane anaesthesia. At 3, 7, 10 and 14 days post-
infection, lungs or spleens were removed and processed for
subsequent analysis. Infectious virus titers in freeze-thawed lung
homogenates were determined by suspension assay using BHK-21

cells. Latent viruses were examined using explant co-cultures of
single-cell suspension splenocytes with BHK-21 cells. Plates were
incubated for 4 (suspension assay) or 5 days (co-culture assay), fixed
with 10% formal saline and counterstained with toluidine blue. Viral
plaques were counted with a plate microscope. Frequencies of virus-
genome-positive cells were determined by limiting dilution combined
with real-time PCR, as described earlier (Marques et al, 2003). GC
B-cell (B220þ , PNAhigh) populations were cytometry purified from
pools of five spleens using a BD FACSAria Flow Cytometer (BD
Biosciences). The purity of sorted populations was always 497%, as
analysed by flow cytometry. Real-time PCR reactions were performed
as reported (Pires de Miranda et al, 2008). In situ hybridisation was
performed on formalin-fixed, paraffin-embedded splenic sections
using digoxigenin-labelled riboprobes, generated by T7 transcription
of pEH1.4 (Simas et al, 1998).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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