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Abstract

Liver failure is an increasing problem. Donor-organ shortage results in patients dying before receiving a transplant. Since the
liver can regenerate, alternative therapies providing temporary liver-support are sought. A bioartificial-liver would
temporarily substitute function in liver failure buying time for liver regeneration/organ-procurement. Our aim: to develop a
prototype bioartificial-liver-machine (BAL) comprising a human liver-derived cell-line, cultured to phenotypic competence
and deliverable in a clinical setting to sites distant from its preparation. The objective of this study was to determine
whether its use would improve functional parameters of liver failure in pigs with acute liver failure, to provide proof-of-
principle. HepG2cells encapsulated in alginate-beads, proliferated in a fluidised-bed-bioreactor providing a biomass of 4–
661010cells, were transported from preparation-laboratory to point-of-use operating theatre (6000miles) under
perfluorodecalin at ambient temperature. Irreversible ischaemic liver failure was induced in anaesthetised pigs, after
portal-systemic-shunt, by hepatic-artery-ligation. Biochemical parameters, intracranial pressure, and functional-clotting were
measured in animals connected in an extracorporeal bioartificial-liver circuit. Efficacy was demonstrated comparing
outcomes between animals connected to a circuit containing alginate-encapsulated cells (Cell-bead BAL), and those
connected to circuit containing alginate capsules without cells (Empty-bead BAL). Cells of the biomass met regulatory
standards for sterility and provenance. All animals developed progressive liver-failure after ischaemia induction. Efficacy of
BAL was demonstrated since animals connected to a functional biomass (+ cells) had significantly smaller rises in intracranial
pressure, lower ammonia levels, more bilirubin conjugation, improved acidosis and clotting restoration compared to
animals connected to the circuit without cells. In the +cell group, human proteins accumulated in pigs’ plasma. Delivery of
biomass using a short-term cold-chain enabled transport and use without loss of function over 3days. Thus, a fluidised-bed
bioreactor containing alginate-encapsulated HepG2cell-spheroids improved important parameters of acute liver failure in
pigs. The system can readily be up-scaled and transported to point-of-use justifying development at clinical scale.
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Introduction

Both acute and acute-on-chronic liver failure are well recog-

nised. Liver failure resulting from viral hepatitis, obesity, alcohol

abuse, and drug-induced injury presents major clinical problems.

Whilst organ transplantation is potentially curative, there is a huge

gap between organ availability and supply. Since the liver has the

ability to repair and regenerate given time, alternative therapies

are sought.

Liver support devices, bioartificial livers, aim to provide

temporary synthetic and detoxificatory function buying time

either for liver repair and regeneration, or acting as a bridge to

transplantation [1]. Purely artificial liver support devices, for

example, those based on albumin dialysis did not significantly

improve survival in recent clinical trials [2,3], likely reflecting the

complex functional repertoire of the liver that only a device

containing a biological component can provide.

To achieve adequate function in a bioartificial liver (BAL), the

choice of liver cells, the format of biomass provision, and

bioreactor design are paramount.

Several bioartificial liver machines have been trialled utilising

primary porcine or human hepatocytes at a scale equivalent to 5–

10% in vivo human liver mass [4]. We and others have argued

that a successful bioartificial liver to treat patients should be of

human origin, for reasons including safety, zoonosis risk and

potential species incompatibility in protein/protein receptor

interaction. Thus whilst pig cells are readily available they have

disadvantages in all these respects including protein-protein

compatibility [5]. Primary human hepatocytes are not readily

available, as good-quality explant livers are used for transplanta-

tion. An alternative is the use of human-derived liver cell lines,

such as the ELAD system using the C3A subclone of HepG2 cells

and other experimental devices with Hepa RG cells [6] and a fetal

liver cell line [7].

We have developed a BAL biomass comprising HepG2 cells in

alginate beads of ,500–600 um diameter. In this system, single

HepG2 cells in the cell-beads rapidly multiply to form multicel-

lular spheroids of aggregated cells, with close cell-to-cell contact

mimicking that in vivo. In this system we showed that, in contrast

to conventional monolayer culture in which various functions are

only expressed at low levels, alginate encapsulation imposing

three-dimensional growth increases a broad range functions up to

ten-fold, often approximating in vivo levels [8]. The cytochrome

P450 3A function in our 3-dimensional culture format is within the

range of freshly isolated primary human hepatocytes in culture,

although the urea cycle is incomplete [9,10]. Moreover, in this

culture format, HepG2 cells create a rich extracellular matrix, and

this combines with the three dimensional format to maximise

function [11].

A key concern in BAL design is the presence or absence of a

barrier to diffusion between cells and patient plasma, as BAL

designs should maximise transfer of toxic metabolites from the

blood to the cells for detoxification, and molecules synthesised by

the biomass (eg clotting factors, carrier proteins) must readily

reach the patient circulation.

To house alginate-encapsulated HepG2 cells, we and others

developed a fluidised bed-based bioreactor (FBB) [12–15]. In this,

cells are kept in continued motion under the force of upward flow

of media and downward force of gravity, and this differs from

packed bed reactors in which cells are immobile. Thus the

fluidised bed bioreactor increases mass transfer. Moreover, the

FBB imposes no physical filtration barrier between the biomass

and the circulation, the plasma directly accessing the alginate

hydrogel beads, and can be readily up-scaled for clinical usage by

simply increasing the volume of alginate beads and geometry of

the biomass chamber

For this study, we charged the device with alginate beads

containing 4–661010 HepG2 cells, equivalent to 20–40% of

human hepatocyte biomass (based on the assumption of 1–261011

hepatocytes in 1.2–1.5 kg human liver) to treat pigs. This desired

biomass was estimated from data suggesting survival is possible

with 10–30% residual liver mass, but taking into account that the

milieu of acute liver failure plasma may be detrimental to biomass

viability [16].

The objective of this study was to assess its value in a large

animal model. We used pigs with acute ischaemic liver failure

surgically induced (20–30 kg bw; liver weights of 900–1300 g).

Importantly, the experiment compared animals treated with the

cell-containing BAL to animals undergoing an identical surgical

and anaesthetic protocol with the use of an acellular BAL i.e. an

identical bioreactor containing alginate beads from which HepG2

cells were absent.

The alginate beads were generated at a central expert tissue

culture facility and transported to a distant hepatology centre for

assessment in ALF, and to enable this, a short-term cold-chain

system was developed.

Using this model, we demonstrated improvements in several key

clinical parameters of acute liver failure, including intracranial

pressure (ICP), blood clotting function, bilirubin conjugation,

acidosis and protein synthesis, not found when animals were

treated with the BAL without cells.

Methods

Ethics Statement
Animal experiments were performed under approval from

University of Cape Town (UCT), Faculty of Health Sciences

Animal-Ethics Committee, according to the UCT Animal Unit

health/welfare guidelines. Application No.:009/019, 26/03/09.

Production of alginate-encapsulated hepatocytes and
culture to liver cell spheroids for BAL investigation

The method for production of the cellular component of the

BAL has been described elsewhere [12]. In brief, it can be divided

into two steps (a&b).

(a) HepG2 Monolayer Cell Culture for ELS production
HepG2 verification. Cells were assessed independently for

cell line identity using two methods, microsatellite genotyping and

DNA bar coding (HPA, Porton Down UK); for mycoplasma using

qPCR and two cell culture-based assays, Hoechst dye with

indicator Vero cells, and agar plate growth of conditioned media

from cultured cells, according to Eu Pharm Current Edition

Section 2.6.7 Mycoplasmas (Vitrology, Scotland UK); and in

house for several human pathogens. Sterility was assessed via

direct inoculation methods according to Eu Pharm Current

Edition; Section 2.6.1Sterility and USP Current Edition

,71.Sterility tests (Vitrology, Scotland, UK).

Monolayer culture conditions. HepG2 cells were obtained

from the ECACC (Wiltshire, UK) and maintained in modified

MEM-alpha medium (Gibco, Paisley, UK) supplemented with

10% FBS (Hyclone, Loughborough, UK), 100 IU/ml penicillin

and 0.1 mg/ml streptomycin. Medium was changed every 2–3

days. Cells were counted under light microscopy using a

haemocytometer; viability was assessed using trypan blue dye

exclusion.

Bioartificial Liver for Treatment of Liver Failure
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(b) Alginate Encapsulation and Culture of ELS
Alginate encapsulation of HepG2 cells was performed as

described previously. In brief, 80% confluent monolayer cultures

were trypsinised and encapsulated in 1.0% alginate (alginic acid

sodium salt Macrocystis pyrifera kelp) [17]. Alginate beads, contain-

ing cells were resuspended in culture medium at a ratio of 1:58.

Culture expansion in a fluidised bed bioreactor was carried out for

11 days [12]. Medium was changed every 2–3 days unless

otherwise stated. Bead diameters and cell numbers were assessed

on day 0 and at time of harvest.

Short term cold chain
Alginate beads containing HepG2 cell-spheroids were trans-

ported from the laboratory where they were cultured to the point

of use between distinct layers of oxygenated perfluorodecalin

(PFC) and culture medium in a ratio of 1:1:10 at ambient

temperature, with 50% air volume. Antioxidants (500 IU/ml

catalase (Sigma-C9322), 0.85 mM Trolox (Sigma-238813) and

3 mM N-acetyl cysteine (Sigma-A8199), valine (Sigma-V0500),

25mMHEPES buffer (Gibco-15630) were added to reduce

oxidative stress, and maintain pH ,7.4. Prior to use, beads were

washed with normal saline containing 1.7 mM CaCl2 and re-

suspended in heparinised pig plasma. Viability was determined

before and after PFC storage using dual staining with fluorescein

diacetate (FDA, live cells) and propidium iodide (PI, dead cells),

quantified using image-analysis.

BAL circuit set-up
The BAL chamber contained 1100 ml alginate bead suspension

comprising 4.2961.661010 (6SD, n = 6) HepG2 cells as optimally

functional spheroids. Heparinised normal pig plasma was used to

prime both primary and secondary circuits. The biomass was

fluidised at 400–600 ml/min to achieve a 2-fold bed-height.

Temperature was maintained at 37uC; oxygenation was provided

in the chamber via porous tubing at 1000 cc/min.

Surgical Procedures
Large 25–30 kg White-x-Landrace female pigs [n = 13] were

acclimatized in the Animal Unit 7 days prior to surgery. Prior to

inducing ischaemic acute liver failure, pigs were fasted overnight.

They then received continuous anaesthesia throughout with

induction using doses of zoletil, butorphanol and medetomidine

for tracheal intubation, followed by maintenance with isoflurane,

oxygen and nitrous oxide via an endotracheal tube. Fluid

management comprised 0.9%saline at 20 ml/kg/hr and boluses

of 0.9%saline to maintain stroke volume variation ,15% and a

CVP of 10 mmHg. Glucose was monitored hourly, and 5% or

10% glucose in normal saline was given if glucose levels fell below

4 mmol/L to maintain normoglycaemia at a glucose level of

$4 mmol/L. No extra blood products were given during the

process. Intracranial pressure and brain oxygenation monitoring

catheters were inserted via a burr hole, and in some animals intra-

cerebral microdialysis catheters. A 2-hour period was allowed to

reach a steady-state baseline. Continuous vasopressor support was

not given, however at the time of connection of pig to BAL a small

bolus dose of Ornipressin (,2units) was titrated to counteract the

transient drop in blood pressure observed on connection. Animals

remained under continuous anaesthesia until the end of the

procedure and were humanely euthanased with 3 g potassium

chloride as required by the Animal Ethics Committee.

Ischaemic acute liver failure
In the supine position, pressure monitoring vascular catheters

were inserted into the femoral artery and the internal jugular vein.

The abdomen was opened via a midline incision and ligamentous

attachments of the liver divided. The hepatic artery and bile duct

were ligated and divided, portal vein and infrahepatic vena cava

dissected. A side-to-side portacaval shunt was created and liver

rendered totally ischaemic by ligating the portal vein above the

shunt [18,19]. Catheters were inserted into the splenic (venous

outflow) and external jugular vein (venous return) for attachment

to the extracorporeal circuit of the BAL via a COBE-Spectra

plasmapheresis machine (Figure 1). The pigs were connected to

the COBE-Spectra with 90 ml/min blood flow (40–47 ml/min

plasma) in a primary circuit, ,2.5 hours after establishment of

ischaemia. Separated plasma entered the secondary circuit at 400–

600 ml/min and was then recirculated several times through the

BAL chamber; there was continuous return of plasma to the

patient via the COBE-Spectra blood circuit at 90 ml blood/min

(Figure 1). The BAL remained connected to the pig for up to

8 hours, prior to rinseback/disconnection, and animals were killed

and tissues harvested for histology. Two groups of pigs were

compared, each with ischaemic acute liver failure: Group 1 (Gp 1)

were treated with a BAL containing cell-bead biomass, Group 2

(Gp 2, non-functional BAL) treated identically, but with empty-

alginate-bead completely devoid of cell bio-mass. Death was

defined by a mean arterial pressure of ,40 mmHg for 30 minutes,

if this occurred before the end of the 8 h bioartificial liver

procedure.

Monitoring
Haemodyamic monitoring consisted of routine ECG, pulse

oximetry and end tidal carbon dioxide. Continuous cardiac output

(PCCI) was monitored using the PiCCO-plus (Pulse Contour

Continuous Cardiac Output, Pulsion Medical Systems SE,

Germany) via CVP measurement in right internal jugular vein

and femoral artery cannulae. Biochemical parameters were

measured by an accredited Chemical Pathology laboratory

(Pathcare, South Africa) as would occur in a clinical patient

setting. Blood samples were taken into heparinase cups for

thromboelastography (TEG) coagulation parameter assessment

(TEG, Haemonetics, MA, USA). Codman Express Intracranial

pressure (ICP-Codman-Raynham-MA, USA) probes and Lycox

brain oxygenation probes (Integra, NJ, USA) monitored brain

function. Blood Glucose was estimated hourly, and blood gases at

multiple time points during the procedure.

Human proteins were measured in pig plasma using ELISA for

human albumin, alpha-1-antitrypsin, alpha-1-acid glycoprotein,

fibrinogen and prothrombin. These antibodies showed no cross

reactivity with porcine proteins. Amino acids were analysed by

high-performance-ion-exchange chromatography [20].

Results

Cell line characterisation
The HepG2 cell bank used, was proven to be identical with the

original deposited cell source, was entirely of human origin, was

not contaminated by any mycoplasma species and met sterility

criteria required for human use in a cell therapeutic. Moreover,

after a screen, more extensive than used for clinical liver

transplantation, the following viruses were undetected: Parvovirus,

HHV6, HSV/VZV, HSV 1&2, EBV, adenovirus, the full

respiratory panel (Flu A&B, RSV, Rhino, Paraflu 1–3, hMPV),

Hepatitis B, Hepatitis C, and Polyoma viruses JC and BK.

Bioartificial Liver for Treatment of Liver Failure
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Viability of biomass
The viability of encapsulated cell mass was 90.7062.3% at the

end of the 11 day conditioning culture. We have previously shown

that exposure to mild cold-chain storage as described in Methods

did not alter the viability of the BAL biomass for up to 48 h [12].

Therefore, in the current trial on ALF, an upper limit of 48 h cold

chain was set. After transport conditions, the BAL viabilities were

88.5668.53%, which was not significantly different from the

starting viability (93.2568.26%, n = 6,mean 6SD, NS). More-

over, proliferation continued so that the overall viable cell number

remained the same (at harvest, 4.2961.661010; after 2 days on

PFC 4.5461.4961010 cells.

Surgical model for ALF
Liver and body weights were the same for both studied groups:

Group 1 (Gp1 cell bead BAL) 26.862.3 kg bw, n = 6, mean6SD;

liver weight 11736122 g vs. Group 2 control (Gp2 empty bead

non-functional BAL) 26.763.4 kg bw, n = 7, mean6SD; liver

weight 11136209 g). Fig 1A shows the time course for the

establishment of the ischaemic ALF model; Fig 1B illustrates the

BAL circuit, and its integration into conventional plasmapheresis

technology.

Chemical pathology in response to ischaemic ALF
Table 1 illustrates the liver function in both ALF groups after

ischaemia prior to BAL treatment. The data represent the range of

measurements routinely performed in chemical pathology to assess

patients presenting clinically with ALF. At the start of BAL

therapy, the groups were comparable in the measured indices

(Table 1). With the establishment of total liver ischaemia via the

portocaval shunt and ligation of the hepatic artery: ammonia

increased at the time the portocaval shunt was created;

international normalised ratio (INR), lactate and bilirubin

increased after ,2 hours of ischaemic ALF. After addition of

BAL in Group 1 (active BAL +cell biomass), conjugated bilirubin

increased with a concomitant decrease in unconjugated bilrubin;

in contrast, in Group 2 (non-functional - empty beads without cells

BAL), unconjugated bilirubin increased progressively, with little

increase in conjugated bilrubin (Figure 2A). Parameters of acid-

base balance acidosis (pH, acid-base-excess, lactate, bicarbonate)

Figure 1. Protocol of ischaemic acute liver failure model. (A) Pigs were treated with the bioartificial liver machine 2–3 h after establishing
ischaemic damage. After anaesthesia, brain monitoring catheters were inserted, prior to establishment of porta-caval shunt and arterial, venous and
urine catheter placement. (B) Schematic of the bioartificial liver machine: The fluidised-bed bioreactor chamber containing either cell bead
biomass (Group 1) or empty beads for control (Group2), was attached to the pig via a plasmapheresis machine. Blood was obtained from the pig via
the splenic vein at 90 ml/min and separated from cellular components with a Cobe Spectra Plasma separator, providing plasma at a flow rate of
,45 ml/min in a primary circuit, feeding into the BAL secondary circuit at ,400–600 ml/min. Whole blood was returned to the pig via the plasma-
separator at 90 ml/min, combining the ‘‘treated ’’plasma with the cellular component.
doi:10.1371/journal.pone.0082312.g001
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showed the expected changes associated with ischaemic hepatic

damage in both groups; improvements in these indices of

circulatory physiology were seen in Group 1, whereas these

parameters did not improve in Group2 (non-functional BAL).

Improved pH control from nadir values early in ALF to end of

BAL treatment reached statistical significance for Group 1

(p = 0.03, n = 4, unpaired, equal variances, 1-tailed) but as

expected, this was not achieved in Group 2 (p = 0.4), see

Figure 2B. Ammonia levels were lower in Group 1 but not in

Group 2 (Fig 2C).

Cerebral physiology in response to ALF
In both groups, intracranial pressure (ICP) increased after

induction of ischaemic liver damage. BAL addition initiated a brief

immediate decrease in ICP in both groups, suspected to be

associated with dilution of the pig circulating plasma volume with

normal plasma from the primed system in the COBE. Thereafter,

ICP continued to rise in the control BAL group (Group 2), but not

in the cell-bead BAL treated group (Group 1) (Fig 3A). The brain

oxygenation response was more variable. After ischaemia was

induced, there was a progressive decrease in brain oxygenation in

some animals, whilst others exhibited a period of presumed

hyperemia before decline. (Fig 3B). After BAL addition, there was

an improvement in oxygenation in Group 1 vs. Group 2. Analysis

of brain metabolites was achieved for four pigs. Fig.4 shows a

typical trace for glucose, and lactate:pyruvate ratios in each side of

the brain demonstrating a decrease in glucose and increase in

lactate:pyruvate ratios in the control empty BAL treated pig

compared with glucose maintenance and no increase in lactate:-

pyruvate ratio in cell bead treated pig.

Plasma amino acids
Derangement in plasma amino acid balances are a feature of

ALF. 10 amino acids increased from start to end of treatment in

Group 1 and 13 amino acids increased in Group 2; 4 amino acids

decreased in Group 2, whilst in Group 1, 7 amino acids decreased

(Table-2). The change from start to end of treatment was

significant in each group.

Synthetic function
Human proteins were detected in plasma from all Group 1 pigs,

and none in Group 2 (Figure 5). Albumin, alpha-1-acid

glycoprotein fibrinogen and alphafoetoprotein (AFP) were detect-

able at all time points after BAL addition. Plasma human Alpha-1-

antitrypsin and prothrombin levels, were assessed only at 4 h after

BAL, and in Group 1 were 0.55760.05 mg/ml and

0.29160.04 mg/ml respectively; Group 2 control pigs exhibited

no human proteins.

Clotting
Thromboelastography (TEG) measurements were used to assess

clotting dysfunction and possible correction by the active BAL

biomass. Not all pigs developed severe coagulopathy, however, in

those that did cell-bead Group 1 animals demonstrated a

restoration of clotting as estimated by TEG K and R times, angle

and MA values, whilst Group 2 showed no improvement

(Figure 6). In both groups initially coagulation parameters

worsened during liver failure. BAL treatment from 2.5 h effected

a general improvement in Group 1, in contrast to Group 2 where

parameters continued to decline. For example, the time taken for

fibrin formation is increased during liver failure; as the BAL

caused an improvement in Group 1, the time taken for fibrin to

form was reduced; in contrast in Group 2 the time continued to

increase. The K time, indicating intrinsic clotting factor activity, as

well as fibrinogen and platelet function decreased in Group 1 with

continued treatment whereas those in Group 2 continued to

increase. The alpha angle in Group 1 pigs increased with BAL

treatment, in Group 2 animals the angle decreased with time. The

Figure 2. Efficacy of HepG2-Fluidised-bed bioreactor treatment
in pigs with ischaemic acute liver failure: biochemical re-
sponse. A) Bilirubin conjugation in pigs with ischaemic acute
liver failure. Conjugated bilirubin concentrations (mmol/L) increased
and unconjugated bilirubin concentrations decreased in Group 1 pigs,
when attached to the cell-bead BAL; in contrast there was neither
increase in conjugated bilirubin nor decrease in unconjugated bilirubin
in Group 2 control animals, Group 1 n = 6; group-2 n = 5; p-value,
unpaired 2-tailed t-test, mean6SEM. B). Change in acidosis in pigs
with ischaemic acute liver failure, after BAL treatment. pH
values dropped after ischaemic insult to a nadir in both groups. Blood
pH was assessed in a blood gas analyser. Pigs in the Cell-bead BAL
(Group 1 solid line) showed an increased pH towards normal at the end
of BAL treatment whereas pigs treated with the control empty bead
BAL (Group 2 -----) showed little improvement; inset shows group
averages (n = 4, mean6SEM unpaired, one-tailed t-test). C) Blood
ammonia levels in pigs 4 h after BAL treatment. values show a
change in ammonia from 0.5 h after ischaemia (normalised to 100%)
during BAL treatment. Concomitant with a decrease in ICP in Group 1,
ammonia levels decreased (cell BAL) cf. group 2 (Control empty bead
BAL); Group 1 n = 6, mean 12068; Group 2 n = 7, mean 150611.
Statistics: two-tailed unpaired t-test, p = 0.035.
doi:10.1371/journal.pone.0082312.g002
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maximum amplitude on the trace (MA), indicated the absolute

strength of the clot was stronger in Group 1 compared with Group

2 animals (see also Fig 6A&B).

Survival
As intended, all animals died whilst under anaesthesia and

observation, without recovery being attempted. Average survival

time after establishment of ischaemic ALF in Group 1 (active BAL

+cells biomass) was 10.46+/20.7 h, that of Group 2 (control non-

functional BAL) was 8.63+/21.4 hours. This was a non-signifi-

cant trend towards longer stabilisation in Group 1. Extraneous

supportive interventions from the anaesthetists (as might normally

be administered alongside clinical bioartificial liver suport therapy)

were precluded by the study design.

Haemodynamic variables
As expected central blood pressure dropped significantly on

creation of the porto-systemic shunt as part of the ALF model, and

on initial connection to the COBE, but this rapidly corrected.

Cardiac output increased predictably as liver failure progressed,

largely due to a progressive drop in systemic vascular resistance

(SVRI), which was similar in both groups. Haemodynamic data,

which was not significantly different between the two groups, is

summarised in Fig S1. Extra-vascular lung water (EVLW) also

increased indicating acute lung injury in the Group 2, but less so in

Group 1 (Fig-S2A-) during the first 4 hours of BAL treatment,

albeit not statistically significantly different. Cerebral perfusion

pressure (CPP) did not differ between the two groups (Fig S2B).

Histological analysis after death demonstrated patchy ischaemic

necrosis throughout the liver, without engorgement of gut, similar

in both groups. Patchy brain ischaemia was also demonstrable.

Histology of the other organs was normal. (Fig S3).

Discussion

Liver transplantation is the established treatment for acute liver

failure, and is effective by providing complete functional liver

support almost immediately. However, future trends, spurred on

by the lack of donor organs, justify the exploration of alternatives,

such as cell based therapies. We have investigated the role of a

liver cell line cultured in a 3-dimensional format housed in a

fluidised bed bioreactor to provide temporaray liver support in a

near clinical model.

Important goals in liver support therapy include provision of

synthetic and detoxification functions, restoration of blood

coagulability, protection from intracranial hypertension as well

as a positive impact on the inflammatory response of acute liver

failure, with an indication that regeneration of the injured liver is

occurring [1]. To assess all these in a single animal model is

challenging, since ideally both a predicatable rate of onset of liver

damage, and the potential for survival should occur.

The model of surgical ischaemic acute liver failure in pigs

mimics well the clinical scenario where there is a universal increase

in plasma ammonia, acidosis and raised intracranial pressure in

contrast to some unpredictability in drug-induced acute liver

failure models in out-bred pigs [21]. With the surgical model all

animals will suffer ischaemic acute liver damage, although clearly

the predictable deterioration and irreversible liver damage does

not provide an appropriate model to investigate any impact on

survival. The clinical outcome of this ischaemic model is a

consequence both of deficient hepatic function due to the necrotic

liver combined with deleterious effects of substances released from

the necrotic liver into the circulation. The release of substances

from the liver is evidenced by the rising plasma transaminase levels

demonstrating leakage from the liver into the plasma. The

deleterious consequences of the presence of a necrotic liver on

patients’ systemic physiology has been clearly indicated by

demonstration of clinical improvement when the necrotic liver is

removed in Acute Liver failure prior to salvage liver grafting.

(Prolonged anhepatic state after early liver graft removal.[22] We

have demonstrated improvement in important aspects of acute

liver failure in pigs treated with our active BAL biomass. Acidosis,

conjugation of bilirubin, and ammonia improved. The decreased

ammonia levels were indeed unexpected since HepG2 cells are

known to lack a full urea cycle, (being deficient in Ornithine

transcarbamylase at the mRNA level) as do C3A cells [9,10]. One

explanation for the decreased ammonia may be the consumption

of some amino acids at a significant rate by the biomass, removing

the substrate for ammonia generation. The amino acid profiles did

differ between the two groups after treatment. Notably also,

HepG2 cells have a second amino acid transport systems (System

ASC – sodium dependent amino acid transporter) not found in

primary hepatocytes that results in rapid glutamine uptake, which

may also enhance ammonia elimination [23,24].

Synthetic function was clearly demonstrated by the active BAL

biomass, with human proteins assayed appearing at progressively

rising levels in the pigs’ plasma in Group 1. The lack of any

Figure 3. Brain parameters in pigs with ischaemic acute liver
failure. A) Intracranial Pressure (ICP) using a Codman catheter was
recorded every 15 min, in mmHg. The rise after established acute
ischaemic liver failure was halted when pigs were attached to the cell
bead BAL (Group 1, n = 5, closed circles?), whilst it continued to increase
in Group 2 (empty bead BAL open circles o), n = 7. B) Brain oxygenation,
normalised to 100% at time of ischaemia. There was an increase in brain
oxygenation in Group 1 cell bead treated pigs (solid circles?) compared
with Group 2 (open circles o). Statistics compared the slopes of the line
between groups with 95% confidence limits.
doi:10.1371/journal.pone.0082312.g003
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Figure 4. Parameters of brain homeostasis during BAL treatment of pigs with ischaemic liver failure: Brain metabolites.
Microdialysate samples (18 ml) were collected from catheters on each side of the brain. Fig 4 A&B show glucose levels in the brain during the course
of treatment using a cell-bead BAL (4A) or an empty bead BAL control (4B). Left and right refer to left and right brain hemispheres. 30 minute
microdialysates were collected; measurements made hourly. Fig 4C&D show the lactate:pyruvate ratio indicating ischaemic damage in cell-bead BAL
(4C) and empty bead BAL control (4D); note that 4D shows different results on each side of the brain, perhaps indicating patchy brain ischaemia.
These results are representative of the 4 pigs in which microdialysis was performed, two in Group 1 and two in Group 2.
doi:10.1371/journal.pone.0082312.g004

Table 2. Amino acid concentrations in pig plasma before and after treatment.

amino acid
cell-bead
BAL start

cell-bead BAL
end

control empty
bead BAL start

control empty bead
BAL end amino acid cell BAL control BAL

Asp 18.561 18.362 15.762 24.064 Asp decrease increase

Thr 214632 287.6630 148635 267657** Thr increase increase

Ser+Asn+Gln 541650 974652** 509635 9896139* Ser+Asn+Gln increase increase

Glu 203654 178631 227633 232656 Glu decrease increase

Gly 11886109 1583677* 1221665 17296182* Gly increase increase

Ala 7966104 11396164* 8566111 11566157** Ala increase increase

(Cys)2 30.366 27.467 24.762 34.966 (Cys)2 decrease increase

Val 362635 223615* 312641 253622 Val decrease decrease

Met 56.665 111613* 47.964 102618* Met increase increase

Ile 168621 80610* 140621 100613* Ile decrease decrease

Leu 268626 155617* 237633 187620* Leu decrease decrease

Tyr 104612 16967** 77.5611 154622** Tyr increase increase

Phe 106.366 195621* 87.3612 198631** Phe increase increase

His 109.567 131610 98.4610 137616** His increase increase

Lys 437628 557667 300635 523689* Lys increase increase

Arg 115628 0** 139611 8.866** Arg decrease decrease

Pro+Cys 312633 499636** 280624 483660** Pro+Cys increase increase

Amino acids, measured in pig plasma by ion exchange HPLC were quantified in Group 1 and Group 2 animals. Results expressed as mmol/L, mean6SEM. Differences
between start and end of treatment for each group (Group 1 cell-bead BAL n = 6, and Group 2 empty bead non-functional control BAL n = 5), are show with statistical
differences: *p,0.05; **p,0.02, t-test, paired, 2-tailed. Three amino acids showed differences in response to treatment with the BAL comparing Group 1 and Group 2.
doi:10.1371/journal.pone.0082312.t002
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increases in Group 2 confirms the specificity of the assays. It is

noteworthy, that in future clinical application production of AFP

by the biomass may provide a helpful specific tracer as this is rarely

present in plasma of patients with acute liver failure. Fibrinogen

and prothrombin are likely contributing to the improvement of

clotting function, which we measured by Thromboelastography

(TEG), assessed to be a better measure of clotting dysfunction than

prothrombin time and aPTT in a model of hypothermia and

haemorrhagic shock in swine [25]. TEG measures several

parameters of clotting function, reflecting viscoelastic properties

of blood, platelet activation, fibrin formation and retraction of the

clot [26,27]. The R-time reflects fibrin formation rate, functionally

dependent on clotting factors, and particularly fibrinogen; for their

derivation see Fig 4. The K time, reflects viscoelasticity, intrinsic

clotting factor activity, as well as fibrinogen and platelet function.

The alpha angle and MA reflect the absolute strength of the clot.

In the animals in whom clotting was grossly deranged, those in the

Group 2-control showed no correction, whilst in Group 1 this

returned to near normal values. This improvement was noted after

several hours of BAL treatment consistent with the appearance of

human fibrinogen in pig plasma [25].

The provision of freshly synthesised albumin by the biomass

may be of particular significance. Much of previous artificial, non-

biological, liver machine work is based on a form of albumin

dialysis. Whilst none so far has improved survival, there is

symptomatic relief, for example, of pruritis in some patients, and

that is associated with the removal of certain toxins by the

albumin. However, one issue that has emerged is the source and

thus biological efficacy of the albumin in such systems and its

fitness-for-purpose to act as a carrier protein to aid detoxification.

Commercially isolated/prepared albumin has an altered affinity

for toxins which makes it considerably less effective. In contrast the

HepG2 cells are continuously making endogenous nascent

albumin at the time of need, and in our system the per cell

production is indeed equivalent to that calculated from human in

vivo albumin production data [8]; this nascent albumin has been

unaffected by the preservatives e.g. caprylate, used in preparing

commercial albumin and which has been shown to adversely affect

toxin binding [28].

A striking clinical observation was that the intracranial pressure

increase, resulting from ischaemic acute liver damage, was

arrested in pigs treated with the cell-bead BAL. Cerebral perfusion

Figure 5. Human proteins in pig plasma after BAL treatment. Pig blood samples were assessed by ELISA for specific human protein content
during treatment; Group 1 cell bead treated BAL (solid symbols), compared with Group 2 empty bead control treated BAL (open circles) (A) Albumin
(B) Fibrinogen, (C) Alpha-1-acid glycoprotein (A1AGP) and (D) Alphafoetoprotein (AFP). Results expressed as mg/ml pig plasma: mean6SEM n = 6. No
human protein was detected in Group 2 animals, establishing the specificity of the assays for human proteins.
doi:10.1371/journal.pone.0082312.g005
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pressures were identical in both groups. This resolution of ICP in

Group 1 could have had a trivial explanation had it been

associated with a parallel change in cerebral perfusion pressure,

since diminished brain perfusion would also ultimately decrease

ICP. However, this was not the case; both groups had identical

profiles for cerebral perfusion pressure, indicating a specific

decrease in intracranial pressure. Interestingly, in the clinical

situation an ICP value of $30 mmHg in man is associated with

brain herniation and a poor prognostic outcome; the values in the

control group rose above 35 mmHg whereas those in the cell

treated group plateaued lower than 30 mmHg.

Clearly the improvements in biochemical and systemic mani-

festations of acute liver failure reported here are only partial.

Obviously, in a pig model, human derived cells do not substitute

ideal function. However, despite possible incompatibilities, we

demonstrated important improvements in parameters relevant to

acute liver failure using Hep G2 cells.

Whilst human primary hepatocytes might be considered the

ideal cells for use in man, and have been used [29], accessing such

cells on a rapid, sufficient and regular basis is unlikely. Primary

hepatocytes rapidly lose differentiated function in culture and

scarcely proliferate. Proliferating hepatocytes derived from stem

cells are a potentially attractive source, but are not yet a reality.

Current possibilities therefore, for a human source, are cell-lines,

derived either spontaneously, e.g. HepG2 (or C3A), Hepa RG, or

by immortalization, generally viral transformation. Whilst HepG2

cell lines do not express the full in vivo repertoire of function when

cultured as conventional monolayers [9], their function is

Figure 6. Thromboelastography (TEG) measurements of coagulation.                                          A&B) Example of TEG traces: in cell-bead treated BAL Group 1
(A) Thromboelastography of blood

during treatment with either Cell bead treated BAL (solid symbols) or empty bead control treated BAL (open symbols); n = 3: results for each pig are
shown as a change from the start of ischaemia (normalized and denoted as 0 on Y axis), demonstrate changes in R-time (C), K-time (D), angle (E) and
maximum amplitude (MA) (F). BAL was added ,2.5h later. The four parameters describe the overall clotting reaction. The R-time (min) reflecting
fibrin formation rate, is functionally dependent on clotting factors, notably fibrinogen; reported as the reaction time from placement in the cup to
2mm amplitude on the tracing, thus, the higher the number the longer it takes for formation of clot. In both groups initially the time taken for fibrin
formation is increased during liver failure; as the BAL effects an improvement in Group 1, the time taken for fibrin to form is reduced; in contrast in
Group 2 the time continues to increase (C). The K time, reflecting viscoelasticity, is the time taken from the R time to the point where the trace
amplitude reaches 20mm, indicating intrinsic clotting factor activity, as well as fibrinogen and platelet function. Similar to the R time, the longer the
time the less intrinsic clotting factor activity; pigs in Group 1 show a decrease in K time with continued treatment whereas those in Group 2 continue
to increase (D). The alpha angle (angle of slope of r to k denotes rate of clot formation); in Group 1, pigs had an increased angle with BAL treatment,
in Group 2 animals the angle decreased with time (E). MA is the maximum amplitude on the trace, reflecting the absolute strength of the clot; Group
1 pigs showed a stronger clot compared with Group 2 animals (F).
doi:10.1371/journal.pone.0082312.g006
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markedly up-regulated when the same cells are cultured in a three-

dimensional format mimicking in-vivo architecture [8,30]. Many

3-D culture approaches necessitate use of products of animal

origin e.g. collagen, matrigel etc.; one advantage of our 3-D

culture system is use of the non-animal product alginate, derived

from seaweed, providing the substrate for cell attachment required

by epithelial cells. Notably this system differs from the use of

polycation-coated alginate, in which after encapsulation and

polycation-coating, the hydrogel is dissolved; furthermore that

process introduces a diffusion barrier, e.g. Poly-L-lysine molecular

weight cut-off is 70,000Da. [31–33].

It is also worth noting that several other cell bioreactors

introduce a molecular barrier. In the ELAD and other systems

using hollow-fibre technology to house the biomass, cells are

separated from patient blood or plasma by a semi-permeable

membrane [34–37], which, however, limits exchange and mass

transfer. One notable exception is the AMC BAL, in which plasma

contacts cells directly [38,39].

Previously, we demonstrated that [17,40] HepG2 cells in alginate

perform synthetic and detoxification functions in the presence of

both normal and acute liver failure plasma, and in a small animal

model of acute liver failure induced with acetaminophen [41],

improved haemodynamics using a small-scale packed-bed bioreac-

tor. Here, using the superior technology of a fluidised-bed

bioreactor on a near human scale (,561010 cells in 1100 ml), we

have demonstrated improvements in a pig acute liver failure model

and thus provided proof-of-principle for alginate-encapsulated

HepG2 cells in a fluidised-bed bioreactor. It may be noted that

this BAL design could be adapted for any proliferating human liver

cell-line available in the future. Our calculations - based as indicated

on the requirement to provide 30-50% of liver mass - suggest that

scaling up for human could provide the required 761010 to

,161011 cells in 1600–2000 ml, a volume compatible with clinical

use in a bioreactor.

In order to test the potential for clinical translation, experiments

were organised with production of the BAL spheroids at a central

facility and subsequently transportation to a distant hepatology

centre, reflecting the way in which it would required to be used in

practice. This is the way that clinical hepatology services are

organised in many parts of the world. A robust and exacting

system was established which required transport of more than

6000 miles by air and road to where the ALF model was set up by

developing a short term cold chain enabling transport over 48 h at

ambient temperature prior to use. Whilst this will not provide

long-term storage at cryo-temperatures, it would be sufficient for

delivery to any hospital that requires it; the perfluorodecalin

required is available in GMP clinical grade, and is sterilisable by

autoclaving [42]. For the future, we have demonstrated previously

that the functional unit of this biomass, the alginate bead

containing HepG2 cell-spheroids, can be cryopreserved with

recovery of function within 48 hours, a timeframe suitable for

subsequent clinical use [43,44]. To our knowledge no other

bioreactor design enables the biomass to be cryopreserved at

optimal function prior to use, enabling an ‘‘off the shelf’’ product

to treat patients. Moreover, we have recently utilised a non-liquid

nitrogen cryocooler to effect the cryopreservation with encourag-

ing results [45], further confirming this bioreactor design to be

compatible with clinical use in a worldwide setting.

Further work to enable a disposable cryopreservable chamber

for clinical scale biomass cryopreservation is ongoing. We are now

in the process of refining design and manufacture of this system to

GMP to provide a clinically ready bioartificial liver machine.

Supporting Information

Figure S1 Haemodynamic data in pigs with ischaemic
acute liver failure treat with control or cell-bead BAL.
Haemodynamic data was obtained using a PiccoPlus monitor and

picco software for data collection. Solid lines are animals in Group

1 (cell-bead treated); dashed lines are animal treated with empty

bead non-functional control BAL. A&B show Mean Arterial

Pressure in mmHg; C&D show cardiac output represented by

PCCI in L/Min/m3; E&F show Systemic Vascular Resistance

(SVRI) in dyns/second/cm2. Each is shown in time (hours) after

ischaemia insult during BAL treatment.

(TIF)

Figure S2 Further haemodynamic variables. 2A) Extra-

vascular lung water was measured using the Picco plus machine at

intervals after BAL addition. The average values were lower in the

cell-bead treated group compared with control group indicating

less fluid overload in the treated group. Extravascular lung water,

a measure of oedema, is important during treatment of liver

failure. 2B) cerebral perfusion pressure did not differ between

control and treated groups.

(TIF)

Figure S3 Histology of liver after ischaemic damage. A)

liver x4-scale-bar-500 mm, B) Liver x40, C&D) brain x40; H&E.

scale-bar 50 um.

(TIF)
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