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Existing speech recognition systems are only for mainstream audio types; there is little research on language types; the system is
subject to relatively large restrictions; and the recognition rate is not high. &erefore, how to use an efficient classifier to make a
speech recognition system with a high recognition rate is one of the current research focuses. Based on the idea of machine
learning, this study combines the computational random forest classification method to improve the algorithm and builds an
English speech recognition model based on machine learning. Moreover, this study uses a lightweight model and its improved
model to recognize speech signals and directly performs adaptive wavelet threshold shrinkage and denoising on the generated
time-frequency images. In addition, this study uses the EI strong classifier to replace the softmax of the lightweight AlexNetmodel,
which further improves the recognition accuracy under a low signal-to-noise ratio. Finally, this study designs experiments to
verify the model effect. &e research results show that the effect of the model constructed in this study is good.

1. Introduction

In recent years, speech recognition technology has made
great developments and is quickly applied to the product
field, and language recognition systems have sprung up like
mushrooms [1]. Transliteration is usually used for the
translation of named entities, such as place names and
names, which refers to the use of the similarities and dif-
ferences in the pronunciation rules of the source language
and the target language to translate the source language form
into the target language form [2]. Since transliteration deals
with translation problems from the perspective of pro-
nunciation and has good results in dealing with the trans-
lation of unregistered words, it has a wide range of
applications in many cross-language tasks such as machine
translation and bilingual maps. Among them, bilingual maps
have very high requirements for transliteration, and strict
transliteration rules must be followed to obtain bilingual
annotations that can be used. Currently, there are a large
number of transliteration rules available, and the China

Geographical Names Committee has formulated a list of
transliteration rules in 50 languages. &ese rule tables are
divided into vowels and consonants according to the in-
ternational phonetic symbols corresponding to the different
pronunciations of the letters of the original language after
romanization, and they are pronounced by vowels and
consonants alone or in combination. Research on translit-
eration is generally divided into two categories: research on
transliteration equivalent pair mining and research on
transliteration model construction. &e former refers to
mining dual transliteration equivalent pairs from parallel or
comparable corpora to construct a larger and newer
transliteration dictionary. &e latter refers to the use of
parallel bilingual corpus for training to automatically build a
transliteration model based on its own information and
contextual information [3].

Speech recognition is an all-encompassing subject,
which involves many different fields, including linguistics,
acoustics, statistics, and artificial intelligence, and is also
called automatic speech recognition [4]. Its goal is to display
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the vocabulary content in the human voice on the computer
as computer-readable information, which can be recognized
by the computer. If speech recognition technology is
combined with other natural language processing technol-
ogies, more complex but convenient applications can be
constructed, such as combining machine translation and
speech synthesis to obtain speech translation [5]. Due to the
importance and great advantages of speech recognition in all
aspects, many companies invest a lot of manpower and
material resources in research.

With the improvement of the level of technology, the
development of the internet has brought huge amounts of
language and text information, and the amount of data in
web page text is also increasing day by day. At the same
time, the phenomenon of multiple languages has gradually
appeared. &e language recognition system can hand over
a large amount of repetitive and tedious labor to the
machine to handle, saving manpower and material re-
sources, and improving work efficiency [6].&e research of
language recognition focuses on the improvement and
optimization of algorithms and models, and its main
methods are through linguistics and machine learning
methods. In addition, methods of probability statistics or
information theory have also been widely adopted, and
speech recognition methods have been successfully ap-
plied in practice [7].

2. Related Work

&ere are also many other methods used in short text
language recognition. &e literature described a method of
using affix tables to expand the dictionary and used a parallel
corpus to test it [8]. &e literature proposed a method
combining the n-gram language model with the naive Bayes
classifier to achieve the purpose of classifying language types
[9]. &e literature proposed a method to realize language
recognition based on the user’s previous messages and the
related content embedded in the messages for Twitter in-
formation [10]. &is method not only uses the information
of the word itself but also effectively uses the information
between words, which greatly improves the efficiency of
language recognition of short texts. During this period,
many language recognition tools were developed. As deep
learning technology becomes more and more mature, many
researchers have begun to think about how to apply deep
learning technology to language recognition and have made
many attempts. However, through practice, it can be found
that deep learning technology has good effects in the field of
speech. At the same time, language recognition technology
for the field of speech has become more and more mature.
However, for short texts, as the corpus continues to improve,
machine learning methods based on statistics have become
simpler and more efficient. In addition, the traditional
n-gram-based language recognition has a strong dependence
on the dataset.&e literature pointed out that achieving good
recognition results on six European corpora does not mean
that the same good results will be achieved on corpora
containing more languages [11]. &e literature pointed out
in the evaluation experiment of each language recognition

model that the accuracy of the same model on different
datasets is also very different. At the same time, it also
pointed out that removing noise in the dataset, such as
special characters in the Twitter dataset, has obvious help to
improve the recognition rate [12].

For different audio types, different audio features are
used.&e literature used two acoustic characteristics of zero-
crossing rate and short-term energy to classify voice and
music in broadcast signals [13]. &e literature first divided
the audio signal in the TV into mute, signal with music
component and signal without music component by using
four audio characteristics of short-term energy, zero-
crossing rate, pitch frequency, and spectral peak trajectory
[14]. &en, it further divided the signal containing music
component into pure music, singing voice, and voice with
music background, and further divided the signal without
music component into pure audio and noisy audio. &e
literature used five characteristics: MFCC, zero-crossing
rate, short-term energy, spectral centroid, and spectral
width, and introduced three characteristics of spectral dif-
ferential amplitude, sub-band period, and the proportion of
noise frame to divide the audio signal into 5 categories: pure
speech, impure speech, music, environmental sound, and
silence [15].

3. Modulated Signal Model

&e modulation methods of the modulation signal mainly
include single-frequency modulation, linear frequency
modulation, nonlinear frequency modulation, frequency
encoding, phase encoding, and frequency-phase encoding
hybrid modulation. Due to different types of voice wave-
forms, in order to meet their performance requirements,
different modulation types are selected, and low-intercept
probability waveform modulation methods are usually used.
Moreover, this waveform is characterized by low transmit
power and low interception. Its original simple single-fre-
quency continuous-wave modulation has been continuously
developed to multiple frequency modulation, linear fre-
quency modulation, nonlinear frequency modulation, phase
code modulation, and other more complex modulation
technologies. &erefore, different modulation methods are
used for different types of voice waveforms, thereby
reflecting various modulation signal characteristics. &ere-
fore, this study studies the following 10 common modulated
signal models to prepare for the subsequent identification of
various modulated signals.

3.1.Normal Signal (NS). Normal signal (NS) FM signal is the
most basic signal form in the modulation signal. Because of
its simple transceiver structure and lower transmit power, it
can get a larger signal-to-noise ratio than other modulated
signals, and it has good detection performance and low-
interception performance. &erefore, conventional voice
signals are widely used in various voice systems. Its math-
ematical expression is shown by the following formula.
Among them, A is the amplitude, f0 is the carrier frequency,
φ is the initial phase, and T is the pulse width.
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s(t) �
A exp j 2πf0t + φ(  , 0≤ t≤T,

0, else.
 (1)

Binary phase-shift keying (BPSK) modulated signal has
good antinoise and low-intercept performance character-
istics. &erefore, it is widely used in various communication
systems and voice communication systems. Its mathematical
expression is shown by the following formula. Among them,
M is the number of phases. When M � 2 is a two-phase
coded BPSK signal, the value of ϕi is 0 and π in two phases,N
is the number of symbols, andTp is the width of the symbols.
&e BPSK phase encoding can be realized by Barker code,
Frank code, etc. Moreover, the characteristic of the BPSK
signal is that its instantaneous frequency undergoes a phase
jump at the code element change of the code sequence.

s(t) � A 
N

i�1
exp j 2πf0t + φ(  uTp

t − iTp ,

ϕi ∈
2π
M

(m − 1), m � 1, 2, . . . , M .

(2)

Linear frequency modulation (LFM) modulation signal
is the most typical modulation method in frequency mod-
ulation. Because of its large time-bandwidth product, low
transmit power, high-range resolution, and low-intercept
probability, it is widely used in various high-performance
voices and sonars. Its mathematical expression is as follows.
Among them, A is the frequency modulation slope, and B is
the frequency modulation bandwidth.

s(t) �

A exp j 2πf0t +
1
2
πkt

2
+ φ  , 0≤ t≤T,

0, else.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

Nonlinear frequency modulation (NLFM) modulation
signals are also commonly used modulation signals for
frequency modulation. Because the LFM signal passes
through the matched filter and the output waveform has a
high sidelobe, it easily leads to low-range resolution and loss
of the detected target. However, the NLFM signal can obtain
lower sidelobes and has a larger time-bandwidth product,
which can improve the measurement accuracy and distance
resolution of the voice system. Its mathematical expression is
very similar to the LFM signal, except that the power of the
highest polynomial of the phase is greater than 2. Its
mathematical expression is shown by the following formula.
Among them, k1, k2,φ are the modulation coefficients and
the initial phase of the signal, respectively.

s(t) �

A exp j

2πf0t +
1
2
πk1t

2

+
1
2
πk2t

3
+ φ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, 0≤ t≤T,

0, else.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

&e frequency-hopping Costas modulated signal has
good antifading, antinoise, and low-intercept performance
characteristics, and it is widely used in frequency-hopping
communication. Its realization is to divide the signal whose
pulse width is T into N equal parts of subpulses. Among
them, the length of the subpulse is Ts � T/N, and the time
sequence of each frequency hopping is T1, T2, . . . , TN .
According to the given Costas coding sequence
θ1, θ2, . . . , θN , the frequency sequence f1, f2, . . . , fN  in
each period of time can be obtained.&e frequency selection
in each time interval should satisfy the following:

fk+i − fk ≠fi+j − fj,

1≤ k< i + j≤ θN.
(5)

Among them, pn is the subpulse. When the subpulse pn

is a single-frequency conventional signal, the frequency of
the subpulse in each time interval is fi � θi/Ts � θiΔf.
Among them, i ∈ 1, 2, · · · , N{ }, and Δf is the frequency step
amplitude.

s(t) � 
N−1

n�0
pn t − nTs( ,

pn �
A exp j 2πfmt + φ(  , 0≤ t≤Ts,

0, else.


(6)

&e emergence of Frank polyphase encoding is to
improve the problem of higher sidelobe peaks in FM
signals after matched filters and Doppler sensitivity in
phase-encoded signals. &erefore, it is often widely used in
various voice communication systems. When the signal
pulse width is T, its phase change is realized by M fre-
quency steps. Among them, each frequency step hasM sets
of sampling points, so its total length Nc � M2. At the same
time, the phase change of the Frank code whose total
length is Nc is represented by the M × M matrix. Among
them, the phase change of the M sampling points of the M
group takes 0 as the initial value and is incremented by
(M − 1)(2π/M).

s(t) �
A exp j 2πf0t + ϕij  , 0≤ t≤T,

0, else,

⎧⎪⎨

⎪⎩

ϕij �
2π
M

(i − 1)(j − 1),

i � 1, 2, . . . , M; j � 1, 2, . . . , M,

2π
M

0 0 0 · · · 0

0 1 2 · · · M − 1

0 2 4 · · · 2(M − 1)

⋮ ⋮ ⋮ ⋮ ⋮

0 M − 1 2(M − 1) · · · (M − 1)
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)
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3.2. Multitime Coded Signals (T1 and T4). Multitime code
T1(n), 2(n), T3(n), T4(n) is a code sequence composed of
different time periods given to each of their phase states.
Among them, T1(n) and T2(n) are generated based on the
step frequency, and T3(n), T4(n) is generated based on the
approximate LFM signal waveform.

(1) &e mathematical expression of phase change of
T1(n) multitime code sequence is as follows:

ϕT1(t) � mod
2π
n

INT (kt − jT)
jn

T
 , 2π . (8)

Among them, n is the number of phase states of the
T1(n) sequence, j � 0, 1, 2, . . . , k − 1 is the step-
frequency segment number of the multitime code
T1(n) sequence, and k is the number of segments of
the T1(n) code sequence. At the same time, t is the
time, and T is the duration of the entire multitime
encoding.
&e T1(n) coding sequence is analyzed for phase-
shift characteristics, as shown in Figure 1. &e phase
state, number of segments, and encoding time of the
T1(n) encoding sequence are, respectively, selected
as n � 2, k � 3, T � 20ms to obtain the unprocessed
phase change in Figure 1(a) and the processed phase
change in Figure 1(b).

(2) &e meaning of the mathematical expression pa-
rameters of the phase change of the T2(n) multitime
code sequence is the same as the above T1(n) code.

ϕT2(t) � mod
2π
n
INT (kt − jT)

2j − k + 1
T

n

2
  , 2π .

(9)

Similarly, the T2(n) code sequence is analyzed for
phase-shift characteristics, as shown in Figure 2. &e
phase state, number of segments, and encoding time
of the T2(n) encoding sequence are, respectively,
selected as n � 2, k � 3, T � 18ms, and the unpro-
cessed phase change in Figure 2(a) and the processed
phase change in Figure 2(b) are obtained.

(3) &e mathematical expression of the phase change of
the T3(n) multitime code sequence is shown by the
following formula. Among them, n is the number of
phase states, ΔF is the modulation bandwidth, and
tm is the modulation period.

ϕT3(t) � mod
2π
n
INT

nΔFt
2

2tm

 , 2π . (10)

Similarly, T3(n) code sequence bei1 performs phase-
shift characteristic analysis, as shown in Figure 3.&e
signal-to-noise ratio, bandwidth, phase status,
number of segments, and coding time of the T3(n)

coding sequence are, respectively, selected as
2 dB ,ΔF � 250Hz, n � 2, k � 3, tm � 18ms, and the
unprocessed phase change in Figure 3(a) and the
processed phase change in Figure 3(b) are obtained.

(4) &e meaning of the parameters in the mathe-
matical expression of the code phase change of
T4(n) for a long time is the same as that of T3(n) as
follows:

ϕT4(t) � mod
2π
n

INT
nΔFt

2

2tm

−
nΔFt

2
 , 2π . (11)

As shown in Figure 4, the characteristics of the T4(n)

coding sequence are analyzed. &e signal-to-noise ratio,
bandwidth, phase status, number of segments, and coding
time of the T4(n) coding sequence are selected as
2 dB,ΔF � 250Hz, n � 2, k � 3, tm � 18ms, respectively, the
unprocessed phase change is shown in Figure 4(a), and the
processed phase change is obtained in Figure 4(b).

3.3. Time-Frequency Analysis Method Analysis. &ere are
many classic time-frequency analysis methods, such as
short-time Fourier transform (STFT), wavelet transform
(WT), Wigner–Ville transform, Choi–Williams distribution
(CWD), and Hilbert Huang transform (HHT) transfor-
mation, and so on. &ese methods mainly consist of linear
and nonlinear transformations. &e linear time-frequency
transformation satisfies the linear superposition principle,
while the nonlinear transformation does not satisfy the
superposition principle, and it will introduce cross terms,
thereby affecting the correctness of the signal’s time-fre-
quency characteristics. Among them, the Wigner–Ville
transform and Choi–Williams transform belong to the
Cohen time-frequency distribution. As shown by the fol-
lowing formula, Cohen-like time-frequency analysis gives a
general mathematical representation. When g(η, τ) takes
different kernel functions, it can correspond to different
types of bilinear (quadratic) time-frequency division
transforms.

C(t,Ω: g) �
1
2π

   x u +
τ
2

 x
∗

u −
τ
2

 ,

g(η, τ)e
−j(ηt+Ωτ− uη)dudτdη.

(12)

&e STFT is a linear transformation in time-frequency
analysis. It was first used by Gabor, so it is also called the
Gabor transform. Because the actual signal is an infinitely
long nonstationary signal, it does not satisfy the Fourier
transform (FT) condition. However, the STFTuses a window
function to divide an infinitely long signal into several finite-
length “small segments.” Each “small segment” is approxi-
mately stationary so as to satisfy the Fourier transform
conditions. &e set obtained by the Fourier transform of
each “small segment” is the fast Fourier transform. &e
mathematical expression of STFT is as follows:

STFTx(t,Ω) � 
∞

−∞
x(τ)g

∗
(τ − t)e

−jΩτ

�〈x(τ), g(τ)e
jΩτ〉.

(13)

Compared with the Fourier transform, the advantage of
the short-time Fourier transform is that it can obtain the
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instantaneous frequency information of the signal at dif-
ferent times by increasing the window function.&e physical
meaning is clear and clear, and the STFT is a linear trans-
formation. Unlike other nonlinear time-frequency analyses,
it has no interference terms, so the time-frequency resolu-
tion is high.

However, the shortcomings of the short-time Fourier
change are also obvious because it has a window function.
&erefore, its time-frequency resolution is limited by Hei-
senberg’s uncertainty principle (ΔtΔf≥ 1/4π), and the real-
time frequency resolution cannot be high at the same time.
Moreover, once the STFT determines the window length of
the window function, the corresponding time-frequency
resolution is also determined. &erefore, STFT is a single-
resolution analysis method. When the analyzed signal
contains multiple frequency components, the short-time
Fourier transformmethod cannot satisfy the time-frequency
analysis of multiple frequency components.

&e CWD time-frequency analysis is a nonlinear time-
frequency analysis method. In the Cohen time-frequency
analysis, when the kernel function g(η, τ)� e−η2τ2/σ can get

the CWD time-frequency analysis, the mathematical ex-
pression of the CWD time-frequency analysis is shown by
the following formula:

CWD(t, f) �   Ax(η, τ)g(η, τ)exp(−j2π(ηt − tf))dηdτ,

Ax(η, τ) �   x t +
τ
2

 x
∗

t −
τ
2

 exp (−j2πtη)
−j2πτdt,

g(η, τ) � exp −σ(ητ)
2

 .

(14)

In the above formulas, g(η, τ) is the kernel function, σ
is the controllable parameter factor, and CWD suppresses
the cross term mainly by changing the σ parameter factor.
If the value of σ is large, the CWD time-frequency analysis
becomes the WVD time-frequency analysis. Although it
can improve the time-frequency aggregation of signal
terms, it will cause serious cross-term interference. If the
value of σ is small, although the interference of the cross
term is small, the amplitude and frequency of the signal
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Figure 1: T1(n) multitime coding. (a) T1(2) code with unprocessed phase change. (b) T1(2) code after phase change processing.
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change very slowly, which is easy to form a tail, resulting in
poor time-frequency aggregation of the signal. &erefore,
in order to balance the resolution of the signal and the
cross-term interference, σ needs to select an appropriate
value.

&e CWD distribution needs to select a suitable kernel
function and a suitable controllable factor to effectively
suppress the cross-term interference, and then obtain a time-
frequency image with a higher time-frequency resolution.
However, the implementation of CWD is more complicated,
and proper kernel function and parameter size need to be
selected. When the signal contains high-frequency com-
ponents, the selected parameter factors cannot separately
reflect the time-frequency characteristics of the high and low
frequencies of the signal. &erefore, at this time, the fre-
quency aggregation and the ability to suppress the cross term
are not as good as the smooth pseudo-Wigner–Ville
distribution.

&e Wigner–Ville time-frequency analysis is a non-
linear time-frequency transformation. When the kernel

function g(η, τ) � 1 is Cohen’s time-frequency distribu-
tion, the WVD time-frequency distribution is obtained.
Since it does not involve a window function, it is
not restricted by Heisenberg’s uncertainty principle
(ΔtΔf≥ 1/4π) and, therefore, has a higher time-frequency
resolution. However, it will produce serious cross-term
interference when performing time-frequency analysis
on multiple signals. Its mathematical expression is as
follows:

WVDx(t,Ω) � 
∞

−∞
x t +

τ
2

 x
∗

t −
τ
2

 e
−jΩτ/2dτ. (15)

Since the WVD time-frequency analysis method is a
nonlinear transformation, as shown by the following for-
mula, when there are multiple signals x(t) � x1(t) + x2(t)

undergoing WVD time-frequency transformation, the su-
perposition theorem will not be satisfied. &e WVD dis-
tribution of the sum of multiple signals is not equal to the
sum of the WVD distribution of each signal, so cross-term
interference will occur.
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Figure 2: T2(2) multitime coding. (a) T2(2) code with unprocessed phase change. (b) T2(2) code with unprocessed phase change.
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WVDx(t,Ω) � 
∞

−∞
x1 t +

τ
2

  + x2 t +
τ
2

   x
∗
1 t −

τ
2

  + x
∗
2 t −

τ
2

  ,

e
−jΩτ/2

dτ � Wx1 ,x1(t,Ω) + Wx2 ,x2(t,Ω) + 2Re Wx1 ,x2(t,Ω) .

(16)

Among them, the above formulas Wx1 ,x1(t,Ω) and
Wx2 ,x2(t,Ω) are the self-time-frequency distributions
of x1(t) and x2(t) (referred to as signal terms).
2Re[Wx1 ,x2(t,Ω)] is the mutual time-frequency distribution
of x1(t) and x2(t) (referred to as the cross term), which is
the interference generated when multiple signals are ana-
lyzed in WVD frequency. &ese cross terms weaken the
energy of the signal term in the time-frequency domain,
causing aliasing and blurring of the time-frequency image.
&erefore, in order to obtain a higher time-frequency res-
olution, the interference of the cross term inWVD should be
suppressed, and the energy of the signal term should be
enhanced.

When the pseudo-Wigner–Ville distribution (pseudo-
WVD, PWVD) appears, in order to eliminate the influence
of cross-term interference, it is implemented by smoothing

the WVD windowing function h(τ). Its mathematical ex-
pression is as follows:

PWVDx(t,Ω) � 
∞

−∞
x t +

τ
2

 x
∗

t −
τ
2

 h(τ)e
−jΩτ/2dτ. (17)

In the formula, h(τ) is a window function. &e shorter
the window length in the time domain, the more obvious the
smoothing effect in the frequency domain, and the better the
effect of eliminating cross terms. &e result of PWVD
windowing makes the complete nonlocality of WVD be-
come localized, which greatly improves the signal analysis
performance, makes the edges smoother, and has fewer
miscellaneous items. However, it reduces the frequency
resolution. &erefore, it eliminates the cross term at the cost
of reducing the resolution, which is not the best time-fre-
quency analysis method.
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Figure 3: T3(2) multitime coding. (a) T3(2) code with unprocessed phase change. (b) T3(2) code after phase change processing.
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3.4. Smooth Pseudo-Wigner–Ville Transform. Smooth
pseudo-WVD (SPWVD) adds a window function g(u)

based on PWVD to smooth the time domain, which further
reduces the interference of cross terms. &e two window

functions of SPWVD are equivalent to two simple two-di-
mensional low-pass filters, which can smooth the time
domain and frequency domain by selecting an appropriate
window length. Its mathematical expression is as follows:

SPWVDx(t,Ω) � 
+∞

−∞


+∞

−∞
x t − u +

τ
2

 x
∗

t − u +
τ
2

 h(τ)g(u)e

−jΩτ
2 dτdu. (18)

In the above formula, because the window functions
h(τ) and g(u) are smoothed in both frequency and time
domains, it has the best effect of suppressing the cross term.
At the same time, it can maintain a good compromise in the
choice of time-frequency resolution and energy concen-
tration, so that time-frequency images have both good time-
frequency resolution and better energy concentration.
&erefore, in all Cohen-type time-frequency analyses, the
SPWVD time-frequency analysis has a good ability to
suppress the signal cross term, and the degree of removal of
the cross term can be controlled by the window function.

&erefore, choosing SPWVD time-frequency analysis can
obtain a higher time-frequency resolution.

With the rapid development of information technology
and the increasing dependence of human beings on com-
puters, researchers have paid more and more attention to
human-computer interaction capabilities. How to improve
this ability? To improve, it must be able to perceive the
surrounding environment and atmosphere, and the attitude
and emotion of the object. In this way, it is possible to
provide the most comfortable dialogue environment for the
dialogue object, to eliminate the obstacles between the
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Figure 4: T4(2) multitime coding. (a) T4(2) code with unprocessed phase change. (b) T4(2) code after phase change processing.
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operator and the machine. At present, the research on
emotional information processing has entered the critical
stage, and the research on emotional information processing
in speech signals has received the most attention. &e
emotional information contained in the speech signal is a
very important information resource. It is an essential part of
the information for people to perceive things. In real life,
different people speak differently, and the same person will
also show different emotional factors at different times. &e
information conveyed was only one word short, but it was
completely different. In the beginning, voice processing did
not take these points into consideration, and the technical
level at the time did not support this difference. &erefore,
these emotions that are difficult to express with algorithms
are virtually omitted. With the development of technology,
this is obviously not acceptable to the public. What means to
identify these subtle gaps will need to be sought in future
research to improve the level of speech emotion recognition.
&e emotion research of speech signals needs to make an
effective and reasonable classification of speech emotion
according to certain characteristic standards. &en, the
properties of the characteristic parameters are studied based
on different categories. After years of research, we believe
that emotions are distributed on a circular structure, and the
center of the structure is the natural origin. Relative to the

natural origin, the points distributed on the circular
structure are the state of various emotional factors. &e
strength of these emotional factors on the circle is too weak
to be reflected. It expands in different directions through the
circumference, and each direction is an emotional mani-
festation. Emotion has intensity, and it spreads outward
from the natural origin. &e more outside the circle, the
greater the intensity, and the size of emotion is calculated
according to a certain proportion. We call this kind of
emotions arranged in a circle around the natural origin as
the “emotion wheel.” As shown in Figure 5, for each sen-
tence we input with emotion, we can find a point in the
emotional circle that matches the intensity of the emotion.
Connecting this point with the origin is the direction the
emotion points to, and the only vector obtained is the
emotion sentence that is different from other emotions. In
this two-dimensional plane, the direction of the vector is the
meaning represented by the emotion, and the magnitude of
the vector is the intensity of the emotion.

4. Model Effect Analysis

After constructing the above English and speech recognition
model, the performance of the model is analyzed. &is study
analyzes the pronunciation of 100 English majors as ex-
amples. First, this study analyzes the effect of the model
English speech classification, and the results are shown in
Figure 6.

From the above statistical effects of speech classification,
it can be seen that the model constructed in this study has a
certain effect. On this basis, the accuracy of English speech
recognition is verified. &is study takes the English pro-
nunciation of 100 English majors as an example to analyze,
and each person reads 100 English sentences and uses this
system for speech recognition. &e results obtained are
shown in Figure 7.

As shown in Figure 7, the accuracy of the model con-
structed in this study is as high as 98% for English speech
recognition, which shows that the effect of the model
constructed in this study is good.

5. Conclusions

With human demand for speech products, as a technical
difficulty in speech signal processing, the process of
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marketization of speech synthesis is accelerating. In order to
adapt to the market and apply voice products to all aspects of
the market, in addition to improving the quality of syn-
thesized speech and enhancing the expressiveness of speech
synthesis, it also needs to be satisfied in terms of practica-
bility. &is study uses deep learning algorithms to perform
time-frequency analysis on the massive data collected to
obtain signal time-frequency images for training and extract
the time-frequency characteristics of the signal from training
to obtain the internal distribution law of the data. Moreover,
this study establishes the best probability model to classify
and identify massive data. &is method finds the internal
distribution of data through the training of massive data, and
it can not only accurately identify the signal in the case of
signal parameter distortion, signal loss, etc., but also train
various voice waveforms at the same time. After the model is
constructed, the performance of the model is verified and
analyzed, and the analysis is carried out from the per-
spectives of language classification and speech recognition.
&e results obtained show that the model constructed in this
study is effective and can be applied in practice.

Data Availability

&e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

&e authors declare that there are no conflicts of interest.

Acknowledgments

&is work in this article was supported by the Shijiazhuang
Tiedao University.

References

[1] S. Orlandi, C. A. R. Garcia, A. Bandini, G. Donzelli, and
C. Manfredi, “Application of pattern recognition techniques
to the classification of full-term and preterm infant cry,”
Journal of Voice, vol. 30, no. 6, pp. 656–663, 2015.

[2] Q. K. Duong andH. T. Duong, “A review of audio features and
statistical models exploited for voice pattern design,” Com-
puter Science, vol. 03, no. 2, pp. 36–39, 2015.
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