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Abstract
The interaction of heat shock proteins (HSP) with cellular membranes has been an enigmatic process, initially observed by 
morphological studies, inferred during the purification of HSP70s, and confirmed after the detection of these proteins on 
the surface of cancer cells and their insertion into artificial lipid bilayers. Today, the association of several HSP with lipid 
membranes is well established. However, the mechanisms for membrane insertion have been elusive. There is conclusive 
evidence indicating that HSP70s have a great selectivity for negatively charged phospholipids, whereas other HSP have a 
broader spectrum of lipid specificity. HSP70 also oligomerizes upon membrane insertion, forming ion conductance chan-
nels. The functional role of HSP70 lipid interactions appears related to membrane stabilization that may play a role during 
cell membrane biogenesis. They could also play a role as membrane chaperones as well as during endocytosis, microau-
tophagy, and signal transduction. Moreover, HSP membrane association is a key component in the extracellular export of 
these proteins. The presence of HSP70 on the surface of cancer cells and its interaction with lysosome membranes have 
been envisioned as potential therapeutic targets. Thus, the biology and function of HSP membrane association are reaching 
a new level of excitement. This review is an attempt to preserve the recollection of the pioneering contributions of many 
investigators that have participated in this endeavor.
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The heat shock response: a tale of rejection

Science, like many other disciplines, is operated with unwrit-
ten rules, some of them transmitted from generation to gen-
eration, and others shaped by rejection, flout, and recogni-
tion. The most important tenet is that scientific claims need 

to be supported by solid evidence. In some circumstances, 
new findings contradict conventional wisdom, and they are 
rejected or ignored. This aspect was clearly noticed in R. J. 
Ellis’s words “It is my belief that scientists should resist the 
natural tendency to ignore unexpected observations that do 
not fit the existing paradigm, but take the risk of pursuing 
them in hope that they lead to new ideas and discoveries” 
(Ellis 1996). Certainly, these circumstances have impacted 
and shaped the progress of the stress response and heat 
shock protein biology. The story began in the early 1960s, 
when a talented Italian investigator, Ferruccio Ritossa, 
found that Drosophila cells exposed to elevated tempera-
tures responded with a robust chromosomal activity, which 
was confirmed by subsequent experiments. This observa-
tion was rejected because it was labeled as “irrelevant to the 
scientific community” (Ritossa 1962, 1996; De Maio et al. 
2012). Why did Ritossa’s manuscript receive this indifferent 
response from a high-impact journal? We may never know 
the details as Ritossa did not elaborate in print on the origi-
nal review prior to his passing in 2014. However, we can 
reflect upon the times. The biological models that dominated 

 *	 Antonio De Maio 
	 ademaio@health.ucsd.edu

1	 Department of Surgery, Division of Trauma, Critical Care, 
Burns, and Acute Care Surgery, School of Medicine, 
University of California San Diego, La Jolla, CA 92093, 
USA

2	 Department of Neurosciences, School of Medicine, 
University of California San Diego, La Jolla, CA 92093, 
USA

3	 Center for Investigations of Health and Education Disparities, 
School of Medicine, University of California San Diego, 
La Jolla, CA 92093, USA

4	 Department of Molecular and Cell Biology, University 
of Connecticut, Storrs, CT 06269, USA

/ Published online: 3 September 2021

Cell Stress and Chaperones (2021) 26:769–783

http://crossmark.crossref.org/dialog/?doi=10.1007/s12192-021-01228-y&domain=pdf


1 3

molecular genetics were E. coli and its phage lambda. The 
early 1960s was part of the golden age of molecular biol-
ogy, often stylized by the quotation frequently ascribed to 
Jacques Monod that “What is true for E. coli is true for 
the elephant.” The famous PaJaMa experiments had been 
published in 1959 by Arthur Pardee, Francois Jacob, and 
Jacques Monod. The PaJaMa experiments strengthened the 
hypothesis that a specific molecule facilitated the production 
of proteins from DNA. This was followed in 1961 by Jacob 
and Monod’s paper titled “Genetic Regulatory Mechanisms 
of the Synthesis of Proteins,” showing how genes could be 
activated to make a specific enzyme β-galactosidase. Gene 
expression seemed so precise and selective with specific 
inducer molecules inactivating specific repressors on spe-
cific genes, and it appeared to extend throughout many if 
not all species. How could thermal energy, capable of being 
absorbed by any molecule and therefore the antithesis of 
specificity, initiate these remarkable processes to activate a 
specific set of genes in Drosophila cells and ultimately found 
in eukaryotic and prokaryotic cells in general? This simple 
question became a stumbling block even for investigators 
who accepted the premise that thermal energy increases in 
cells could induce the expression of a specific set of proteins.

Ritossa’s initial finding was forgotten for almost 12 years, 
and when it was recalled, colleagues spoke of it at best as a 
curiosity of Drosophila biology and at worst as a laboratory 
artifact. Then the proteins that were expressed in response 
to high temperatures were identified by Alfred Tissieres 
and collaborators (Tissieres et al. 1974). Alfred, during a 
sabbatical leave with Hershel Mitchell, had not intended to 
search for the heat shock proteins (HSP), as they became 
known, but his original project had not worked, and he was 
running out of time to test a new polyacrylamide gel method, 
so he decided to do a quick experiment to find them. It is 
quite possible that the Drosophila heat shock genes would 
not have been selected as models of eukaryotic gene expres-
sion had not been known due to this happenstance that those 
genes actually encoded proteins.

Clues to the functions of heat shock proteins

A few years after the discovery of the proteins, during the 
bloom of molecular biology, the genes encoding HSP were 
cloned (Schedl et al. 1978; Livak et al. 1978; Craig et al. 
1979), and the mechanisms of transcription regulation were 
elucidated (Pelham 1982; Wu 1984; Bahl et al. 1987). There 
was little interest in attempting to discover the functions 
of the HSP, and in fact, there were no solid clues to what 
they might be doing in cells. The fact that virtually all mol-
ecules absorb thermal energy and are affected by it, even 
if only to increase the kinetic energy, meant that no clues 
were provided by the major known inducer. Promising new 

clues came from two unlikely fields, animal virology, and 
neuroscience. Lawrence Hightower, while studying New-
castle Disease Virus-infected avian cell cultures, serendipi-
tously found that different amino acid analogs sharing the 
common property of incorporating into aberrant proteins 
altering functions and stabilities caused the induction of 
HSP at normal temperatures. Independently, Fredric White, 
while studying rat brain slices as in vitro models for pro-
tein synthesis, discovered a small set of proteins, rapidly 
induced in this tissue, that he ultimately determined to be 
the mammalian equivalent of the Drosophila HSP. He sug-
gested that these proteins were induced in response to the 
trauma of tissue slicing and incubation in vitro. They jointly 
published their observations showing that amino acid ana-
logs and tissue trauma induced the same set of proteins in 
mammalian cells (Hightower and White 1981). A great step 
that followed was the discovery that the expression of HSP 
was not limited to lower organisms, tissue preparations, and 
cells in culture, but also found in mammalian tissues after 
in vivo hyperthermia (Currie and White 1983). Suddenly, 
it became possible to test hypotheses that cells were capa-
ble of “sensing” the presence of damaged or unfolded pro-
teins and responding by producing cellular defense proteins 
to meet the challenge. Essentially any stressor capable of 
causing cellular or tissue damage that directly or indirectly 
caused the accumulation of abnormal proteins could be an 
inducer of the heat shock response (Hightower 1980; Anan-
than et al. 1986; Edington et al. 1989). Then, HSP were 
recognized as composed of many different polypeptides 
with different molecular masses, some of which were con-
stitutively present under normal physiological conditions, 
whereas others were induced after a variety of stressors 
(Lindquist 1986; Lindquist and Craig 1988). Then, the new 
concept of proteotoxic stress was born (Hightower 1991). 
A subsequent major breakthrough was related to the find-
ing that HSP participate in protein folding during normal 
physiological conditions as well as after harmful events, 
and the concept of molecular chaperones was introduced 
in this context (Ellis 1996), resembling a prior concept 
coined by Laskey et al. (1978) regarding a nuclear protein, 
nucleoplasmin, preventing the aggregation of histones dur-
ing nucleosome assembly. The folding capacity of HSP was 
related to an intrinsic ATPase activity. For example, Sadis 
and Hightower (1992) used the unfolded precursor protein 
apocytochrome c to show that HSP70 and its constitutively 
expressed cognate HSC70 can distinguish between unfolded 
and folded forms of the protein. In this case, the HSP70/
HSC70 ATPase activity was only stimulated by the unfolded 
form. Moreover, the old notion of hyperthermia tolerance 
observed during approaches to eradicate malignant tumors, 
initially reported by Crile (1963), was indeed mediated by 
HSP, a process coined “stress tolerance” (Landry et al. 1982; 
Subjeck et al. 1982; Li and Werb 1982), which gave a new 
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perspective to the field. During the following years, a great 
deal of effort was directed at purifying the proteins (Welch 
and Feramisco 1982; Guidon and Hightower 1986a, b) and 
developing specific antibodies (Welch and Feramisco 1984; 
Welch and Suhan 1985; 1986). With these tools on hand, 
the biology of HSP flourished, resulting in a very exciting 
period of discovery that continues to the present and it is 
impulse into the future.

The encounter of heat shock proteins 
with membranes

Morphological studies for the detection of HSP within cells 
revealed the presence of these proteins in various subcel-
lular compartments, including in close proximity to mem-
branes (Velazquez et al. 1980; Velazquez and Lindquist 
1984). The apparent presence of HSP within membranes 
was also later observed by others (LaThangue 1984; Welch 
and Suhan 1985). Although the potential interaction of the 
proteins with membranes was not further investigated, a 
surprising observation was encountered during the purifi-
cation of rat HSP70/HSC70 from cellular extracts. Guidon 
and Hightower (1986a; b) found that the purified protein was 
still associated with fatty acids. This observation became 
the first solid evidence for the interaction of HSP70s with 
lipids. These pioneering observations were also forgotten 
for many years, and the attention was directed at the role 
of HSP70 in protein folding and thermotolerance. It was 
relatively easy for skeptics to dismiss the association of 
noncovalently associated fatty acids with HSP as simply a 
gratuitous presence of a small amount of unesterified and 
nonspecific fatty acids in purified protein preparations. This 
was despite the fact that the same fatty acids, palmitic and 
stearic acids in the same 1:1 ratio, were associated with puri-
fied HSC70 and HSP70 from two organs, liver and brain, 
with very different free fatty acid compositions (Guidon 
and Hightower 1986a; b). The interest in the association of 
HSP with membranes was regained by observations regard-
ing the presence of these proteins on the cell surface. The 
first report on this occurrence was in 1992, in which HSP90 
and HSP70 were detected on the surface of several tumor 
cell lines (Ferrarini et al. 1992). Additionally, HSP70 was 
detected on the surface of retroocular fibroblasts obtained 
from patients suffering from Graves’ ophthalmopathy, an 
autoimmune inflammatory disorder (Heufelder et al. 1992). 
Moreover, HSP70 was also found in T cell lines infected 
with leukemia virus I, triggering the production of antibod-
ies against the HSP (Chouchane et al. 1994). These early 
observations did not receive any major attention, probably 
because it was unknown whether the protein was inserted 
into the membrane or just associated with plasma membrane 
proteins. It was not until Gabriele Multhoff ‘s remarkable 

work showing in very elegant studies that HSP70 was exclu-
sively present on the surface of tumor cells, embedded into 
the plasma membrane (Multhoff et al. 1995). This annotation 
was very controversial at that time, particularly because the 
majority of available antibodies did not recognize the protein 
on the cell surface, except for one commercially available, 
which was rapidly discontinued, probably due to the lack of 
business. Multhoff ‘s group performed an epitope mapping 
of HSP70, identifying a motif coined “TKD” (TKDNNLL-
GRFELSG) that was exposed outside the cell (Botzler et al. 
1998). A new antibody for this epitope was raised and dis-
tributed, allowing several groups to confirm Multhoff’s ini-
tial findings. Today, there are extensive reports demonstrat-
ing the presence of several HSP on the surface of various 
cells (Table 1). Moreover, there are several excellent reviews 
on the topic (Multhoff and Hightower 2011; De Maio 2011; 
De Maio and Vazquez 2013; Shevtsov et al. 2020; Elmallah 
et al. 2020).

The controversial finding that HSP70 was inserted into 
the plasma membrane of cancer cells was again unappreci-
ated for many years. The turning point came in the year 
2000 at the annual Cold Spring Harbor Meeting “Molecular 
chaperones and the heat shock response,” in which two post-
ers changed the course of the field. Asea and Calderwood 
showed elegant studies demonstrating that exogenous HSP70 
was capable of activating macrophages producing a robust 
inflammatory response. This study was later published in 
a prestigious journal (Asea et al. 2000). This observation 
opened an extensive line of investigation regarding the role 
of extracellular HSP in cell signaling and as biomarkers 
that is still very active today (Calderwood et al. 2007a; De 
Maio 2011, 2014; Pockley et al. 2014). The second poster 
by Arispe and De Maio showed that HSC70 (HSPA8) could 
get inserted into planar lipid bilayers, forming a very stable 
ion channel with a conductance regulated by nucleotides. 
The poster was greeted by a very seasoned investigator who 
shouted at one of the presenters during the initial lunch, 
“Are you saying that HSP70 is opening pores? Are you 
crazy?” This observation was later published in the Journal 
of Biological Chemistry after being rejected by a prominent 
journal because it did not have any biological importance 
(Arispe and De Maio 2000). The Arispe and De Maio poster 
did not cause any major impact at that time, perhaps because 
there was no other electrophysiologist at the meeting. How-
ever, two people were very excited about the observation. 
The first one was Michael Tytell, who, many years back, 
showed that a heat shock-like protein was released from 
the squid giant axon and transferred to the glia (Tytell et al. 
1986). The second was Larry Hightower, who previously 
showed, as indicated above, that the protein was associated 
with fatty acids (Guidon and Hightower 1986a, b). Thus, the 
association of HSC70 with membranes could nicely explain 
their original findings.
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The interaction of HSP70s with lipids 
and membranes

Following the pioneering work of Guidon and Hightower, 
two publications appeared. Alder et al. (1990) reported that 
the addition of HSP70 to liposomes produced a leakage of 
the vesicle contents, probably due to the formation of pores. 
Moreover, Negulyaev et al. 1996 found that the addition of 
exogenous HSP70 to patch-clamped membranes activated 
potassium currents. These observations were under the radar 
for many years. It was not until 2000 that Arispe and De 
Maio observed that HSC70 (HSPA8) could form very stable 
and uniform ion conductance channels upon incorporation 
into artificial lipid bilayers. The ion conductance pathway 
displayed a multi-conductance activity by frequently switch-
ing between different open levels. The channel was selec-
tive for cations, and it was not voltage-dependent. Moreover, 
the channel conductivity was opened by ATP and closed 
by ADP (Arispe and De Maio 2000). The HSPA8 channel 
activity was later confirmed by Macazo and White (2014), 
and a similar channel activity was also reported for HSPA1 
(Vega et al. 2008).

An interesting feature of the interaction of HSP70 with 
lipid membranes was their high selectivity for negatively 
charged phospholipids, particularly phosphatidylserine 
(PS) (Arispe et al. 2004; Schilling et al. 2009; Armijo et al. 
2014; Lopez et al. 2016; McCallister et al. 2016). Indeed, 
the interaction of HSP70 (HSPA1) with membranes was 
diminished by exchanging portions of PS with phosphati-
dylcholine (PC) within liposomes (Arispe et al. 2004; Arm-
ijo et al. 2014). Additionally, HSPA8 (HSC70) was found 
associated with PS on the cytosolic side of endosomes 

during microautophagy (Sahu et al. 2011). Other negatively 
charged phospholipids also mediated the interaction of 
HSP70 with membranes, including palmitoyl-oleoyl phos-
phatidylglycerol (POPG) (Armijo et al. 2014; McCallister 
et al. 2016) and bis(monoacylglycero)phosphate (BMP), the 
latter being a major phospholipid of lysosome membranes 
(Kirkegaard et  al. 2010; Mahalka et  al. 2014). In addi-
tion, HSP70 associates with cardiolipin that is present in 
mitochondrial membranes (Mahalka et al. 2014). Indeed, 
mitochondria HSP70 (mtHSP70), also known as mortalin 
(HSPA9), interacts with membranes containing cardiolipin, 
particularly resembling the inner mitochondrial membranes 
(Dores-Silva et al. 2020a). Other studies detected the inter-
action of HSP70 with the glycosphingolipid Gb3 (Gehrmann 
et al. 2008) and sulfogalactosyl ceramide (Mamelak et al. 
2001), which are also negatively charged. HSC70 (HSPA8) 
showed also high selectivity for PS in addition to low affin-
ity for PC (Dores-Silva et al. 2021). In contrast with the 
preceding observations, bacterial HSP70, DnaK, interacted 
with lipid membranes without any phospholipid specificity 
(Lopez et al. 2016), suggesting that the ability of HSP70s to 
associate with membranes may be an ancient characteristic 
of these proteins, and phospholipid specificity was gained 
during evolution.

The distribution of phospholipids within the plasma 
membrane is asymmetric, with PC head exposed out-
side the cells and PS and phosphatidylethanolamine (PE) 
located within the cytosolic side of the membrane. This 
asymmetric distribution is maintained by a complex and 
energy-consuming mechanism directed at correcting the 
potential spontaneous flipping of lipids across the bilayer 
(Leventis and Grinstein 2010). Therefore, cytosolic HSP70 

Table 1   The presence of several HSP on the surface of various cells

New name Alternative name References

HSPA1 HSP70 Ferrarini et al. (1992); Heufelder et al. (1992); Chouchane et al. (1994); Multhoff et al. (1995); Takashima et al. 
(1996); Botzler et al. (1998); Kaur et al. (1998); Camins et al. (1999); Hantschel et al. (2000); Farkas et al. 
(2003); Bausero et al. (2004); Gehrmann et al. (2008); Vega et al. (2008); Sedlackova et al. (2009); Tani et al. 
(2009); Lasunskaia et al. (2010); Bilog et al. (2019)

HSPA5 Grp78, BIP Takemoto et al. (1992); Berger et al. (1997); Delpino and Castelli (2002); Arap et al. (2004); Zhang et al. (2010; 
2013); Kang et al. (2016); Toyoda et al. (2018); Naaby-Hansen and Herr (2010)

HSPA6 HSP70B Noonan et al. (2008)
HSPA8 Hsc70 Mills et al. (2010)
HSPC Hsp90 Ferrarini et al. (1992); Camins et al. (1999); Kakimura et al. (2002); Tsutsumi and Neckers (2007); Fong-ngern 

et al. (2016); Lauwers et al. (2018)
HSPC4 GRP94/ Grp96 Altmeyer et al. (1996); Robert et al. (1999); Toyoda et al. (2018)
HSPC3 Hsp90beta Cid et al. (2004; 2005; 2009); Sidera et al. (2004); Gronthos et al. (2009)
HSPC2 Hsp90alpha Sidera et al. (2004)
HSPD HSP60 Torok et al. (1997); Belles et al. (1999); Naaby-Hansen and Herr (2010)
HSPB Hsp17 Laskowska et al. (2004); Tsvetkova et al. (2002)
HSPB1 Hsp27 Camins et al. (1999); Bausero et al. (2004)
HSPB5 alpha-crystallin Tjondro et al. (2016); Borchman and Tang (1996); Ifeanyi and Takemoto (1991); Tsvetkova et al. (2002)
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could interact with the negatively charged phospholipids 
within the inner side of the plasma membrane, a process 
that could be followed by lipid bilayer insertion. Such an 
event may allow the exposure of some protein regions 
on the cell surface. Indeed, studies by Multhoff showed 
that only partial regions of Hsp70 are displayed on the 
cell surface (Botzler et al. 1998). The amount of HSP70 
inserted into the plasma membrane of tumor cells has been 
reported to be less than 15% of the total cellular concen-
tration of this protein (Gehrmann et al. 2008). Thus, the 
question that emerges is why only a fraction of the very 
abundant HSP70 is associated with the plasma mem-
brane. We have proposed that only substrate-free HSP70 
is capable of translocating into the lipid bilayer (De Maio 
2011). This assumption is based on the observation that 
HSP70 did not appear on the plasma membrane immedi-
ately after heat shock but rather after several hours of post 
heat stress recovery (Vega et al. 2008), perhaps because 
HSP70 is in excess with respect to heat-induced unfolded 
proteins at late times after the insult (Fig. 1). The same 
argument could be used to explain how the constitutive 
HSPA8, which is also very abundant in normal physiologi-
cal conditions, is not ordinarily present on the cell sur-
face, even though this protein has the capacity to interact 
with lipids (Arispe and De Maio 2000; Macazo and White 
2014). Indeed, HSPA8 is likely primary associated with 
substrates, particularly nascent polypeptides, perhaps pre-
venting membrane insertion. The exception is the binding 
of HSPA8 to PS within endosomes as part of the process 
of microautophagy (Sahu et al. 2011). Another argument 
is that HSP70 is present, almost exclusively, on the mem-
branes of cancer cells because these transformed cells have 
a great excess of HSP70 with respect to non-cancer cells 
(Calderwood et al. 2006), which are likely in larger abun-
dance with respect to potential cellular substrates.

Other HSP70s, such as HSPA5 (BIP, Grp78), have also 
been found associated with lipid membranes. HSPA5 was 
detected inserted into the plasma membrane of cancer cells 
(Suzuki et al. 1991; Delpino and Castelli 2002; Zhang et al. 
2010, 2013). In addition, the protein was released outside 
cells (Delpino and Castelli 2002; Zhang et al. 2013). The 
plasma membrane insertion and extracellular export of 
HSPA5 were not very surprising since this protein is a resi-
dent of the ER. However, HSPA5 needs to overcome the 
ER retention signal (KDEL) to reach the cell surface/extra-
cellular environment, which could be a consequence of ER 
stress (Zhang et al. 2013) or any additional factors. HSPA5 is 
unlikely to interact with the internal ER membrane because 
the phospholipid composition of this region does not sup-
port membrane insertion (Dores-Silva et al., 2020b). Sev-
eral domains of HSPA5 have been proposed to be inserted 
into the plasma membrane, particularly the C-terminus 
end (Tsai et al. 2015; Tseng et al. 2019). The interaction of 
HSPA5 with artificial lipid bilayers (liposomes) has con-
firmed membrane insertion, displaying a high affinity for 
negatively charged phospholipids (Dores-Silva et al. 2020b). 
Both HSPA5 N-terminal and C-terminal domains could 
independently interact with phospholipid membranes, but 
not at the same levels as the full-length protein, suggesting 
that the two regions may be involved in membrane insertion 
(Dores-Silva et al. 2020b).

Another HSP70, HSPA9 (mtHsp70, mortalin), that is 
mainly located in the mitochondrial matrix was also found to 
associate with negatively charged membranes, in particular 
cardiolipin, that constitutes approximately 18% of the inner 
membrane and less than 1% of the outer membrane (Zinser 
et al. 1991). Studies using liposomes resembling the com-
position of both inner and outer mitochondrial membranes 
showed that, indeed, HSPA9 has selectivity for the inner 
membrane (Dores-Silva et al., 2020a). A very important 

Fig. 1   Proposed mechanism for the translocation of HSP70 from 
the cytosol into the plasma membrane. Proteins are properly folding 
during normal physiological conditions that become unfolded upon 
heat shock (1) and the expression of HSP70. These newly expressed 

HSP70s bind to unfolded polypeptides (2), resulting in the refolding 
of denatured proteins (3) and an excess of polypeptide-free HSP70 
(4), that is now capable of getting inserted into the plasma membrane 
(5) via the interaction with PS on the inner part of the bilayer
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observation was the interaction of HSP70 with lysosome 
membranes specifically mediated by binding to the nega-
tively charged phospholipid BMP that is a major component 
of this compartment (Kirkegaard et al. 2010; Mahalka et al. 
2014). The association of HSP70 with lysosome membranes 
confers stability to this compartment preventing the leak-
age of lytic enzymes (Nylandsted et al. 2004). Moreover, 
the interaction of HSP70 and lysosomes appears particu-
larly important in conditions of lysosome storage disorders, 
and it has been envisioned as a potential therapeutic target 
(Kirkegaard et al. 2010; 2016; Balogi et al. 2019).

Although all HSP70s displayed the same affinity for nega-
tively charged phospholipids, their insertion into membranes 
is not identical. The interaction of HSPA1 and HSPA8 with 
lipids was different in a liposome aggregation assay, includ-
ing differences in insertion kinetics and the effect of calcium 
and nucleotides (Arispe et al. 2002). Another example is 
the interaction of HSPA9 with POPS liposomes displaying 
a saturation profile that was not observed for HSPA1. Thus, 
the packing of the protein within the lipid bilayer or per-
haps translocation into the lumen of the liposome appears 
to be different among these two HSP70 members (Dores-
Silva et al., 2020a). Thermodynamic parameters measured 
during the insertion into artificial membranes indicated that 
the process is spontaneous but slightly different for HSPA1, 
HSPA5, HSPA8, and HSPA9, involving intramolecular 
interactions, Van der Waals forces, hydrophobic interactions, 
water displacements, and conformational changes (Dores-
Silva et al., 2020a, b, 2021).

Other heat shock proteins also interact 
with membranes

Small HSP, which play a plethora of biological functions 
(Carra et al. 2017), have not escaped from the interaction 
with lipids. The small HSP of bacteria, Hsp17, was initially 
found sedimenting with membranes (Miyake et al. 1993), 
and it was later found to localize with the outer microbe 
membrane (Laskowska et  al. 2004). Other studies have 
shown that alpha-crystallin (HSPB5) interacted with lipid 
membranes (Borchman and Tang 1996; Ifeanyi and Take-
moto 1991). Moreover, this protein oligomerizes at higher 
temperatures driving the insertion into the membranes of 
vertebrate lenses (Tjondro et al. 2016). Interestingly, HSPB5 
membrane association has been correlated with the devel-
opment of cataracts (Boyle and Takemoto 1996; Cenedella 
and Fleschner 1992; Cobb and Petrash 2002). HSPB5 and 
Hsp17 have been reported to stabilize artificial membranes 
mediated by interaction with the polar head group and affect-
ing the hydrophobic region of the lipid bilayer (Tsvetkova 
et al. 2002). Recently, HSPB1 and HSPB5 were found to get 
inserted into liposomes in which the alpha-crystallin domain 

characteristic of these proteins is embedded into the lipid 
bilayer. These two small HSP did not associate with the 
liposomes identically; neither did they display any phospho-
lipid specificity (De Maio et al. 2019). These observations 
are similar to prior observations indicating that the interac-
tion of HSPB5 with lipids was not specific for the type of 
phospholipids (Cobb and Petrash 2002) and was reduced 
by the presence of cholesterol within the membrane (Tang 
et al. 1998). HSPB5 has been found associated with a vari-
ety of membranes, including lenses (Boyle and Takemoto 
1996; Cenedella and Fleschner 1992; Cobb and Petrash 
2002; Friedrich and Truscott 2010), mitochondria (Whit-
taker et al. 2009), and Golgi (Gangalum et al. 2004; Gan-
galum and Bhat 2009). In addition, HSPH5 was observed 
participating in exosome assembly and release (Gangalum 
et al. 2016; Kore and Abraham 2016). Other HSP, such as 
Hsp90 (Hsp90B1), interacted with a mixture of phospho-
lipids stabilizing the membrane (Li et al. 2018). Moreover, 
Hsp90 family proteins penetrated phospholipid membranes 
with high affinity losing part of their alpha-helix conforma-
tion (Li et al. 2019). In addition, Hsp90 (Hsp90A1) inter-
acts with phospholipid membranes with higher affinity for 
unsaturated and negatively charged phospholipids, and the 
affinity increases in the presence of cholesterol (Zhang et al. 
2018). GroESL oligomers also interacted with lipid mem-
branes increasing their stability during heat shock conditions 
(Torok et al. 1997).

Mechanisms of heat shock proteins 
membrane insertion

The mechanisms for HSP membrane insertion are complex, 
poorly understood, and enigmatic, particularly because 
these proteins do not contain major hydrophobic domains 
that could explain their incorporation into lipid membranes. 
Biological membranes have a heterogeneous nature in which 
a hydrophobic center core is made by the assembly of fatty 
acid tails that are surrounded by a less hydrophobic environ-
ment constituted by the polar lipid heads, containing a fair 
amount of water that may create a niche for the initial inser-
tion of proteins into membranes (Wiener, and White 1992). 
Thus, the interaction of proteins with the phospholipid head 
is likely the initiating event for membrane insertion that may 
be followed by a conformational change that facilitates the 
incorporation into the most hydrophobic region of the mem-
brane, which may be part of or secondary to an oligomeriza-
tion process (Wimley et al. 1998). Based on these assump-
tions, it is not surprising that HSP70 displays phospholipid 
head specificity and oligomerizes upon membrane insertion. 
Recently, the interaction of HSP70 with lipid membranes 
has been shown to result in a rearrangement of the hydration 
layer associated with the bilayer (Dhanasekaran et al. 2020). 
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Moreover, the insertion of HSP70s into the lipid membrane 
is a thermodynamically spontaneous process (Dores-Silva 
et al. 2020a; b; 2021). HSPA8 was reported binding to PS 
on the endosome membrane (Sahu et al. 2011), an interac-
tion that was mediated by a cluster of lysine residues on 
the N-terminus end of the proteins, which was confirmed 
by site-directed mutagenesis (Morozova et al. 2016). This 
observation is consistent with increased interaction with PS 
liposomes at pH 5.0 and lower at pH 9.0 (Dores-Silva et al. 
2021).

Prior studies have shown that HSP70 could form dimers 
and oligomers in solution (Guidon and Hightower 1986a; b; 
Benaroudj et al. 1996; Gao et al. 1996; Aprile et al. 2013), 
a process modulated by nucleotides (Kim et al. 1992; Ben-
aroudj et al. 1996) or temperature (Angelidis et al. 1999; 
Kiraly et al. 2020). HSPA1 and HSPA9 in solution were 
observed as homogeneous round complexes of high molec-
ular mass visualized by electron microscopy (Kiraly et al. 
2020). Several models have been proposed for the oligo-
meric complexes, such as binding to the linker between the 
peptide and nucleotide-binding domains (Chang et al. 2008) 
and an antiparallel conformation (Morgner et al. 2015). 
Although no changes in HSP70 secondary conformation 
have been observed upon membrane insertion, oligomers 
of this protein have been detected upon incorporation into 
liposomes (Armijo et al. 2014; Dores-Silva et al. 2020a; 
2021). Moreover, studies using atomic force microscopy 
showed the presence of HSP70 clusters on artificial lipid 
bilayers (Lamprecht et al. 2018). The best evidence of the 
oligomerization of HSP70s upon membrane insertion is 
its ability to form ion conductance channels (Arispe and 
De Maio 2000; Vega et al. 2008; Macazo and White 2014) 
which are assembled by various polypeptide subunits or mul-
tiple transmembrane domains. The oligomerization process 
upon membrane insertion may be enhanced by the fluidity 
of the bilayer as observed using phospholipids with different 
degrees of fatty acid saturation (Armijo et al. 2014; Lampre-
cht et al. 2018). Other saturated lipids such as sphingolipids 
have been reported to be recognized by HSP70 (Gehrmann 

et al. 2008; Mamelak et al. 2001). Interestingly, cancer cells 
display elevated levels of the glycosphingolipid Gb3 on the 
plasma membrane that could explain the presence of HSP70 
on the surface of transformed cells (Gehrmann et al. 2008). 
In this regard, HSP70 have localized within lipid rafts that 
are rich in sphingolipids and cholesterol (Vega et al. 2008; 
Nimmervoll et al. 2015; Lamprecht et al. 2018).

As indicated above, HSPA1, HSPA5, and HSPA8 were 
observed to form oligomers after incorporation into lipid 
bilayers (Armijo et al. 2014; Dores-Silva et al. 2020a, b, 
2021). These oligomeric complexes were stabilized via 
intermolecular disulfide bonds (Dores-Silva et al. 2020a). 
HSPA5 contains two cysteine groups, one at the beginning 
of the N-terminus end and the second at the C-terminus 
end. In contrast, HSPA1 presents five cysteine groups, with 
three at the N-terminus end and two at the C-terminus end. 
HSPA8 has four cysteine groups, two in the nucleotide-
binding domain and two in the substrate-binding domain. 
One of the cysteine groups at the C-terminus end is the 
only common among all HSP70s. There is no evidence that 
these cysteine groups form intramolecular bridges in solu-
tion nor within the reducing cytosolic environment. Thus, 
it is possible that the lipid bilayer may provide an oxidative 
environment allowing the formation of disulfide bridges. 
Independent membrane insertion of the N-terminus end 
domain of HSPA1 and HSPA5 could form dimers but not 
high molecular mass oligomers that were only observed 
with the full-length protein, whereas membrane insertion 
of the C-terminus end did not form dimers or oligomers 
(Dores-Silva et al. 2020a). Based on these observations, 
we assume that a cysteine within the N-terminus end of 
the proteins may be within the right conformation to form 
dimers but not more complex forms. In contrast, we specu-
late that high-mass oligomers observed upon membrane 
insertion are the product of intermolecular disulfide bonds 
between the N-terminus end and the C-terminus domains 
of adjacent polypeptides assembling in an antiparallel con-
formation between tandem repeats (Fig. 2).

Fig. 2   Proposed model for 
the oligomerization of HSP70 
within the lipid bilayer. HSP70 
is assembled into the lipid 
bilayer in an antiparallel oli-
gomeric complex in which the 
N-terminus end is bound to the 
C-terminus end via a disulfide 
bond
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Why are heat shock proteins inserted 
into membranes?

The question that emerges is what is the function of HSP 
membrane association? There is extensive evidence from 
Vigh’s group showing that HSP stabilize biological mem-
branes (Horvath et al. 2008; Torok et al. 2014; Balogi 
et al. 2019), which they proposed as a major sensor for 
thermal stress due to disturbances in membrane fluidity 
(Csoboz et al. 2013; Balogh et al. 2013). Other studies 
have indicated lipid membrane stabilization by HSP90 (Li 
et al.2018, 2019) and HSP70 (Nylandsted et al. 2004). 
The presence of HSP70 on the surface of cancer cells 
may confer protection to these cells as well as provide 
an interface with the immune system (Botzler et al. 1996; 
Multhoff et al. 2020). Indeed, GRP78/HSPA5 has been 
implicated in tumor survival, proliferation, and resistance 
(Pfaffenbach and Lee 2011). In contrast to these obser-
vations, the insertion of HSP into membranes could be 
detrimental. Arispe et al. (2004) showed that exogenous 
addition of HSP70 could trigger cell death. This obser-
vation echoes prior studies showing that an intracellular 
excess of HSP70 was detrimental in the long term, even 
though that an early response was protective (Feder et al. 
1992). These observations suggest that the potential cyto-
toxic effect of HSP70 requires that its expression is tightly 
regulated. Indeed, HSP70 half-life after stress is very short 
(Mizzen and Welch 1988). Moreover, HSP70 has been 
reported as a negative regulator of HSF-1, which is the 
master transcriptional factor for HSP expression (Gomez-
Pastor et al. 2018). In addition, the translation of Hsp70 
mRNA is reduced in cells that contain large amounts of 
HSP70 (Theodorakis et al. 1999). Additionally, Hsp70 
mRNA has a very short half-life (approximately 1 h) after 
thermal stress (Theodorakis and Morimoto 1987), which 
was substantially reduced in cells already containing 
large amounts of HSP70 (Theodorakis et al. 1999). Also, 
changes in Hsp70 mRNA stability have been reported in 
various cell types (DiDomenico et al. 1982; Simcox et al. 
1985; Petersen and Lindquist 1989; Ramos and Pastore 
2001). In echoes of these observations, HSP70 was found 
bound to its own message (Balakrishnan and De Maio 
2006), a situation that may be part of a mechanism for 
the self-limiting expression of this protein, as previously 
proposed (DiDomenico et al. 1982; De Maio 1999). There-
fore, it will not be surprising to learn that interaction with 
membranes may be part of a regulatory mechanism.

HSC70/HSPA8 has been detected on endosome mem-
branes participating in the microautophagy process (Sahu 
et al. 2011; Morozova et al. 2016). Expression of HSP70 
upon heat shock and other stresses was found to increase 
the endocytosis of transferrin and its receptor (Vega et al. 

2010). Moreover, HSP70 accelerates the phagocytotic 
process in macrophages (Vega and De Maio 2005). The 
interaction of HSP70s with subcellular vesicles may be 
necessary for the stabilization of these compartments as 
proposed for the interaction with lysosome membranes 
(Kirkegaard et al. 2010; Nylandsted et al. 2004). Moreover, 
the association of HSP70 with membranes and their intrin-
sic chaperone activity may raise the possibility that they 
could be membrane chaperones involved in the insertion 
of other proteins into membranes. Thus, HSP90, which 
does not display a significant binding to PS liposomes, was 
driven into these vesicles after co-incubation with HSPA8 
(Dores-Silva et al. 2021). Therefore, HSPA8 may associ-
ate with HSP90 in solution prior to membrane associa-
tion. However, whether HSP90 is inserted into the lipid 
bilayer or if it is peripherally bound to membrane HSPA8 
is unknown. Interestingly, HSPA1 is also capable of bring-
ing HSPA90 into membranes, but this ability is not shared 
by HSPA5 or HSPA9.

Another possible function for the presence of HSP70s on 
the plasma membrane may be related to a signal-transducing 
activity for receptors or co-receptors as proposed for GRP78/
HSPA5 (Zhang et al. 2010). Interestingly, HSPA5 has been 
identified as a receptor for various viruses, including Borna 
disease (Honda et al. 2009), Coxsackie, dengue virus sero-
type 2, and Japanese encephalitis (Kottom et al. 2018). 
Recently, HSPA5 was proposed as an alternative site for 
the invasion of SARS-CoV-1 (Chu et al. 2018) and SARS-
CoV-2 (Ibrahim et al. 2020), the latter being responsible for 
the COVID-19 pandemic. Latest evidence has shown that 
HSPA5 forms a complex with the angiotensin-converting 
enzyme 2 (ACE2) and SARS-CoV-2 spike protein (Carlos 
et al. 2021). Moreover, reducing surface HSPA5 diminished 
the membrane presence of ACE2, blocking viral entry. 
Moreover, HSPA5 displayed higher affinity for the spike pro-
tein of the new UK variant of SARS-CoV-2 (VUI202012/01) 
with respect to the original viral protein as indicated by in 
silico analysis (Elfiky and Ibrahim 2021).

HSP protein-membrane insertion could also be part of 
the extracellular export mechanism. With the exception of 
HSPA5 that is located within the ER, other HSP are pre-
sent within the cytosol lacking the consensus signal for the 
classical secretory pathway. Indeed, Hightower and Guidon 
(1989) showed that the release of HSP70 from cells could 
not be blocked by classical secretory pathway inhibitors. 
This early observation was revisited by Hunter-Lavin et al. 
(2004), showing that indeed HSP70 was released from cells 
by a mechanism independent of cell death. However, a 
cloud was raised by Basu et al. (2000), indicating that cell 
lysis after necrosis was the source of circulating HSP70. 
Like many things in science, both reports were valid. De 
Maio and Vazquez (2013) described that HSP70 could be 
released by cell lysis as well as by the non-classical secretory 
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pathway. The preceding has been described for the export 
of several cytosolic proteins (Nickel and Seedorf 2008; De 
Maio 2011). The presence of HSP70 on the plasma mem-
brane could allow this protein to be released via extracellular 
vesicles or exosomes. Indeed, HSP70s have been reported 
as a traditional component of exosomes (Lo Cicero et al. 
2015). Moreover, HSP70 was found inserted into the exo-
some membrane (Gastpar et al. 2005; Vega et al. 2008; 
Gobbo et al. 2016; Chanteloup et al. 2020). In this regard, 
the formation of bleeds from artificial lipid membranes con-
taining HSP70 was observed upon addition of cholesterol to 
the bilayer (Lamprecht et al. 2018). Cell surface HSP70 is 
localized with detergent-resistant membrane microdomains 
or lipid rafts (Vega et al. 2008; Gehrmann et al. 2008), which 
could be the precursor for the formation of exosomes (De 
Maio 2011). Another study has proposed that HSP70 is 
released associated with secretory-like granules (Evdonin 
et al. 2006). The insertion of HSP70 into the lysosome-
endosome membrane could be an alternative mechanism 
for extracellular secretion (Nylandsted et al. 2004; Mam-
bula and Calderwood 2006; Juhasz et al. 2013). Similarly, 
HSPB1 has also been proposed to be secreted via the endo-
lysosome pathway (Rayner et al. 2008; 2009). Extracellular 
HSPs are capable of activating a variety of cellular responses 
that may be mediated by interaction with surface receptors. 
Indeed, several extracellular HSP binding proteins have been 
reported, including LRP/CD91, CD40, CD14, TLRs, c-type 
lectins, and Scavenger receptors, suggesting that there is not 
“a receptor” but a variety of binding partners (Calderwood 
et al. 2007b; De Maio 2014). Interestingly, Shevtsov et al. 
(2014) showed that exogenous HSP70 were captured by 
cells triggering the membrane translocation and subsequent 
export of endogenous HSP70. This observation supports the 
idea that an excess of subcellular HSP70 drives the appear-
ance of this protein on the cell surface as described above 
(Fig. 1).

The proteotoxic and metabolic stress responses work 
against one another. Dai and colleagues proposed that this 
antagonism creates a third mechanism to balance cellular 
homeostasis (Dai, et al. 2015). Tezgin and coworkers have 
postulated that this new mechanism is actually the calorista-
sis network, in which HSF1 acts as a master proximal inte-
grator (Tezgin et al. 2020). The term caloristasis was coined 
to pair with proteostasis, and like the latter, it emphasizes the 
integrative regulatory interactions by molecules like HSF1, 
which is necessary to understand cellular energy homeosta-
sis in normal and stressed cells. Where to search for addi-
tional regulators is the question. One possibility is that the 
selective membrane association described above for HSP70 
interactions with cardiolipin and the association of morta-
lin (HSPA9) with inner mitochondrial membranes could 
position these proteins toward the regulation of oxidative 
phosphorylation. There have suspicions about a connection 

between proteotoxic stress responses and downregulation 
of oxidative phosphorylation almost from the initial discov-
ery of mortalin. Wadhwa and coworkers discussed that the 
yeast mitochondrial reduced form of nicotinamide adenine 
dinucleotide dehydrogenase (the initial electron accep-
tor complex of the mitochondrial electron transport chain 
leading to oxidative phosphorylation) was identified as a 
binding partner of mortalin (Wadhwa et al. 2002). Another 
connection comes through the NF-kB transcription family 
member RelA, also a mitochondrial binding partner of mor-
talin (Johnson et al. 2011). These same authors have sug-
gested that tumor cells have become dependent on RelA for 
rapid growth and survival by virtue of its ability to change 
cells from oxidative phosphorylation to aerobic glycolysis. 
It is frequently said that tumor cells are “addicted” to HSP 
and that they have highjacked a normal defensive maneu-
ver of stressed cells, the acquisition of cytoprotection. This 
defensive response involves conversion of energy transduc-
tion from oxidative phosphorylation to glycolysis to drive 
biosynthesis for the repair and replacement of damaged 
molecules, similar to why tumor cells are thought to switch 
to aerobic glycolysis to drive biosynthesis to support rapid 
proliferation, known as the Warburg Effect (Tezgin et al. 
2020). Thus, mortalin could fulfill its role as a multifunc-
tional integrator of caloristasis and proteostasis through 
its functions as a regulator of oxidative phosphorylation, 
as a central component of the mitochondrial protein import 
machinery, and as part of a damaged protein disaggregat-
ing complex (Iosefson et al. 2012). These observations echo 
early Ritossa’s observations regarding other inducers of the 
stress response pointing toward mitochondrial energy pro-
duction, particularly the electron transport chain.

The ability of HSP to interact with phospholipids and 
their capacity to stabilize membranes could have played a 
role during the evolution of cellular membranes from pro-
tocells to modern cells. Prebiotic fatty acids were likely to 
form small vesicles due to their amphiphilic nature in aque-
ous solutions that could encapsulate chemicals, forcing them 
to react, forming new compounds (Black and Blosser 2016; 
Damer and Deamer 2015). Thus, these vesicles containing a 
lipid bilayer are likely the precursor of protocells (Black and 
Blosser 2016; Segre et al. 2001). A key element for the size 
expansion from the protocell to more complex structures 
was the ability to stabilize the lipid bilayer. Elegant studies 
by Cornell et al. (2019) indicated that primitive membranes 
could be stabilized by the insertion of amino acids. Thus, 
the evolution of the protocell to advanced cells was likely 
mediated by the substitution of fatty acids with glycerophos-
pholipids and amino acids with short peptides. These short 
peptides involved in membrane stabilization were likely to 
give rise to longer polypeptides retaining the membrane pen-
etrating capacity. Therefore, proteins with membrane inser-
tion and stabilizing abilities such as HSP may have played 
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an important role in the evolutionary progression of cells 
(De Maio and Hightower 2020). The capacity of ancestral 
HSP precursors for the interaction with lipid membranes was 
likely preserved during the evolution to modern chaperones. 
In other words, the ability of HSP to get incorporated into 
membranes was not discarded during the process of gaining 
new functions such as promoting protein folding. According 
to this hypothesis, ancient HSP were primary membrane-
stabilizing proteins before they became chaperones.

Concluding remarks

The progress from the early initial observations of the asso-
ciation of HSP with fatty acids toward their detection on the 
cell surface, their insertion into artificial lipid bilayers, and 
our current understanding of the interaction of these proteins 
with membranes has been a remarkable journey, marked by a 
lot of controversies, but full of excitement. The mechanisms 
of membrane insertion and oligomerization have begun to 
be elucidated. The role of these proteins stabilizing mem-
branes under stress conditions, their capabilities of sensing 
stress, modulating the movement of subcellular vesicles, 
their potential participation in cellular membrane biogen-
esis, and their role in several pathologies have created new 
excitement that is likely to increase in the upcoming years. 
However, it is clear that there is still more to be explored.
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