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Abstract. There are two isoforms of the vertebrate 
nonmuscle myosin heavy chain, MHC-A and MHC-B, 
that are encoded by two separate genes. We compared 
the enzymatic activities as well as the subcellular local- 
izations of these isoforms in Xenopus cells. MHC-A 
and MHC-B were purified from cells by immunopre- 
cipitation with isoform-specific peptide antibodies fol- 
lowed by elution with their cognate peptides. Using an 
in vitro motility assay, we found that the velocity of 
movement of actin filaments by MHC-A was 3.3-fold 
faster than that by MHC-B. Likewise, the Wma x of the 
actin-activated Mg 2÷-ATPase activity of MHC-A was 
2.6-fold greater than that of MHC-B. Immunofluores- 
cence microscopy demonstrated distinct localizations 
for MHC-A and MHC-B. In interphase cells, MHC-B 
was present in the cell cortex and diffusely arranged in 
the cytoplasm. In highly polarized, rapidly migrating in- 
terphase cells, the lamellipodium was dramatically en- 

riched for MHC-B suggesting a possible involvement of 
MHC-B based contractions in leading edge extension 
and/or retraction. In contrast, MHC-A was absent from 
the cell periphery and was arranged in a fibrillar stain- 
ing pattern in the cytoplasm. The two myosin heavy 
chain isoforms also had distinct localizations through- 
out mitosis. During prophase, the MHC-B redistrib- 
uted to the nuclear membrane, and then resumed its in- 
terphase localization by metaphase. MHC-A, while 
diffuse within the cytoplasm at all stages of mitosis, also 
localized to the mitotic spindle in two different cultured 
cell lines as well as in Xenopus blastomeres. During te- 
lophase both isoforms colocalized to the contractile 
ring. The different subcellular localizations of MHC-A 
and MHC-B, together with the data demonstrating that 
these myosins have markedly different enzymatic activ- 
ities, strongly suggests that they have different func- 
tions. 

M 
YosiN is a diverse superfamily of molecular mo- 
tors that is currently represented by 12 distinct 
classes based on sequence homology (40). Myo- 

sins of class II (Myosin II) have both a structural and an 
enzymatic role in such diverse cellular processes as muscle 
contraction (15), cell division (11), cell locomotion (47, 7), 
and intracellular movements (11, 25, 30). All myosin II 
proteins share the same basic molecular structure of a 
dimer of heavy chains of ~200 kD noncovalently associ- 
ated with two pairs of light chains of 17 kD and 20 kD. The 
myosin heavy chain dimers form two globular amino-ter- 
minal heads and a-helical coiled-coil rods. The heads con- 
tain an actin-activated ATPase activity while the rods are 
involved in filament formation. Both the heavy chain and 
light chain subunits of myosin exist as isoforms. In this pa- 
per, we report our studies on the function of isoforms of 
the heavy chain of nonmuscle myosin II. 
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There are at least two vertebrate nonmuscle myosin 
heavy chain (MHC) 1 genes (17, 18) that encode separate 
isoforms of the heavy chain, MHC-A and MHC-B. These 
isoforms are 87% identical at the amino acid level in the 
head region of the molecule and only 72% identical in the 
rod (45). Furthermore, there is greater sequence homol- 
ogy within the same isoform across species than between 
isoforms in the same species (45). In addition to significant 
differences in the primary sequence of MHC-A and MHC-B, 
the mRNAs encoding these isoforms are expressed in a 
tissue-dependent manner. In chickens, most tissues ex- 
press different ratios of MHC-A and MHC-B mRNAs, 
with the extremes being spleen and intestinal epithelium 
which express almost exclusively the MHC-A isoform, and 
brain tissue which is enriched in MHC-B (18). Moreover, 
within a given tissue, different cell types may express dif- 
ferent nonmuscle MHC II isoforms (29). Species differ- 
ences in the relative expression of MI-IC-A and MHC-B 

m 

1. Abbreviat ions used in this paper: MOPS, 4-morpholinepropanesulfonic 
acid; MHC-A, nonmuscle myosin heavy chain A isoform; MHC-B, non- 
muscle myosin heavy chain B isoform. 
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also exists as illustrated by Xenopus which, in contrast to 
avians, expresses mostly MHC-A and a small amount of 
MHC-B in all tissues examined (Kelley, C.A., unpublished 
observations). It is also interesting to note that in inverte- 
brates, such as Dictyostelium, Acanthamoeba, Drosophila, 
and yeast, only one nonmuscle MHC isoform has been 
found (39). The expression of two different MHC isoforms 
in vertebrate nonmuscle cells is thus a recent evolutionary 
event raising the question as to whether MHC-A and 
MHC-B serve distinct functions. 

Myosin function in nonmuscle cells was previously ad- 
dressed in several studies by examining its subcellular dis- 
tribution. Fujiwara and Pollard (9) identified myosin in cy- 
toplasmic stress fibers as well as in the cleavage furrow 
and mitotic spindle of HeLa cells. However, the mitotic 
apparatus was stained much less intensely than the cleav- 
age furrow, raising questions as to whether myosin was re- 
ally concentrated in the mitotic apparatus. In contrast, 
Aubin et al. (1) found no myosin in the spindle but did 
find myosin in the cleavage furrow of PtK2 cells. Subse- 
quently, Sanger et al. (38) injected fluorescent analogues 
of the myosin light chains into PtK2 cells to follow changes 
in the myosin distribution throughout the cell cycle. In in- 
terphase cells, myosin colocalized with stress fibers, while 
during mitosis a diffuse staining pattern in the spindle was 
observed. So, while there is little doubt as to the general 
distribution of nonmuscle myosin in interphase cells, it re- 
mains unclear as to the possible involvement of myosin in 
the mitotic spindle. 

More recent studies have reported on the specific local- 
ization of the nonmuscle myosin heavy chain isoforms, 
MHC-A and MHC-B, within cells. Antibodies to brain 
myosin II (27) and MHC-B (5) stained the motile leading 
edge of growth cones in primary cultures of rat dorsal root 
ganglion cells. MHC-B colocalized with F-actin at the 
leading edge of growth cones as well as in the periphery of 
nonneuronal cells in the same dorsal root ganglion cul- 
tures. In contrast, MHC-A was confined to the perinuclear 
region of neuronal cell bodies which also showed a diffuse 
staining of MHC-B and actin. Antibodies to MHC-A also 
stained stress fibers in nonneuronal cells. Cheng et al. (5), 
the authors of the MHC-B study, speculated that MHC-B 
is probably involved in leading edge extension. However, 
a more recent study on the localization of MHC-A and 
MHC-B in cultured neurons suggests a role of MHC-B in 
retraction, not protrusion, of the growth cone periphery 
(35). Maupin et al. (26) examined two different tumor cell 
lines and found both MHC-A and MHC-B in small spots 
along stress fibers in interphase cells and a low concentra- 
tion of diffuse MHC-B in the cortex of lamellipodia where 
MHC-A was not observed. MHC-A and B also colocalized 
in small spots in the cortex and in the cleavage furrow dur- 
ing mitosis, but no staining of the mitotic spindle was ob- 
served. 

In addition to the generation of nonmuscle myosin 
heavy chain isoforms by different genes, the MHC-B pre- 
mRNA can be alternatively spliced to generate MHC-B 
isoforms with insertions and/or deletions of cassettes of 
amino acids near the ATP-binding region or the actin- 
binding region (45). We previously showed that in Xeno- 
pus, the majority (>90%) of the nonmuscle myosin in all 
cells is MHC-A, although a small amount of MHC-B, 

which constitutively contains the insert near the ATP- 
binding region, is also expressed (22; Kelley, C.A., unpub- 
lished results). This MHC-B isoform, but not the MHC-A 
isoform, was found to be serine-phosphorylated within the 
insert by p34 ~c2 kinase during meiosis in Xenopus oocytes 
(22). While the exact function of this phosphorylation is 
not known, these results demonstrated the potential for 
differential regulation of MHC-A and MHC-B and sug- 
gested that they may have different functions. 

To further explore the possibility that MHC-A and 
MHC-B function differently in cells, we have purified and 
biochemically characterized these isoforms in vitro and we 
have found significant differences in enzymatic activity. 
We have also performed fluorescence immunolabeling 
studies using isoform-specific antibodies to precisely lo- 
cate the myosin isoforms in interphase and mitotic cells. 
Our results demonstrate that these myosin isoforms have 
distinct distributions in both interphase and mitotic Xeno- 
pus A6 and XTC cells as well as in blastula-stage embryos, 
including the unique localization of MHC-A in mitotic 
spindles. 

Materials and Methods 

Tissue Culture 
Xenopus A6 and XTC cells were grown at 25°C in Leibovitz L-15 medium 
diluted to 61% with water and supplemented with 10% FBS as described 
previously (43). 

Antibody Production and Affinity Purification 
Polyclonal rabbit antibodies specific for MHC-A and MHC-B were gener- 
ated against synthetic peptides corresponding to unique amino acid se- 
quences in the nonmuscle MHC isoforms. One MHC-B antibody (MHC-B 
(C)) was generated against the sequence SSSRSGRRQLHI which corre- 
sponds to an amino acid sequence near the carboxyl terminus of the 
chicken MHC-B sequence beginning at amino acid 1937. The Xenopus se- 
quence differs by only one amino acid: the H is replaced by a Q. Another 
MHC-B antibody (MHC-B (I)) was raised against the sequence TESP- 
KAIKHQSGLLY which corresponds to an inserted sequence near the 
ATP-binding region in the Xenopus MHC beginning at amino acid 212. 
Both of these antibodies were characterized previously (22). 

Three different MHC-A antibodies were used. One was generated 
against the peptide sequence GKAEAGDAKATE corresponding to the 
carboxyl-terminal 12 amino acids of chicken MHC-A as described previ- 
ously (45). A second MHC-A antibody was made against the peptide se- 
quence DLDGKADSGDSKFVD, which was obtained from a partially 
cloned and sequenced Xenopus MHC-A (Conti, M.A., unpublished re- 
sults) and corresponds to the carboxyl-terminal 15 amino acids of the 
heavy chain (MHC-A (C)). The third MHC-A antibody used was gener- 
ated against human platelet myosin (19). 

Conjugation of the peptides to keyhole limpet hemocyanin, immuniza- 
tion of rabbits, and affinity purification of the antisera were performed as 
described previously (20). 

Myosin Purification 
MHC-A and MHC-B were purified from 20 flasks (T175cm 2) of confluent 
Xenopus A6 cells. The cells were scraped from each flask with 0.20 ml of 
an extraction buffer containing 20 mM MOPS, pH 7.4, 60 mM KCI, 4 mM 
EDTA, 1 mM DTI?, 10 mM MgCI2, 5 mM ATP, 1.0% NP-40, 0.1 mM phe- 
nylmethane sulfonylfluoride (Sigma Chem. Co., St. Louis, MO), and 50 
p,g/ml leupeptin (Boehringer Mannhcim Corp., Indianapolis, IN). The cell 
lysates were incubated on ice for 1 h followed by centrifugation at 100,000 g 
for 5 min at 4°C. The supernatants were recovered and incubated with the 
carboxyl-terminal MHC-B antibody overnight at 4°C. Pansorbin (Calbio- 
chem-Novabiochem Corp., La Jolla, CA) was added to the immunopre- 
cipitates for 2 h and the Pansorbin-antibody-MHC-B complexes were pel- 
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leted by centrifugation at 7,000 g for 5 min. The supernatants were 
removed for purification of MHC-A as described in the following para- 
graph. Each pellet was resuspended in 0.50 ml of extraction buffer and 
washed four times in a buffer containing 0.5 M NaCI, 50 mM MOPS, pH 
7.4, and 0.1 mM EGT A to remove nonspecificaUy bound proteins. After 
the last wash, the pellets were resuspended in 0.2 ml of wash buffer con- 
taining a 50-fold molar excess of the peptide used to generate the MHC-B 
antibody. After 2 h the samples were centrifuged at 14,000 g for 5 rain. 
The pellets contained Pansorbin bound to peptide-complexed antibody 
and the supernatants contained the released MHC-B and excess peptide. 
The MHC-B was concentrated and the peptide removed by repeated 
washing in a Centricon 100 (Amicon, Beverly, MA) or by dialysis against 
Aquacide (Calbiochem), to reduce the volume, followed by dialysis 
against several changes of wash buffer described above. 

The supernatant generated following the pelleting of the Pansorbin- 
antibody-MHC-B complex was incubated overnight at 4°C with the car- 
boxyl-terminal Xenopus MHC-A antibody. MHC-A was purified exactly 
as described above for MHC-B except that the peptide used to elute the 
MHC-A from the antibody corresponded to the carboxyl-terminal 15- 
amino acid sequence of MHC-A. 

Gel Electrophoresis and lmmunoblotting 
Gel electrophoresis was performed in SDS-5% polyacrylamide and 0.065% 
bisacrylamide or SDS-12.5% or 8-16% polyacrylamide with 0.13% bisacryl- 
amide using the buffer system of Laemmli (23). The proteins in the gels 
were either stained with Coomassie Brilliant blue or electrophoretically 
transferred to Immobilon-P (Millipore, Bedford, MA) and immuno- 
stained with affinity-purified antibodies as described (20). 

Assays for Myosin Activity 
The sliding actin filament assay was performed and analyzed as described 
previously (20) with two modifications: (1) myosin was introduced into the 
assay as monomers in a buffer containing 0.5 M NaCI, 50 mM MOPS, pH 
7.4, and 0.1 mM EGTA and (2) the motility buffer contained 80 mM KCI, 
20 mM MOPS, pH 7.2, 5 mM MgCI 2, 0.1 mM EGTA, 1 mM ATP, 50 mM 
DTT, 0.2 IzM tropomyosin, 2.5 mg/ml glucose, 0.1 mg/ml glucose oxidase, 
and 0.02 mg/ml catalase. 

Actin-activated Mg+2-ATPase activities were assayed in a final volume 
of 0.1 ml containing 0.05-0.10 mg/ml myosin, 50 mM KCI, 10 mM MgCl 2, 
20 mM MOPS, pH 7.0, 0.2 mM EGTA, 1 mM [-/-32p]ATP, 2 mM DTT in 
the absence or presence of various concentrations of F-actin from 0.5 to 
45 p,M at 37°C. Aliquots were removed at various times and Pi release was 
measured as described by Pollard and Korn (33). The maximum ATPase 
activity (Vmax) and the actin concentration at 1/2 Vmax (KATPas¢) were de- 
termined by fitting the data to the Michaelis-Menton equation. 

Confocal lmraunofluorescence Microscopy 
Xenopus A6 and XTC cells were cultured on glass coverslips in growth 
medium as described above and were processed for indirect immunofluo- 
rescence by either of two methods (2). Briefly, method 1 involved simulta- 
neous fixation and permeahilization by immersion of cells in 1% formalin 
in methanol at -20°C for 10 rain, followed by air drying, rehydration in 
PBS, and treatment of the cells with 100 mM NH4C1 for 20 rain (to reduce 
background fluorescence due to formalin). For method 2, cells were fixed 
in 3.7% formalin in growth medium for 20 rain, fixed for an additional 20 
min in 3.7% formalin in PBS, perrneabilized in 100% acetone for 30 s at 
-20°C, air dried, rehydrated in PBS, and treated with 100 mM NI-LCI as 
before. In some experiments, the second method was modified to include 
0.1% glutaraldehyde in the fixative (3.7% formalin, 0.1% glutaraldehyde) 
and/or cells were permeabilized with a 10-min incubation in 0.2% TX-100 
in PBS instead of acetone. When glutaraldehyde was included in the fixa- 
tive, free aldehydes were reduced after fixation (and washing of the cells 
in PBS) by two incubations in 1 mg/ml sodium borohydride, for 10 min 
each. In all experiments, after fixation, nonspecific binding of antibodies 
was blocked by incubation in blocking buffer (1% BSA, 50 mM L-lysine, 
0.01% thimerosal in PBS, pH 7.4) for 30 rain. Cells were incubated in pri- 
mary antibodies diluted either 1:20 (all antibodies to myosin) or 1:50 (anti- 
tubulin; Amersham Life Sciences, UK) and in fluorophore-conjugated 
secondary antibodies (Molecular Probes, Eugene, OR) at a concentration 
of 15 ~g/ml. All antibodies were diluted in blocking buffer, incubations 

were for 1.5 h at 37°C, and cells were washed five times for 5 rain each in 
PBS between incubations and after the secondary antibody incubation. In 
double-labeling experiments, cells were incubated in anti-tubulin antibod- 
ies either before, simultaneously, or after myosin antibodies (all permuta- 
tions were tested and did not influence the staining patterns). F-actin was 
detected with rhodamine phalloidin (Molecular Probes) after the second 
antibody incubation, according to the manufacturers'protocol. In filament 
disruption experiments, F-actin was depolymerized by exposure of the 
cells to 15 txg/ml cytochalasin B for 30 rain or microtubules were depoly- 
merized by treatment of cells with 30 t~g/ml nocodazole for 1 h (cytochala- 
sin B and nocodazole were added to the cells in growth medium before 
fixation). After the final wash in PBS, cells were mounted in fluorescence 
mounting medium (Kirkegaard and Perry, Gaithersburg, MD) and were 
viewed on a Zeiss Axiovert 135 inverted microscope with a ×63 neofluor 
objective and a Zeiss LSM 410 confocal attachment. All micrographs were 
taken with identical contrast and brightness settings. 

Confocal immunofluorescence microscopy of methanol or formalin- 
glutaraldehyde fixed 6--8 h Xenopus blastulae was performed as previ- 
ously described (12) using antibodies to chicken or Xenopus MHC-A and 
MHC-B (MHC-B(I) and MHC-B(C)) and rhodamine-conjugated anti-  
rabbit IgG (Cappell, Malvern, PA). Affinity-purified antibodies were 
dilutedl/25-1/200 in TBS containing 0.1% NP-40 and 1% BSA to reduce 
nonspecific background. Control embryos were incubated in the absence 
of primary, or in comparable dilutions of normal rabbit serum, Embryos 
were cleared in benzyl alcohol:benzylbenzoate (1:2) and mounted as de- 
scribed (12). Embryos were examined using a Nikon Optiphot with a Bio- 
rad MRC-600 laser-scanning confocal microscope, Optical section thick- 
nesses were 1-2 Ixm. 

Results 

Purification of MHC-A and MHC-B from Xenopus 
A6 Cells 
We used isoform-specific, affinity-purified antibodies to 
purify enzymatically active MHC-A and MHC-B from cul- 
tured Xenopus A6 cells. MHC-B was immunoprecipitated 
from a total cell extract and subsequently eluted from the 
antibody with the synthetic peptide used to generate the 
antiserum. The extract supernatant remaining after deple- 
tion of MHC-B was incubated with an MHC-A specific anti- 
body, and, following immunoprecipitation, the MHC-A 
was similarly eluted from the antibody with the cognate 
peptide antigen. Isoform purity was analyzed by 12.5% 
and 5% SDS-PAGE and Coomassie-blue staining as well 
as by immunoblotting (Fig. 1). Fig. 1 A, lane 2 shows the 
protein profile of the A6 cell extract from which the myo- 
sin isoforms were purified. Purified MHC-A (Fig. 1 A, 
lane 3) contains one major band at 200 kD, which is the 
predicted molecular weight of the myosin heavy chain. 
The 20- and 17-kD light chains are barely visible at this 
level of protein loading. In addition to MHC-A at 200 kD, 
a minor band is seen at N50 kD that occasionally copuri- 
ties with MHC-A and MHC-B and comigrates with the af- 
finity-purified IgG heavy chain (data not shown). The 
presence of this carboxyl-terminal antibody did not effect 
myosin enzyme activity (data not shown) and thus further 
purification was not required. Purified MHC-B appears to 
be completely free of other proteins (Fig. 1 A, lane 4). Xe- 
nopus A6 cell extracts, separated to a greater extent in 
SDS-5% polyacrylamide gels, show one major band at 200 
kD (Fig. 1 B, lane 2). We previously identified this band as 
MHC-A (22). The amount of MHC-B in these cells is too 
low to be detected by Coomassie-blue staining of whole 
cell extracts. Purified MHC-A (Fig. 1 B, lane 3) migrates 
as a single band with a slightly faster relative mobility than 
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Figure 1. Analysis of purified MHC-A and MHC-B. (A) Coomassie-blue stained SDS-12.5% polyacrylamide gel of MHC-A and MHC- 
B purified by immunoprecipitation from A6 cell extracts, and then released from the antibodies with the peptide antigen as described in 
Materials and Methods. (Lane 1) Molecular weight standards; lane 2, whole A6 cell extract; lane 3, purified MHC-A; lane 4, purified 
MHC-B. (B) SDS-5% polyacrylamide gel analysis of purified MHC-A and MHC-B. Lanes 1-4 contain the same samples as those indi- 
cated for A, lanes 1--4. Lane 3 shows one major band for MHC-A at ~200 kD while MHC-B (lane 4) contains two bands. (C and D) Im- 
munoblots of SDS-5% polyacrylamide gels. Lanes 1-4 contain the same samples as in A, lanes 1-4. The proteins, which were transferred 
to Immobilon, were probed with either an antibody to the Xenopus MHC-A carboxyl-terminal peptide (MHC-A (C), C) or probed with 
the antibody to the Xenopus MHC-B inserted region (MHC-B (I), D). 

that of purified MHC-B (Fig. 1 B, lane, 4) which migrates 
as a doublet. Previously, we observed this doublet pattern 
in Xenopus XTC cells (22) and speculated that the two 
bands probably represent the products of duplicated 
genes, a common occurrence in Xenopus, and previously 
demonstrated for the MHC-B gene (4). 

The purified myosins were further characterized by im- 
munoblotting of proteins separated in SDS-5% polyacryl- 
amide gels. Fig. 1 C shows the immunoreactivity of the 
proteins with an antibody to the carboxyl terminus of Xeno- 
pus MHC-A (MHC-A (C)). The antibody recognizes one 
band at ~200 kD in the whole cell extract (lane 2) as well 
as the purified MHC-A (lane 3). In contrast, the antibody 
does not recognize any molecular weight standards (lane I )  
or purified MHC-B (lane 4). Fig. 1 D shows the immu- 
noreactivity of the proteins to a MHC-B-specific insert 
antibody (MHC-B (I)). This antibody recognizes a 200-kD 
band in the whole cell extract (lane 2) as well as in the pu- 
rified MHC-B (lane 4). Both bands of purified MHC-B de- 
tected by Coomassie-blue staining (Fig. 1 B, lane 4) were 
recognized by immunoblotting, despite the poor resolu- 
tion of these two bands after transfer (data not shown). It 
is particularly noteworthy that the MHC-A and MHC-B 
antibodies did not display any cross-reactivity, as demon- 
strated by Fig, 1 C, and D and that the purified MHC-A is 
completely free of MHC-B and the MHC-B is not contam- 
inated with any MHC-A. 

Comparison of Enzymatic Activities of MHC-A 
and MHC-B 

We compared the velocity of movement of actin filaments 
by purified MHC-A and MHC-B using an in vitro sliding 
actin filament assay. Fig. 2 shows the velocity distributions 
for actin filaments being propelled by either MHC-A (open 
bars) or MHC-B (hatched bars). MHC-A moved actin fila- 
ments at an average velocity of 0.723+_0.166 ~m/s which 
was 3.3-fold faster than the velocity of movement of actin 
filaments by MHC-B (0.216+_0.028 Ixm/s). 

Purified MHC-A and MHC-B were further character- 
ized by measuring actin-activated MgZ+-ATPase activities 
(Table I). These activities were measured in the presence 
of various concentrations of F-actin from 0.5 to 45 IxM. 
Vrnax and KATPase were determined from double-reciprocal 
plots. Similar to the results of the in vitro motility assay, 
the Vr~, of the actin-activated ATPase activity for MHC-A 
(0.746+_0.28 s -1) was 2.6-fold higher than that of MHC-B 
(0.290+_0.058 s-i). Both myosins showed similar affinities 
for actin (KAzPas~ = 16.5 ~M for MHC-A and 20.8 IxM for 
MHC-B). 

SubceUular Localization of MHC-A and MHC-B in 
Interphase Cells 

For further clues of the specific functions of MHC-A and 
MHC-B, we examined the subcellular distributions of 
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Figure 2. Translocation of actin filaments by MHC-A and MHC-B 
in a sliding filament motility assay. Histograms of the velocity dis- 
tributions for actin filaments sliding over MHC-B (hatched bars) 
or MHC-A (open bars). The average velocities+-the standard de- 
viations are shown in the upper right comer and are expressed as 
izm/s. The results shown are from one experiment. However, sim- 
ilar results were obtained in at least four separate experiments 
using four different preparations of both MHC-A and MHC-B. 

these isoforms in cul tured Xenopus cells. The  ant ibodies  
used, MHC-B (C), M H C - B  (I), and M H C - A  (C), were de- 
scribed under  Mater ia ls  and Methods.  In Fig. 1 we demon-  
s t ra ted  the specificity of the ant ibodies  for the M H C - A  
and MHC-B isoforms on low percentage  polyacrylamide  
gels. F o r  immunostaining,  we first de te rmined  the specific- 
ity of the ant ibodies  for myosin,  compared  to o ther  cellu- 
lar proteins,  by immunoblo t t ing  cell extracts e lec t ropho-  
resed in SDS 8-16% acrylamide gradient  gels. Fig. 3 shows 
that  both  of  the M H C - B  specific ant ibodies  (MHC-B (I) 
and MHC-B (C)) and the M H C - A  specific an t ibody react 
only with myosin. The specificity of  the M H C - A  and 
M H C - B  ant ibodies  al lowed us to look at the subcellular  
dis tr ibut ion of these isoforms in cul tured Xenopus A6 and 
XTC cells. In addit ion,  we examined their  localizat ion in 

• + 2  1 Table L Kinetics of the Actin-acttvated Mg -ATPase Activ'ty 
of MHC-A and MHC-B 

Myosin isotype 

Parameter measured MHC-A MHC-B 

Vma x (s -~) 0.746 - 0.28 0.290 -+ 0.058 
KATpa~ (p.M) 16.5 20.8 

The Mg+2-ATPase activity of phosphorylated myosin in the absence of acfin was sub- 
tracted from each data point. The results represent the average of three separate exper- 
iments performed with three different myosin preparations. The data were computer 
fitted to the Michaelis-Menton equation by nonlinear regression. The means plus or 
minus the standard deviations are shown. 

Figure 3. Characterization of the MHC-A and MHC-B antibod- 
ies used for immunolocalization. Immunoblots of A6 cell extracts 
electrophoresed in 8-16% polyacrylamide gradient gels. Lane 1, 
immunoreactivity of the extract with the MHC-B insert antibody 
(MHC-B (I)); Lane 2, extract probed with MHC-B carboxyl-ter- 
minal antibody (MHC-B (C)); Lane 3, reactivity of the extract with 
the Xenopus MHC-A carboxyl-terminal antibody (MHC-A (C)). 

re lat ion to microfi laments  and microtubules  by double-  
labeling the cells with ei ther  rhodamine  phal loidin or  anti- 
bodies  to tubulin, respectively.  

Fig. 4 a shows the colocalization of M H C - A  with actin. 
Act in  is present  in the cell cortex as well as in stress fibers 
within the cytoplasm. M H C - A  is notably  absent  from the 
cell cor tex and is found to par t ia l ly  colocalize with stress 
fibers within the cytoplasm as well as have a fibril lar stain- 
ing pa t te rn  apar t  f rom stress fibers. In  contrast ,  as shown 
in Fig. 4 b, MHC-B colocalizes with F-act in in the cell pe-  
r iphery  (arrows), a region in which M H C - A  is absent,  and 
displays a diffuse staining pa t te rn  within the cytoplasm, an 
area  where  M H C - A  is present  as fi laments.  Al though  the 
yellow fluorescence of the actin f i laments in Fig. 4 b ap- 
pears  to indicate some colocalization of MHC-B with stress 
fibers, this is because the red stress fibers are imaged 
against  a diffuse background of  green MHC-B fluores- 
cence. There  is no actual  colocalization, just  coincident  su- 
per imposi t ion.  
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Figure 4. Immunofluorescence localization of MHC-A and MHC-B in cultured Xenopus A6 cells. Cells were fixed as described under  
Materials and Methods and prepared for indirect confocal immunofluorescence microscopy using the MHC-A(C)  or MHC-B(I)  affin- 
ity-purified antibodies. Cells were double labeled with ei ther rhodamine phalloidin to stain F-actin or anti-tubulin antibodies to stain 
microtubules. Myosin staining is green, actin or tubulin staining is red, and the overlap is yellow. (a) Cells were fixed by method 2 and 
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Because the staining pattern for MHC-A did not corre- 
late 100% with the stress fiber staining pattern, we looked 
to see if there was any component of the MHC-A staining 
that colocalized with microtubules. Fig. 4 c shows a Xeno- 
pus A6 cell double stained for MHC-A and microtubules. 
Some components of the MHC-A staining pattern are co- 
incident with microtubules while others are not. The juxta- 
position of microtubules and MHC-A is suggestive of an 
interaction between MHC-A and microtubules or F-actin 
and microtubules. This is particularly evident at higher 
magnification (e), where MHC-A and microtubules ap- 
pear to be in contact (at the level of resolution of the fluo- 
rescence microscope which is N0.2 Ixm) in certain regions 
(arrow) while in other regions they follow parallel but sep- 
arate paths within 1 txm of each other. MHC-B (Fig. 4 d) 
also has a localization distinct from microtubules. The cell 
in d has adopted a highly polarized morphology which is 
characteristic of rapidly migrating cells. The broad lamelli- 
podium at the front of the cell is dramatically enriched for 
MHC-B. This is particularly striking since the lamellipo- 
dium is the thinnest region of the cell (<2 IxM). There is 
no diffuse cytoplasmic staining of MHC-B as was seen in 
the cell in Fig. 4 b. This suggests that one event in the po- 
larization of these cells must be a change in MHC-B distri- 
bution from the cell cortex and cytoplasm to the leading 
edge resulting in the spatial asymmetry of MHC-B shown 
in Fig. 4 d. This localization reflects a possible involvement 
of MHC-B in the extension and/or retraction of protru- 
sions in locomoting cells. 

Effects of  Microfilament and Microtubule Disruption 
on MHC-A and MHC-B Localization 

To confirm the colocalization of MHC-A and MHC-B with 
microfilaments, but not microtubules, A6 cells were 
treated with either cytochalasin B to depolymerize F-actin, 
or nocodazole to disassemble the microtubule network, 
and then doubled stained for either MHC-A or MHC-B 
together with rhodamine phalloidin or anti-tubulin anti- 
bodies. When cells were treated with cytochalasin B, the 
microfilament system completely collapsed resulting in an 
increased concentration of G-actin in the cytoplasm, par- 
ticularly surrounding the nucleus (data not shown), and 
the presence of highly localized loci of residual F-actin 
(detected by phalloidin) present throughout the cell but 
most abundant at the periphery of the cell (Fig. 5 b). The 
MHC-A filaments in cells also collapsed to the perinuclear 
region on cytochalasin B treatment while the microtubules 

were unperturbed (Fig. 5 a). These results demonstrate 
that MHC-A is associated with actin filaments and that de- 
polymerization of F-actin leads to the collapse of the asso- 
ciated MHC-A filaments. Cytochalasin B also disrupted 
MHC-B localization but in a manner distinct from its ef- 
fect on MHC-A. When A6 cells were treated with cytocha- 
lasin B, actin filaments were mostly depolymerized while 
the MHC-B collapsed with residual F-actin into spots that 
were localized primarily in the cell periphery (Fig. 5 b). 
This population of collapsed MHC-B probably represents 
that which localized in the cell periphery with actin in un- 
treated cells (Fig. 4 b). The small amount of MHC-B seen 
in the center of the cell shown in Fig. 5, b and c most likely 
represents the diffuse, soluble MHC-B seen in untreated 
cells such as that shown in Fig. 4 b. The actin population 
which collapses to the nucleus together with MHC-A ap- 
pears to be completely depolymerized and is therefore not 
detected by phalloidin. Fig. 5 c shows that the microtu- 
bules are intact in cells treated with cytochalasin B and the 
collapsed spots of MHC-B, which also contain F-actin (as 
shown in Fig. 5 b), are localized at the tips of microtubules. 

When A6 cells are treated with nocodazole, the microtu- 
bules are depolymerized, but the actin cytoskeleton, as 
well as the MHC-A and MHC-B localizations, are undis- 
turbed (data not shown). This is further evidence for the 
colocalization of MHC-A and MHC-B with microfila- 
ments, but not microtubules, within the cell. 

SubceUular Localization of  MHC-A and MHC-B in 
Mitotic Cells 

Fig. 6, a-c, summarizes the pattern of staining during vari- 
ous stages of mitosis in A6 cells that were double labeled for 
MHC-A or MHC-B (using the MHC-A(C) and MHC-B(I) 
antibodies) and microtubules. Fig. 6 a shows that MHC-A 
is diffuse in the cytoplasm and concentrated mainly at the 
spindle poles (arrow) in early prophase. In metaphase as 
shown in Fig. 6 b, ant i -MHC-A staining, like that reported 
previously for total myosin (9, 38), is observed within the 
mitotic spindle as well as the cytoplasm. MHC-A fluores- 
cence is punctate in the region of the spindle with particu- 
larly bright spots of fluorescence in close association with 
spindle microtubules (Fig. 6 b, arrows). Similar staining 
was seen using two additional MHC-A antibodies (see 
Materials and Methods) in cultured A6 and XTC cells. No 
spindle staining was ever seen in A6 or XTC cells, with ei- 
ther of the MHC-B specific antibodies (Fig. 6 e). By early 
telophase, the MHC-A staining was confined to the con- 
tractile ring as shown in Fig. 6 c. 

stained for MHC-A and actin. Actin is present in the periphery of the cell as well as in stress fibers in the cytoplasm. MHC-A is notably 
absent from the periphery and is present as filaments, partially colocalizing with stress fibers, within the cytoplasm; (b) cells were fixed 
by method 2 and stained for MHC-B and actin. MHC-B colocalizes with F-actin in the cell periphery (arrows) and has a diffuse (soluble) 
staining pattern within the cytoplasm; (c) cells were fixed by method 1 and stained for MHC-A and tubulin. Some components of the 
MHC-A staining pattern are coincident with microtubules while others are not. MHC-A and microtubules are in close juxtaposition but 
do not cotocalize; (d) cells were fixed by method 1 and stained for MHC-B and tubulin. MHC-B has a localization distinct from that of mi- 
crotubules. This highly polarized cell has adopted a morphology characteristic of rapidly migrating cells. The broad lameUipodium at the 
front of the cell is dramatically enriched for MHC-B, particularly since the lamellipodium is the thinnest region of the cell (<2 p.M). (e) 
high magnification image of a cell fixed by method 1 and stained for MHC-A and microtubules. At this magnification, MHC-A fila- 
ments can be seen to run in close apposition with microtubules, often appearing to be in actual contact for distances greater than 50 p~M 
(see arrow). It is also evident that although the two filaments are closely apposed, they do not actually colocalize. Bars: (a and c) 25 I~m; 
(b, d, and e) 10 txm. 
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Fig. 6, d-f summarizes the sequence of MHC-B and mi- 
crotubule rearrangements during mitosis. In the transition 
from interphase (Fig. 4 b) to prophase (Fig. 6 d), MHC-B 
moved from its cortical and diffuse cytoplasmic location to 
the nuclear envelope. The microtubules in this prophase 
cell (Fig. 6 d) are not yet assembled into the mitotic spin- 
dle. In the cell shown in Fig. 6 e, the spindle is fully assem- 
bled and the shadow of chromosomes can be seen midway 
between the spindle poles indicating that this cell is in 
metaphase. Interestingly, the MHC-B appears to have re- 
sumed its interphase localization. There is no indication of 
any spindle staining with the anti-MHC-B antibodies, in 
contrast to what was seen with our ant i -MHC-A antibod- 
ies (compare Fig. 6, b and e). Fig. 6 f shows that in late te- 
lophase MHC-B, similar to MHC-A (Fig. 6 c), is found in 
the contractile ring. 

Myosin Heavy Chain A Is Localized in the Mitotic 
Spindles of 6-8 h Xenopus Blastomeres 

We also examined the subcellular distribution of myosin iso- 
forms in 6-8 h Xenopus embryos. A consistent pattern was 
not observed in blastulae stained with either MHC-B anti- 
sera (results not shown). However, most cells exhibited a 
punctate cytoplasmic staining that was clearly distinct 
from that observed with normal rabbit serum. In contrast, 
affinity-purified MHC-A antibodies (Fig. 7) exhibited bright 
staining in both interphase (A) and mitotic (B) cells. 
MHC-A containing foci were clustered into two perinu- 
clear aggregates, corresponding to the characteristic loca- 
tion of the centrosomes in these cells (13). In mitotic cells, 
a cloud of MHC-A containing foci was clustered around 
the mitotic spindle and astral microtubules. The spindle 
has a similar staining pattern to that observed for MHC-A 
in mitotic A6 cells (Fig. 6 b). However, the relative con- 
centration of MHC-A in the mitotic spindle of blasto- 
meres, compared with the rest of the cell, is much greater 
than was observed for A6 cells. 

The punctate nature of the MHC-A staining suggested 
that the antibody might be staining a population of myo- 
sin-containing vesicles associated with both interphase mi- 
crotubule arrays and mitotic spindles in early embryogen- 
esis. To address this issue, we extracted blastula-stage 
embryos with microtubule stabilizing buffer containing 
0.5% Triton X-100. As shown in Fig. 7, extraction for 75 
min with detergents significantly reduced MHC-A staining 
associated with both interphase microtubules (C) and 
spindles (D), while tubulin staining remained largely unaf- 
fected (E and F). 

Figure 5. Effect of cytochalasin-B on MHC-A and MHC-B lo- 
calization in Xenopus A6 cells. After incubation in the presence 
of cytochalasin B, cells were fixed and permeabilized by method 2 
and stained for MHC-A and tubulin (a); MHC-B and actin (b), 
and MHC-B and tubulin (c). Myosin staining is green, actin and 
tubulin staining are red, and the overlap of the fluorophores is 
yellow. MHC-A, along with actin (not shown), collapses to the 
nucleus in cytochalasin B-treated cells while the microtubules are 
unperturbed (a). MHC-B collapsed with residual F-actin into 
spots that were localized primarily in the cell periphery (b). The 
collapsed spots of MHC-B (and actin) are localized mainly at the 
tips of microtubules (c). Bars: (a and b) 25 ~m; (c) 10 Ixm. 
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Discussion 

Our results demonstrate that the two Xenopus nonmuscle 
MHC isoforms, MHC-A and MHC-B, differ functionally: 
MHC-A propels actin filaments at a markedly higher ve- 
locity, and exhibits a higher actin-activated ATPase activ- 
ity than MHC-B. The different subcellular localizations of 
these isoforms during interphase and mitosis also suggest 
that they have unique functions. Moreover, their unique 
subcellular localizations in Xenopus cells suggests that 
these two isoforms do not form heteropolymers in vivo. 
Furthermore, immunoprecipitation experiments show that 
MHC-A and MHC-B can be obtained separately from 
whole cell extracts, and thus apparently do not form het- 
erodimers to any significant extent. 

In an effort to understand the molecular basis for the 
observed differences in enzyme activity and the homotypic 
association of these MHC isoforms, we looked for differ- 
ences in the amino acid sequences between MHC-A and 
MHC-B that were conserved among species. We com- 
pared the sequences of MHC-A and MHC-B from Xeno- 
pus (Conti, M.A., and N. Bhatia-Dey, unpublished results; 
4), chickens (45, 41), and humans (37, 42). Despite being 
the product of two separate genes, MHC-A and MHC-B 
are ~87% identical in the head region and ~72% identical 
in the rod. Interestingly, many of the non-identical resi- 
dues are clustered. Although we cannot identify at this 
time exactly which of the clusters of divergent residues be- 
tween MHC-A and MHC-B contribute to the different en- 
zymatic activities and/or to the homotypic association of 
nonmuscle myosin dimers and filaments seen in Xenopus 
cells, we can point to regions of potential functional signif- 
icance. Of particular interest are the two disordered loops, 
Loop 1 and Loop 2, which, because of their flexibility, 
were not resolved in the myosin crystal structure (34). Our 
comparison of the primary sequences of MHC-A and 
MHC-B showed that these regions are divergent in both 
length and amino acid sequence. Loop 1 is near the ATP- 
binding pocket, and Loop 2 is at the actin-binding region. 
Structural studies indicate that Loop 2 interacts with the 
negatively charged amino-terminal part of actin. Spudich 
(44) and Uyeda et. al (46) proposed that this loop is in- 
volved in tuning the critical rate constant that determines 
the Vmax of the actin-activated ATPase although recent 
data by Rovner et al. (36) does not support this hypothe- 
sis. The function of Loop 1 remains to be determined. 
However, because of its proximity to the ATP-binding 
pocket it is likely to affect myosin enzyme kinetics. Previ- 
ously, we found that an insert in Loop 1 of the smooth 
muscle MHC, in the exact same region of the molecule as 
the insert in nonmuscle MHC-B, results in a myosin with 
higher enzymatic activity than a non-inserted myosin (21). 
The differences in motility and ATPase between MHC-A 
and MHC-B reported here could also be due to the insert 
of 16 amino acids near the ATP-binding region in MHC-B. 
All of the MHC-B expressed in Xenopus contains this in- 
sert and therefore it was not possible to compare non- 
inserted MHC-B and MHC-A. However, it has been re- 
ported that the non-inserted heavy meromyosin fragment 
of chicken nonmuscle MHC-B expressed in the baculovi- 
rus expression system shows no significant difference in ei- 
ther motility or actin-activated Mg+2-ATPase activity 

from the inserted (in this case 10 amino acids vs 16 in Xe- 
nopus) isoform (31). Therefore, it is possible that we are 
looking at differences between MHC-A and MHC-B that 
are sequence differences independent of the presence of 
the insert. 

Another interesting cluster of sequence divergence be- 
tween MHC-A and MHC-B was found just carboxyl-ter- 
minal to the $1 head region of the molecule. This region 
maps to subfragment 2 ($2). In Drosophila, alternative 
splicing in this region results in MHC isoforms with differ- 
ent speeds of contraction (6). Throughout the rod region 
of the molecule there are also clusters of sequence diver- 
gence between MHC-A and MHC-B which may contrib- 
ute to their tendency to form homodimers. Finally, as has 
been found for all MHC isoforms (32, 8), the extreme car- 
boxyl terminus appears to be isoform specific. It has been 
shown that for nonmuscle myosins, the extreme carboxyl 
terminus participates in the formation of myosin filaments 
(16) and thereby may influence MHC-A and MHC-B ho- 
mopolymer formation. 

There are many similarities, but also important differ- 
ences, in the distribution of myosin isoforms in Xenopus 
interphase and mitotic cells revealed by our experiments 
and those reported for human HeLa and melanoma cells 
by Maupin et al. (26). In Xenopus, the distribution of these 
nonmuscle myosin isoforms is more separate, which is in- 
triguing. Nonmuscle myosin has previously been observed 
both in the cortex of cells and in stress fibers (9, 1, 38) and 
therefore the observation of myosin in these locations in 
Xenopus A6 and XTC cells is no surprise. However, the 
almost complete segregation of myosin isoforms, MHC-A 
in stress fibers and MHC-B at the cell periphery, coupled 
with their different enzymatic properties, is a new finding 
with interesting functional implications. MHC-A may func- 
tion to maintain tension and could also be involved in the 
retrograde motion of stress fibers that has been observed 
in many cells (14). The presence of MHC-B in the cell cor- 
tex, especially its concentration in the lamellipodium of 
rapidly migrating cells, suggests a role for this myosin iso- 
form in cell locomotion. Cell locomotion is known to in- 
volve morphological polarization, membrane extension, 
cell-substratum attachments, contractile force, and trac- 
tion and finally release of attachments. However, exactly 
how the membrane extends and how the cell moves for- 
ward is unknown. There are at least two models to explain 
the protrusive force generation involved in lamellipodium 
extensions (for reviews see references 24, 28). One model 
is based on evidence suggesting that local actin polymer- 
ization in itself is an adequate energy source for extension 
against the mechanical resistance provided by the cell 
membrane. The second model involves motor protein- 
driven protrusive force generation. Myosin I, based on its 
intracellular location at the anterior of migrating amoebae 
(10, 3) and its localization to protrusive structures in mi- 
grating flbroblasts (7) could be one of the motor proteins 
responsible for leading edge extension and/or retraction. 
Myosin II has not previously been thought to be involved 
in protrusion because it was thought to be absent from 
such structures. However, recently Maupin et al. (26) im- 
munolocalized some MHC-B in regions of membrane pro- 
trusions such as ruffling edges and nascent lamellipodia. 
Moreover, our report describes for the first time a high 
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Figure 7. MHC-A localization in Xenopus blastomeres. Punctate MHC-A staining is associated with interphase microtubule arrays (A) 
and mitotic spindles in 8-h. blastomeres (B). Extraction of 6 h blastulae with microtubule stabilizing buffer (80 mM K Pipes, pH 6.8, 1 
mM MgCI2, 5 mM EGTA, 0.5 ixM taxol, 0.5 % TX-100) removes much of the microtubule and spindle associated MHC-A staining from 
interphase (C) and mitotic (D) blastomeres. Staining with DMIA anti~5-tubulin reveals that interphase microtubules (E) and spindles 
(F) remain intact after extraction. MHC-A antiserum was diluted 1:100 in TBS (with 0.1% NP-40 and 1% BSA). The cell margins in all 
panels are outside of the margins of the micrographs. The gray bodies seen in the cytoplasm are yolk platelets. All scale bars are 10 Ixm. 

concentration of a myosin I! motor  protein, namely MHC-B,  
in the lamel l ipodium of a highly polarized,  rapidly migrat-  
ing cell. These  results suggest that  the MHC-B motor  
could be par t  of the moti le  force underlying lamel l ipodial  
extension and/or  re t ract ion or  in the contract ion that  pulls 
the cell body forward. 

The different  pat terns  of disrupt ion of  the two myosin 
isoforms, when cells are exposed  to cytochalasin B, is con- 
sistent with their  functional  segregat ion and also suggests 
that  F-actin is organized into (at  least) two distinct popula-  
tions in Xenopus cells. One popula t ion  is responsible  for 
the format ion  of stress fibers, colocalizes with M H C - A ,  

Figure 6. Subcellular localization of MHC-A and MHC-B in mitotic cells. Xenopus A6 cells at various stages of mitosis were fixed by 
method 2 and processed for confocal microscopy, a-c, MHC-A (green) and tubulin (red) staining during prophase (a), metaphase (b), 
and telophase (c). MHC-A localizes to the spindle poles (arrow) in prophase, and also has a diffuse cytoplasmic localization. Bright 
spots of MHC-A fluorescence (arrows) are present in the mitotic spindle apparatus during metaphase. MHC-A is concentrated in the 
contractile ring in telophase. (d-f) MHC-B (green) and tubulin (red) staining during prophase (d), metaphase (e), and telophase (j). 
MHC-B localizes to the nuclear envelope during prophase, has a diffuse cytoplasmic staining pattern during metaphase, and is confined 
to the contractile ring during telophase. Bars: (a) 5 ~m; (b-f) 10 p~m. 
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and depolymerizes on cytochalasin B treatment causing 
MHC-A to collapse to the perinuclear region. The other is 
composed of cortical actin, has MHC-B associated with it, 
and on treatment with cytochalasin B collapses to discrete 
foci that contain residual F-actin and MHC-B. Interest- 
ingly, these loci localize mainly to microtubule ends sug- 
gesting that microtubules play a role in cortical actin fila- 
ment dynamics. Such a role could include provision of a 
stable scaffold on which the cortical actin filament net- 
work could be assembled, organized, and even disassem- 
bled. Protrusion at the leading edge of the cell during mi- 
gration and growth involves continual assembly and 
disassembly of the cortical actin filament network which 
may thus require the presence of a more stable scaffold to 
assist in its organization. 

The separate localization of MHC-A and MHC-B in mi- 
totic cells also suggests different functions for these non- 
muscle myosin isoforms in cell cycle progression. In 
prophase of mitosis, MHC-B is localized to the nuclear 
membrane suggesting that it may be involved in some as- 
pect of nuclear envelope breakdown. The nuclear localiza- 
tion of this isoform in prophase is also interesting because 
previously we reported that this isoform of the nonmuscle 
myosin heavy chain, but not MHC-A, is phosphorylated 
by cdc2 kinase during meiosis in Xenopus oocytes (22). 
This would put MHC-B at the right place, during the right 
time, for this phosphorylation. 

The observation that MHC-A is in the mitotic spindle is 
of note. Previous reports on the general distribution of 
myosin in mitosis were contradictory, some reporting my- 
osin in the spindle while others did not (9, 1, 38). Here we 
have shown, using several different antibodies and three 
different cell types, that MHC-A, but not MHC-B, is local- 
ized to the mitotic apparatus. The role of MHC-A in the 
mitotic spindle remains unclear. However, its extraction 
with detergent-containing buffer suggests that it is associ- 
ated with membrane vesicles and thus may not play a role 
in chromosome movement. 

Determining the function of myosin isoforms in non- 
muscle cells may help elucidate the mechanisms by which 
cells divide, move, and perform a variety of other motile 
activities. Our studies in Xenopus have allowed for a more 
extensive analysis of MHC-A and MHC-B compared to 
previous studies because of our ability to make correla- 
tions between enzymatic activity and localization. 

The authors thank Dr. Donald Bottaro (National Cancer Institute, Na- 
tional Institutes of Health [NIH] for critical reading of the manuscript and 
Dr. Maryanne Conti (National Heart, Lung, and Blood Institute, NIH) for 
Xenopus MHC-A carboxyl-terminal sequence which allowed us to make 
Xenopus MHC-A-specific antibodies. We also thank Dr. Naina Bhatia- 
Dey for providing us with the full-length Xenopus MHC-A sequence so 
that a comparison of divergent amino acid regions could be made between 
Xenopus MHC-A and MHC-B. 

Received for publication 29 March 1996 and in revised form 6 June 1996. 

References 

1. Aubin, J.E., W. Weber, and M. Osborn. 1979. Analysis of actin and mi- 
crofilament associated proteins in the mitotic spindle and cleavage fur- 
row of PtK2 cells by immunofluorescence. Exp. Cell Res. 124:93-109. 

2. Baines, I.C., and E.D. Korn. 1994. Acanthamoeba casteUanii: a model sys- 
tem for correlative biochemical and cell biological studies. In Cell Biol- 
ogy: A Laboratory Handbook. Academic Press, Aarhus, Denmark. J.E. 
Celis, editor, pp. 405411. 

3. Baines, I.C., A. Corigliano-Murphy, and E.D. Kom. 1995. Quantification 
and localization of phosphorylated myosin I isoforms in Acanthamoeba 
castellanii. Z Cell Biol. 130:591-603. 

4. Bhatia-Dey, N., R.S. Adelstein, and I.B. Dawid. 1993. Cloning of the 
eDNA encoding a myosin heavy chain B isoform of Xenopus nonmusele 
myosin with an insert in the head region. Proc. Natl. Acad. Sci. USA. 90: 
2856-2859. 

5. Cheng, T. P.O., N. Murakami, and M. Elzinga. 1992. Localization of myo- 
sin-liB at the leading edge of growth cones from rat dorsal-root gangli- 
onic cells. FEBS Lett. 311:91-94. 

6. Collier, V.L., W.A. Kronert, P.T. O'Donnell, K.A. Edwards, and S.I. Bern- 
stein. 1990. Alternative myosin hinge regions are utilized in a tissue-spe- 
cific fashion that correlates with muscle contraction speed. Genes Dev. 6: 
885495. 

7. Conrad, P.A., K.A. Giuliano, G. Fisher, K. Collins, P.T. Matsudaira, and 
D.L. Taylor. 1993. Relative distribution of actin, myosin I, and myosin II 
during the wound healing response of fibroblasts. J. Cell Biol. 120:1381- 
1391. 

8. Feghali, R., and LA.  Leinwand. 1989. Molecular genetic characterization 
of a developmentally regulated human perinatal myosin heavy chain. J. 
Cell Biol. 108:1791-1797. 

9. Fujiwara, K., and T.D. Pollard. 1976. Fluorescent antibody localization of 
myosin in the cytoplasm, cleavage furrow and mitotic spindle of human 
cells. J. Cell Biol. 71:848-875. 

10. Fukui, Y., T.J. Lynch, H. Brzeska, and E.D. Korn. 1989. Myosin I is located 
at the leading edges of locomoting Dictyostelium amoeba. Nature 
(Lond.). 341:328-331. 

11. Fukui, Y., A. De Lozanne, and J. A. Spudich. 1990. Structure and function 
of the cytoskeleton of a Dictyostelium myosin-defective mutant. J. Cell 
Biol. 110:367-378. 

12. Gard, D.L. 1993. Confocal immunofluorescence microscopy of microtu- 
bules in amphibian oocytes and eggs. Methods Cell Biol. 38:241-264. 

13. Gard, D.L., S. Hafezi, T. Zhang, and S.J. Doxsey. 1990. Centrosome dupli- 
cation continues in cyclohexamide-treated Xenopus blastulae in the ab- 
sence of a detectable cell cycle. J. Cell Biol. 110:2033-2042. 

14. Giuliano, K.A., and D.L. Taylor. 1990. Formation, transport, contraction, 
and disassembly of stress fibers in fibroblasts. Cell Motil. Cytoskeleton. 
16:14-21. 

15. Hartshorne, D.J. 1987. Biochemistry of the contractile process in smooth 
muscle. In Physiology of the Gastrointestinal Tract. L.R. Johnson, editor. 
Raven Press, New York. pp. 423--482. 

16. Hodge, T.P., R. Cross, and J. Kendrick-Jones. 1992. Role of the COOH-  
terminal nonhelical tailpiece in the assembly of a vertebrate nonmuscle 
myosin rod. J. Cell Biol. 118:1085-1095. 

17. Katsuragawa, Y., M. Yanagisawa, A. Inoue, and T. Masaki. 1989. Two dis- 
tinct nonmuscle myosin heavy chain mRNAs are differently expressed in 
various chicken tissues. Eur. J. Biochem. 184:611-616. 

18. Kawamoto, S., and R.S. Adelstein. 1991 Chicken nonmuscle myosin heavy 
chains: differential expression of two mRNAs and evidence for two dif- 
ferent polypeptides. J. Cell Biol. 112:915-924. 

19. Kelley, C.A., and R.S. Adelstein. 1990. The 204-kDa smooth muscle myo- 
sin heavy chain is phosphorylated in intact cells by casein kinase II on a 
serine near the carboxyl-terminus. J. Biol. Chem. 265:17876-17882. 

20. Kelley, C.A., J.R. Sellers, P.K. Goldsmith, and R.S. Adelstein. 1992. 
Smooth muscle myosin is composed of homodimeric heavy chains. J. 
BioL Chem. 267:2127-2130. 

21. Kelley, C.A., M. Takahashi, J.H. Yu, and R.S. Adelstein. 1993. An insert of 
seven amino acids confers functional differences between smooth muscle 
myosins from the intestines and vasculature. J. BioL Chem. 268:12848- 
12854. 

22. Kelley, C.A., F. Oberman, J.K. Yisraeli, and R.S. Adelstein. 1995. A Xeno- 
pus nonmuscle myosin heavy chain is phosphorylated by cyclin-p34 cdc2 ki- 
nase during meiosis. J. Biol. Chem. 270:1395-1401. 

23. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of 
the head of bacteriophage T4. Nature (Lond.). 227:680-685. 

24. Lauffenburger, D.A., and A.F. Horwitz. 1996. Cell migration: a physically 
integrated molecular process. Cell, 84:359-368. 

25. Ludowyke, R.I., I. Peleg, M.A. Beaven, and R.S. Adelstein. 1989. Antigen- 
induced secretion of histamine and the phosphorylation of myosin by 
protein kinase C in rat basophilic leukemia cells. J. Biol Chem. 264:12492- 
12501. 

26. Maupin, P., C.L. Phillips, R.S. Adelstein, and T.D. Pollard. 1994. Differen- 
tial localization of myosin II isozymes in human cultured cells and blood 
ceils. J. Cell Sci. 107:3077-3090. 

27. Miller, M., E. Bower, P. Levitt, D. Li, and P.D. Chantler. 1992. Myosin 1I 
distribution in neurons is consistent with a role in growth cone motility 
but not synaptic vesicle mobilization. Neuron. 8:25-44. 

28. Mitchison, T.J., and L.P. Cramer. 1996. Actin-based cell motility and cell 
locomotion. Cell. 84:371-379. 

29. Murakami, N., and M. Elzinga. 1992. Immunohistochemical studies on the 
distribution of cellular myosin II isoforms in brain and aorta. Cell Motil. 
Cytoskeleton. 22:281-295. 

30. Pasternak, C., J.A. Spudich, and E.L. Elson. 1989. Capping of surface re- 
ceptors and concomitant cortical tension are generated by conventional 
myosin. Nature (Lond.). 341:549-551. 

The Journal of Cell Biology, Volume 134, 1996 686 



31. Pato, M.D., J.R. Sellers, Y.A. Preston, E.V. Harvey, and R.S. Adelstein. 
1996. Baculovirus expression of chicken nonmuscle heavy meromyosin 
II-B. J. Biol. Chem. 271:2689-2695. 

32. Periasamy, M., D.F. Wieczorek, and B. Nadal-Ginard. 1984. Characteriza- 
tion of a developmentally regulated perinatal myosin heavy-chain gene 
expressed in skeletal muscle. J. Biol. Chem. 259:13573-13578. 

33. Pollard, T.D., and E.D. Kom. 1973. Acanthamoeba myosin. I. Isolation 
from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J. 
Biol. Chem. 248:4682-4690. 

34. Rayment, I., W.R. Rypnjewski, K. Schmidt-Base, R. Smith, D.R. Tom- 
chick, M,M. Benning, D.A. Winkelmann, G. Wesenberg, and H.M. 
Holden. 1993. Three-dimensional structure of myosin subfragment-l: a 
molecular motor. Science (Wash. DC). 261:50-58. 

35. Rochlin, M.W., K. Itoh, R.S. Adelstein, and P.C. Bridgman. 1995. Localiza- 
tion of myosin IIA and B isoforms in cultured neurons. J. Cell Sci. 108: 
3661-3670. 

36. Rovner, A.S., Y. Freyzon, and K.M. Trybus. 1995. Chimeric substitutions 
of the actin-binding loop activate dephosphorylated but not phosphory- 
lated smooth muscle heavy meromyosin. J. Biol. Chem. 270:30260-30263. 

37. Saez, C.G., J.C. Myers, T.B. Shows, and L.A. Leinwand. 1990. Human non- 
muscle myosin heavy chain mRNA: generation of diversity through alter- 
native polyadenylation. Proc. Natl. Acad. Sci. USA. 87:1164--1168. 

38. Sanger, J.M., B. Mittal, J.S. Dome, and J.W. Sanger. 1989. Analysis of cell 
division using fluorescently labeled actin and myosin in living PtK2 cells. 

Cell Motil. Cytoskeleton. 14:201-219. 
39. Sellers, J.R., and H.V, Goodson. 1995. Motor Proteins 2: Myosins. Protein 

Profile. 2:1323-1423. 
40. Sellers, J.R., H.V. Goodson, and F. Wang. 1996. A myosin family reunion. 

J. Muscle Res. Cell Motil. 17:7-22. 
41. Shohet, R.V., M.A. Conti, S, Kawamoto, Y.A. Preston, D.A. Brill, and R.S. 

Adelstein. 1989. Cloning of the eDNA encoding the myosin heavy chain 
of a vertebrate cellular myosin. Proc. Natl. Acad. Sci. USA. 86:7726--7730. 

42. Simons, M., M. Wang, O.W. McBride, S. Kawamoto, K. Yamakawa, D. 
Gdnla, R.S. Ade|stein, and L. Weir. 1991. Human nonmuscle myosin 
heavy chains are encoded by two genes located on different chromo- 
somes. Circ. Res. 69:530-539. 

43. Smith, J.C., and J.R. Tata. 1991. Xenopus cell lines. Methods Cell Biol. 36: 
635~54. 

44. Spudich, J.A. 1994. How molecular motors work. Nature (Lond.). 372:515- 
518. 

45. Takahashi, M., S. Kawamoto, and R.S. Adelstein. 1992. Evidence for in- 
serted sequences on the head region of nonmuscle myosin specific to the 
nervous system. J. Biol. Chem. 267:17864-17871. 

46. Uyeda T.Q.P., K.M. Ruppel, and J.A Spudich. 1994. Enzymatic activities 
correlate with chimaeric substitutions at the actin-binding face of myosin. 
Nature (Lond.). 368:567-569. 

47. Warrick, H.M., and J. A. Spudich. 1987. Myosin structure and function in 
cell motility. Annu. Rev. Cell Biol. 3:379-421. 

Kelley et al. Xenopus Nonmuscle Myosin Isoforms 687 


