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Protein phosphatases in TLR signaling
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Abstract 

Toll-like receptors (TLRs) are critical sensors for the detection of potentially harmful microbes. They are instrumental 
in initiating innate and adaptive immune responses against pathogenic organisms. However, exaggerated activa-
tion of TLR receptor signaling can also be responsible for the onset of autoimmune and inflammatory diseases. While 
positive regulators of TLR signaling, such as protein serine/threonine kinases, have been studied intensively, only little 
is known about phosphatases, which counterbalance and limit TLR signaling. In this review, we summarize protein 
phosphorylation events and their roles in the TLR pathway and highlight the involvement of protein phosphatases as 
negative regulators at specific steps along the TLR-initiated signaling cascade. Then, we focus on individual phos-
phatase families, specify the function of individual enzymes in TLR signaling in more detail and give perspectives for 
future research. A better understanding of phosphatase-mediated regulation of TLR signaling could provide novel 
access points to mitigate excessive immune activation and to modulate innate immune signaling.
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Background
Toll like receptors (TLRs) sense pathogen-associated 
molecular patterns (PAMPs) or damage-associated 
molecular patterns (DAMPs) by innate immune cells, 
but also by various other cell types [1]. Upon ligand bind-
ing, TLRs trigger downstream signaling cascades, which 
impinge on the activation of transcription factors such as 
activation protein-1 (AP-1), interferon regulatory factors 
(IRFs), and nuclear factor kappa-light chain enhancer of 
activated B-cells (NF-κB). The latter is a major driver of 
the production of type I interferon and pro-inflammatory 
cytokines [2]. Consequently, the initiation of TLR signal-
ing triggers inflammation and activates innate and adap-
tive immune responses [3–5]. As the excessive activation 
of this pathway can lead to life-threatening conditions, 
TLR signaling has to be tightly regulated [6]. In fact, 
an elaborated regulatory network controls TLR signal-
ing: while activation relies on protein phosphorylation, 

ubiquitination, and selective protein–protein interac-
tions, these processes are counterbalanced by the activity 
of protein phosphatases and deubiquitinating enzymes. 
The last decades have witnessed a dramatic increase in 
our understanding of different protein serine/threonine 
kinases and their target molecules in TLR signaling [7, 
8]. However, we have still limited knowledge of specific 
protein serine/threonine phosphatases (PSPs) involved 
in counteracting TLR-initiated kinase signaling [9]. 
Given the widespread occurrence and important role of 
protein phosphorylation in TLR signaling, it is appar-
ent that numerous PSPs participate in the regulation of 
these events. Intriguingly, the identities of most of these 
enzymes and their particular substrates still await clarifi-
cation. In this review, we want to summarize the current 
knowledge about PSPs and their role in TLR signaling. 
Following an overview of phosphorylation events along 
the TLR signaling cascade, we will highlight the involved 
kinases and phosphatases. In the second part, we provide 
a more detailed description of individual PSP families, to 
identify gaps in our knowledge and suggest directions for 
future research in this area.
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Part I: the role of protein phosphorylation in TLR 
signaling
Balancing phosphorylation and dephosphorylation of 
proteins is pivotal to initiate, drive, and terminate TLR 
signaling. Right from the initial events at the plasma 
membrane, cytoplasmic protein kinases with an activ-
ity directed against serine or threonine residues in their 
substrates (Ser/Thr protein kinases) are key drivers of 
TLR signaling. Representatives of this group of enzymes 
can be found in complex with the receptor at the plasma 
membrane, in a large, multi-component signalosome 
in the cytosol, and as regulators of gene expression in 
the nucleus. In fact, three main Ser/Thr protein kinase 
families are conserved elements of TLR signaling: Inter-
leukin-1 receptor-associated kinases (IRAKs), the trans-
forming growth factor-β-activated kinase 1 (TAK-1), 
and the IκB kinase (IKK) complex. However, additional 
serine/threonine kinases such as NIK, MST4, TBK-1, 
TANK, and RIPK also contribute to TLR-initiated pro-
cesses [6, 7, 10–12]

IRAK family members (IRAK1, IRAK2, IRAKM, 
IRAK4) play a central role in TLR/IL-1 signaling. Upon 
ligand binding to the TLR and association with the 
adapter molecule MyD88, IRAKs are promptly recruited 
to MyD88 through death-domain interactions [13]. 
IRAK4 is a decisive kinase in the TIR signaling pathway 
and is the first enzyme to be recruited to the Myddo-
some complex by MyD88/TIRAP or TRIF/TRAM. 
Human patients with inherited IRAK-4 deficiency as 
well as IRAK4 knock-out mice exhibit severe functional 
defects in TLR pathways [14]. In line with these in vivo 
findings, cells lacking IRAK4 show impaired TLR path-
way responses [15, 16]. Clustering of IRAK4 together 
with MyD88-bound TLRs results in dimerization of the 
kinase and trans-phosphorylation of residues within the 
kinase domain. Therefore, mutations in IRAK4 that abro-
gate IRAK4 kinase activity (IRAK4 G298D) or disrupt the 
interaction with MyD88 and IRAK1 (IRAK4 R12C) lead 
to reduced IL-1-induced signaling and cytokine produc-
tion [17]. Upon activation, IRAK4 recruits IRAK1 (ear-
lier phase) and IRAK2 (late phase) as well as TRAF6 
and Pellino to the Myddosome complex [16, 18–20]. 
Upon binding, IRAK1 is phosphorylated by IRAK4 on 
a key threonine residue (Thr209) in the kinase domain. 
This phosphorylation triggers conformational changes 
in IRAK1, which facilitate autophosphorylation in the 
kinase activation loop (Thr387) as well as hyperphos-
phorylation in the so-called proline, serine and threo-
nine (ProST) region of IRAK1. Once activated, IRAK1 
is released from the Myddosome, but remains associ-
ated with TRAF6, an E3 ubiquitin ligase. IRAK1, but also 
IRAK2 and IRAK4, can phosphorylate TRAF6 and the E3 
ubiquitin ligase Pellino on several residues [21, 22]. For 

instance, Pellino 1 has been reported to be phosphoryl-
ated on seven residues within the forkhead-associated 
domain and two residues within the RING-like domain 
[23]. Activation of the E3 ubiquitin ligases Pellino and 
TRAF6 via phosphorylation and their concomitant K63-
linked poly-ubiquitination promotes the recruitment of 
additional Ser/Thr kinases [24]. At the same time, TRAF6 
and Pellino act back on their upstream kinase, IRAK1, to 
induce the poly-ubiquitination and proteasomal degrada-
tion of this enzyme, thereby creating a negative feedback 
loop [25].

Signal propagation by poly-ubiquitinated TRAF6 
occurs through association with the Transforming 
Growth Factor-β-activated kinase 1 (TAK1) in complex 
with TAK1 binding protein-1/2 (TAB1/2). The TAK1/
TAB complex is activated by binding to K63 poly-ubiq-
uitin chains, such as those attached to TRAF6, and by 
phosphorylation at Thr184, Thr187 and Ser412 in the 
TAK1 kinase domain [26–28]. Active TAK-1 in turn 
phosphorylates the IκB kinase β (IKKβ) at key serine resi-
dues within the activation loop at Ser176 and Ser180 [8]. 
IKKβ resides together with a closely related kinase, IKKα, 
and the scaffold protein IKKγ (also termed NEMO) in 
a cytosolic complex [8]. Upon stimulation by TAK1, 
the activity of IKKβ is directed towards the Inhibitor of 
NF-κB (IκBα), which is phosphorylated by active IKK on 
serine residues Ser32 and Ser36 [29]. Phosphorylation 
at these amino-terminal serine residues marks IκBα for 
poly-ubiquitination via Lys48-connected poly-ubiquitin 
chains, which initiate the efficient proteasomal degrada-
tion of this NF-κB inhibitor. Once the NF-κB heterodi-
mer (p50/p65) is released from its protein inhibitor IκBα, 
the nuclear localization signal within NFκB is acces-
sible and the transcription factor can translocate to the 
nucleus. There, NF-κB stimulates the transcription of 
a large set of genes via binding to characteristic kB sites 
located in the promoter regions of target genes [30, 31].

Already this short summary of canonical TLR-initiated 
processes illustrates the multitude of phosphorylation 
events, which govern this particular signaling pathway 
inside cells  and which are summarized in Fig.  1. It is 
also evident from this description that Ser/Thr kinases 
are main actors in TLR signaling. Clearly, these kinase-
mediated phosphorylation events have to be counterbal-
anced by serine-threonine-directed protein phosphatases 
to control the magnitude and duration of pathway out-
put. However, in contrast to the detailed knowledge we 
have about the involved kinases, only little is known 
about protein phosphatases, which are directed against 
particular substrate proteins and specific phospho-res-
idues in the TLR signaling cascade. This lack of knowl-
edge is even more striking given that the human genome 
contains only a limited set of serine/threonine-directed 
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protein phosphatases (see Part II of this review), which 
contrasts the > 400 distinct serine-threonine kinases 
found in mammals [32, 33]. Some of the known dephos-
phorylation events concern IRAK1, the kinase embed-
ded within the Myddosome [20]. IRAK1 has been 

co-immunoprecipitated together with the serine/threo-
nine phosphatase PP2A and treatment with okadaic acid, 
a potent inhibitor of PP2A activity, or siRNA-mediated 
depletion of the catalytic subunit of PP2A results in 
increased ubiquitination and degradation of IRAK1 in 
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Fig. 1  Phosphorylation events in TLR signaling. TLRs recognize their respective ligands at the cell surface or endosomes, leading to recruitment 
of MyD88. A receptor complex (Myddosome or Triffosome) is formed with IRAK4 and IRAK1 (and IRAK2 in the late phase). IRAK4 phosphorylates 
IRAK1, and the TRAF6-IRAK1 complex dissociates from MyD88. IRAK1 undergoes autophosphorylation and is degraded by the proteasome 
upon Pellino-1-mediated polyubiquitination. Pellino-1 and TRAF6 recruit TAK1-TAB2-TAB1 complex and IKKα/β-NEMO Complex. TAK1 is 
autophosphorylated and phosphorylates IKKα/β-NEMO Complex. Subsequently, IKKα/β phosphorylates IκBα bound to NF-κB p65. The latter is 
released and translocates to the nucleus. In the TRIF dependent pathway, TRAF6 recruits either RIPK1 and activates the IKK-IκBα-NF-κB p65 axis, or 
IRF5. On the other hand, TRAF3 recruits NAP1-TANK-TAB1 and NEMO-IKKε-TBK1 complexes, upon which TANK phosphorylates and activates IKKε 
and TBK1. Both kinases trigger IRF3 or IRF7-mediated type-I interferon production. Phosphorylated tyrosine, serine and threonine residues are 
represented by white, green, and circles red, respectively. Activation (ubiquitination or phosphorylation) and translocation are indicated by plain or 
dashed arrows, respectively
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response to IL1β stimulation [34]. These findings sug-
gest that the PP2A-regulated phospho-sites on IRAK1 
are involved in orchestrating IRAK1 poly-ubiquitination 
and turnover by the proteasome. This would imply that 
PP2A activity stabilizes IRAK1 and sustains TLR signal-
ing, while diminishing PP2A activity should negatively 
impact TLR signaling. On the contrary, PP1 and PP2A 
have been shown to completely dephosphorylate IRAK1 
in vitro suggesting that they can act on several phospho-
sites within this enzyme [35, 36]. As the phosphoryla-
tion state of particular residues can either have positive 
effects on IRAK1 activity (e.g. due to phosphorylation of 
IRAK1 residue Thr-387 within the kinase activation loop) 
or negative consequences (e.g. due to phosphorylation-
dependent poly-ubiquitination leading to proteasomal 
degradation) it is instrumental to clearly define the par-
ticular site(s) of action of a given protein phosphatase 
to understand the consequences of this enzyme’s activ-
ity on TLR signaling output. Interestingly, the individual 
IRAK1 phospho-residues targeted by either PP2A or PP1 
and the kinetics of their activity have not been elucidated 
so far [37]. This appears to be true for most of the vari-
ous protein phosphatases, which have been implied in 
the TLR signaling pathway. Besides PP1 and PP2AC, 
the phosphatase enzymes known to affect TLR signaling 
are PP2B, PP4, PP6, PPM1A, PPM1B, PPM1D, PPM1E, 
PPM1F, PPM1L, and PPM1M. In the second part of this 
review, we will address the individual phosphatases and 
detail their known points of action along the TLR sign-
aling cascade, but also highlight current shortcomings in 
our knowledge.

Part II: protein serine/threonine phosphatases 
in TLRs signaling
Negative regulation of TLR signaling is mediated by 
several mechanisms. Besides inhibition of kinase activ-
ity and poly-ubiquitin-initiated protein degradation, the 
dephosphorylation by protein phosphatases is a rapid 
and reversible means to limit TLR pathway output. 
Therefore, there is growing interest in understanding the 
role of different protein phosphatases in TLR signaling. 
Protein serine/threonine phosphatases (PSPs) in general 
are subdivided into three families based on structural 
homology: phospho-protein phosphatases (PPPs; with 
13 PPPs encoded in the human genome), metal-depend-
ent protein phosphatases (PPMs; with 16 PPMs found 
in humans) and aspartate-based phosphatases (includ-
ing FCP/SCP- and HAD-type enzymes; with 21 mem-
bers) [33, 38, 39]. As protein phosphorylation is one of 
the major posttranslational modifications, protein phos-
phatases are involved in every physiological process 
including cell division, cell proliferation and differentia-
tion, programmed cell death as well as the regulation of 

the immune response. Here, we will focus on those fam-
ily members with a known direct contribution to TLR 
signaling.

PPP family members in TLR pathway regulation
Human PPP-family serine/threonine protein phos-
phatases include PP1, PP2A, PP2B (also known as cal-
cineurin), PP4, PP5, PP6 and PP7. In general, these 
enzymes contain a highly conserved catalytic core 
domain, which can combine with a variety of regulatory 
subunits to determine substrate specificity and subcel-
lular localization [40]. PP1, PP2A, PP4, and PP6 contain 
three characteristic sequence motifs within the cen-
tral catalytic domain, differing mainly in their C- and 
N-terminal regions (Fig.  2). PP2B is distinct in that it 
contains a Ca2+-calmodulin (CaM) binding motif (CBD) 
and an autoinhibitory sequence in its C-terminal region 
and two divergent regions in the catalytic domain. PP5 
contains in its N-terminal domain three tetratricopep-
tide repeats (TPR). Finally, PP7 differs from all the other 
phosphatases in that it contains EF-hand motifs in the 
C-terminal domain and a large insert within the catalytic 
core domain [38, 39].

Protein phosphatase 1 (PP1)
PP1 is a ubiquitously expressed protein serine/threo-
nine phosphatase with three homologous variants of the 
catalytic subunit (PP1α, PP1β, and PP1γ) encoded in the 
human genome. A single catalytic PP1 subunit combines 
with one out of nearly 200 regulatory subunits to deter-
mine substrate specificity and/or sub-cellular localization 
[40, 41]. In TLR-mediated innate immune responses, PP1 
has been reported to play both the roles of a negative and 
a positive regulator.

Focusing on PP1 as a negative regulator of the TLR-
mediated inflammatory response, the PP1-GADD34-
CUE domain–containing 2 (CUEDC2) complex 
sequesters IKK-α and IKK-β in the cytoplasm and main-
tains them in a non-phosphorylated, inactive form. 
Upon stimulation with a TLR ligand (e.g. LPS), IKK is 
‘recruited’ away from the PP1-GADD34-CUEDC2 mod-
ule by TRAF2/TRAF6 and then is phosphorylated and 
activated by the TNF receptor signaling complex. Sub-
sequently, when active IKK is released from the TNF 
receptor signaling complex, IKKs kinase domain binds 
to the carboxyl terminus of CUEDC2, presumably via 
TRAF2/6 [42, 43]. Via its regulatory subunit GADD34, 
PP1 can bind CUEDC2 and dephosphorylate IKK (IKK 
residues phospho-Ser-180/Ser-181), returning the kinase 
to its default, inactive state [44]. Interestingly, IKK 
does not seem to be the only kinase in the TLR-signal-
ing cascade, which is targeted by PP1. PP1 also acts on 
phospho-Ser-412 of TAK-1 in macrophages and murine 
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embryonic fibroblasts and all three catalytic subunits of 
PP1 (α-γ) can physically interact with TAK1 [45]. Again, 
PP1 mediated TAK-1 dephosphorylation depends on the 
regulatory subunit GADD34, which comprises a TAK-
1-binding region between amino acids 242–540 neigh-
bouring the PP1 interaction motif [45]. Phosphorylation 
of TAK1 residues Thr-178, Thr-184, Thr-187, and Ser-
192 in the kinase activation loop is involved in maximal 
TAK1 activity [26], while Ser-412 is located outside of the 
kinase domain between the TAB1 and TAB2/3 regions 
of TAK1. Nevertheless, dephosphorylation of phospho-
Ser-412 by PP1 appears as a key regulatory step to modu-
late TLR-mediated pro-inflammatory cytokine induction 
[45, 46]. In the context of viral infections, PP1 also nega-
tively regulates TLR-induced IFN-α and IFN-β produc-
tion. Wang and colleagues [47] identified two conserved 
sequences (RVLF408, RVFF422) located at the N-terminal 
and C-terminal ends of the DNA-binding domain of 

human IRF7, which match canonical PP1-binding motifs. 
Indeed, PP1 and IRF7 physically interact and PP1 targets 
four IRF7 key phosphorylation sites (S471, S472, S477, 
S479) [47]. Dephosphorylation of IRF7 by PP1 impairs 
its transcriptional activity and reduces IFN-α production 
upon viral infection [47]. Moreover, TLR (RLR) ligands 
could downregulate the kinetics of PP1 activity in mac-
rophages. In fact, authors suggested that by means of its 
phosphatase activity, PP1 inhibits the full activation of 
IRF3 (S385, S396) leading to the decrease in TLR-medi-
ated IFN-β expression [48].

Surprisingly, PP1γ has also been described as a posi-
tive regulator of NF-κB activation. Upon TLR-initiated 
MyD88 signaling, PP1γ associates with TRAF6 and pro-
motes oligomerization of this ubiquitin E3 ligase [49]. It 
is suggested that PP1γ association and/or activity induce 
a conformational change in TRAF6 to increase its auto-
ubiquitination as well as ubiquitination of the TRAF6 
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substrate IKKγ (NEMO), which would in the end lead to 
enhanced NF-κB signaling [49]. The positive contribu-
tion to NF-kB-mediated gene expression requires PP1γ 
phosphatase activity, but TRAF6 phospho-sites targeted 
by PP1γ have not been delineated [49]. Furthermore, it is 
unclear if a regulatory subunit of PP1γ is involved in this 
process. Through these events, PP1γ might contribute to 
physiological stimulation of NF-kB, but PP1-mediated 
activation of TRAF6 seems to be of particular impor-
tance in certain tumor types such as glioma cells [50] and 
liver cancer [51].

Protein phosphatase 2A (PP2A)
Similar to PP1, two variants of the catalytic subunit of 
the serine/threonine phosphatase PP2A, termed PP2Acα 
and PP2Acβ, are encoded in the human genome. Either 
of the catalytic subunits forms the central enzyme, which 
combines with the scaffold subunit (PP2Aa⍺ or PP2Aaβ) 
and one out of 26 different regulatory subunits to build 
the holoenzyme complex. Again, the regulatory subu-
nits determine the spatio-temporal specificity of PP2A 
enzyme activity [52–54]. A negative role of PP2A in 
TLR-mediated signaling was initially postulated, when 
application of the protein serine/threonine phosphatase 
inhibitor ocadaic acid resulted in increased levels of LPS-
induced cytokines and chemokines [55, 56]. Addition-
ally, reduction of PP2A expression by specific siRNAs 
resulted in a gain of function with regard to LPS-induced 
TNFα secretion further suggesting that PP2A limits 
TLR-induced responses [56]. Subsequently, biochemical 
studies have detected an interaction between PP2A and 
IRAK1 upon IL1β stimulation, with direct consequences 
for IRAK1 phosphorylation levels [34]. Potentially, there 
are additional targets of PP2A in the TLR signaling cas-
cade, such as IKKα/β/γ [57], IκB-α [58], NFκB p65 [59] 
and MAPKs [56, 60], which have also been reported to 
associate with PP2A. Clear evidence for a physiologi-
cal role of PP2A in TLR signaling comes from gene dis-
ruption of one of the two catalytic subunits (PP2Acα) 
in myeloid cells [61]. Though knock-out macrophages 
derived from these mice still express PP2Acβ, the total 
PP2A phosphatase activity was reduced by ~ 60%. This 
reduction was coupled to an increase in LPS-stimulated 
phosphorylation of proteins in the MAPK pathway (p38, 
JNK/c-Jun, and ERK [p44/42]) and the NF-κB pathway 
(IKKα/β, NF-κB p65, and IκBα) [61]. In vivo, the lack of 
PP2Ac⍺ in myeloid cells translated into an exaggerated 
inflammatory response and higher sensitivity towards 
LPS, with detrimental consequences for these animals 
upon bacterial infection [61].

One negative feed-back-loop that involves PP2A and 
that dampens TLR-initiated signaling is based on the 
lipid ceramide, which can be produced from membrane 

sphingolipids during inflammation [62, 63]. Ceramide 
either binds to PP2A directly or associates with and 
thereby displaces an inhibitor of PP2A termed SET 
[64, 65]. In both cases, PP2A phosphatase activity is 
unleashed by ceramide diminishing phosphorylation of 
multiple signaling proteins. For example during LPS-
induced lung inflammation, PP2Acα is responsible for 
dampening cytokine release and ceramide treatment 
of macrophages activates PP2A to alleviate some of the 
acute responses and damage in the lung tissue [66]. How-
ever, despite the cumulative evidence for an important 
regulatory role of this protein phosphatase, the direct 
target(s) of PP2Ac⍺ activity and the identity of PP2Acα-
associated regulatory subunits involved in the TLR sign-
aling cascade are currently unclear.

Interestingly, PP2Ac⍺ can also associate with and 
de-phosphorylate serine residues in the TIR domain of 
MyD88 [67]. Phosphorylation of MyD88 serine residues 
Ser-242 and Ser-244 seems to stabilize the TLR-MyD88 
complex, while PP2A-mediated dephosphorylation of 
these residues dampens TLR-initiated signals. This activ-
ity of PP2A is only  detected  during a process termed 
endotoxin tolerance, when immune cells have been first 
exposed to a low dose of LPS (0.1 µg/ml), which results 
in increased PP2A activity after 24 h. When these LPS-
experienced cells are re-stimulated with higher doses 
of LPS (1 µg/ml for 15 min) the increased PP2A activity 
and the PP2A-mediated de-phosphorylation of MyD88 
suppress TLR downstream signaling and inflammatory 
cytokine release [67]. Presumably, distinct PP2A holo-
enzymes are responsible for the different effects of this 
phosphatase on the initial TLR signal as described before 
versus the effect of PP2A on signal outcome upon TLR 
re-stimulation during LPS tolerance. However, it is also 
conceivable that differential posttranslational modifica-
tion of a single PP2A holoenzyme might direct its activity 
towards distinct kinases in initial TLR stimulation versus 
the de-phosphorylation of the adapter protein MyD88 
upon re-stumulation with TLR ligands.

Protein phosphatase 2B (PP2B)/calcineurin
PP2B is a Ca2+/calmodulin-dependent serine/threonine 
phosphatase, which is also known as Calcineurin. In ver-
tebrates, three genes (PPP3CA, PPP3CB, and PPP3CC) 
encode three related catalytic subunits termed Calcineu-
rin A or PP2BC. The genes PPP3CA and PPP3CB are 
ubiquitously expressed, while PPP3CC transcripts are 
only found in testis and brain [68]. In addition, two dis-
tinct forms of the regulatory subunit, Calcineurin B, are 
available: Calcineurin B1, encoded by the PPP3R1 gene, 
is found in all cell types, while the product of the PPP3R2 
gene, the protein phosphatase 3 regulatory subunit-
like protein, is only found in testis [69]. The regulatory 
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subunit Calcineurin B contains four Ca2+-binding EF-
hand domains, while the catalytic subunit Calcineurin 
A contains two Calmodulin-binding sites, which are 
involved in regulating PP2B phosphatase activity in a 
Ca2+/Calmodulin-dependent manner [70]. Interestingly, 
while knock-out mice lacking either Calcineurin catalytic 
subunit are viable, the deletion of the regulatory subunit 
Calcineurin B1 leads to embryonic lethality [71]. Nev-
ertheless, lack of either PPP3A or PPP3B impairs T cell 
function [72–74]. In T cells, PP2B dephosphorylates the 
transcription factor NFAT to promote its translocation 
to the nucleus, where it induces expression of cytokines 
such as IL-2 [75]. In addition, PP2B-mediated dephos-
phorylation of Bcl-10 contributes to NF-kB activity in 
response to TCR stimulation [76, 77]. The positive regu-
latory role of PP2B for T cell activation is in line with the 
use of PP2B inhibitors such as cyclosporin A or FK506 
as immunosuppressants [68]. PP2B also has a role in the 
TLR-mediated innate immune response, with both nega-
tive and positive contribution to the TLR signaling path-
way depending on cell type and stimulus.

For instance, PP2B acts as a negative regulator of the 
TLR signaling pathway in human and murine mac-
rophages, astrocytes, and fibroblasts [78]. In mac-
rophages, inhibition or knock-down of PP2B enhances 
the expression of inflammatory cytokines in response 
to LPS, poly(I:C), peptidoglycan, or CpG DNA, while 
overexpression of constitutively active Calcineurin 
blocks NF-κB activation by TLR ligands [79]. Protein–
protein interaction and functional analysis in perito-
neal macrophages revealed that PP2B interacts with 
TLR2, TLR4, MyD88 and TRIF, but not with TLR3 and 
TLR9 [79]. Accordingly, PP2B negatively regulates both 
MyD88-dependent and MyD88-independent TLR sign-
aling pathways. Similar to macrophages, treatment of 
endothelial cells with PP2B inhibitors leads to elevated 
TLR4-dependent gene expression [80]. Furthermore, 
the treatment of kidney tubular cells with cyclosporin A 
or FK506 (Tacrolimus) resulted in activation of NF-κB-
mediated inflammatory responses accompanied by 
increased TLR4/MyD88/IRAK signaling suggesting that 
PP2B negatively regulates this pathway [81]. In a similar 
manner, the application of calcineurin inhibitors led to 
elevated coronary arteritis in a mouse model of Kawa-
saki disease and this effect depended on the presence 
of MyD88 [82]. Though the direct target of PP2B activ-
ity in the TLR4 signaling cascade is currently unknown, 
overexpression of the constitutively active phosphatase 
reduces the phosphorylation of IRAK-1 in a dose-
dependent manner [79] suggesting that PP2B acts at 
a position close to the activated receptor to diminish 
NF-kB activation. Furthermore, increased phosphoryla-
tion and degradation of IκBɑ was observed upon PP2B 

inhibition, suggesting a further mode of action of how 
this phosphatase could suppress NF-κB activity [83].

In contrast to these negative regulatory effects of PP2B 
on TLR signaling and NF-κB mediated gene expression 
events, several studies have indicated a positive contribu-
tion of PP2B to this pathway, which would be analogous 
to the situation in T-cell receptor signaling. For exam-
ple, primary macrophages lacking a negative regulator 
of calcineurin-1 termed RCAN-1 show elevated inflam-
mation in response to bacterial LPS due to enhanced 
TLR4-MyD88-NF-kB signaling [84]. Furthermore, PP2B 
inhibition by cyclosporin A selectively diminishes TLR-
9-mediated IL10 expression in human B-cells [85] and 
treatment of mice with the PP2B inhibitor FK506 pro-
tects from LPS-induced toxicity and leads to a LPS tol-
erant phenotype of isolated macrophages [86]. Along 
the same line, peripheral blood mononuclear cells from 
patients receiving PP2B inhibitors show impaired inflam-
matory cytokine production in response to TLR2, TLR4, 
and TLR7/8 stimulation [87].

Together, these investigations do not draw a clear pic-
ture of PP2B’s involvement in TLR signaling. One should 
bear in mind that several of these studies to a large 
extend rely on prolonged use of Calcineurin inhibitors 
such as Tacrolimus or cyclophilin A. Importantly, knock-
out macrophages with genetic ablation of the regulatory 
subunit Calcineurin B1 indicate that such pharmacologi-
cal inhibitors can have effects, even when the primary 
target molecule is not present [82]. Therefore, contrast-
ing reports on the role of PP2B in TLR signaling should 
be interpreted with caution and future emphasis should 
be placed on clearly delineating bone-fide protein phos-
phorylation sites affected by the action of PP2B/calcineu-
rin in TLR signaling.

Protein phosphatase 4 (PP4)
PP4 is a conserved protein serine/threonine phosphatase, 
which is expressed in all cell types and which is found 
throughout the cytoplasm and the nucleus, showing 
enrichment around the centrosome and microtubule 
nucleation points [88–90]. PP4 is composed of the PP4 
catalytic subunit (PP4c), whose association with different 
PP4R regulatory subunits determines substrate specific-
ity. With regard to innate immunity, PP4 has been initially 
reported as an activator of NF-kB-dependent transcrip-
tional responses by dephosphorylating the c-Rel subu-
nit of the NF-kB transcription factor [91]. Similarly, PP4 
seems to act on phospho-Thr-435 of the NF-kB subunit 
p65 and this event correlated with increased NF-kB tran-
scriptional activity [92]. This supposedly positive effect 
of PP4 on NF-kB signaling contrasts the situation with 
PP2A, which by dephosphorylating the RelA subunit of 
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the NF-kB transcription factor negatively affects NF-kB 
transcriptional responses [59].

However, the role of PP4 in TLR signaling appears 
to be complex, as numerous examples of PP4′s nega-
tive regulatory function in the TLR signaling pathway 
became apparent. For example, the regulatory subunit 
R1 of PP4 (PP4R1) physically interacts with TRAF2 and 
TRAF6 upon LPS stimulation in murine macrophages 
[93, 94]. PP4 dephosphorylates specific sites in TRAF2 
(Ser-11) and presumably in TRAF6, thereby blocking 
TRAF6 auto-ubiquitination [94]. Reduced ubiquitina-
tion of TRAF6 interferes with recruitment of TAK1 and 
the IKK complex ultimately reducing the activation of 
NF-κB [93, 94]. In line with this model, the holoenzyme 
PP4C-PP4R1 is proposed to regulate IKK activity and 
to suppress the oncogenic NF-kB signaling in T cell 
lymphomas. In fact, T cell activation and proliferation 
trigger PP4R1 expression, which is lost in cutaneous T 
cell lymphoma (CTCL) [95]. PP4R1 recruits PP4C to 
IKK and mediates the dephosphorylation of the IKK 
complex at residues Ser-176/Ser-180. Small interfer-
ing RNA-mediated PP4R1 depletion causes sustained 
and increased IKK activity and T cell hyperactivation. 
Furthermore, deficiency for PP4R1 in CTCL results in 
constitutive IKK-NF-kB signaling and thus forms an 
important molecular event maintaining the malignant 
phenotype of a subset of CTCL cells [95]. Also in the 
context of antiviral immunity, PP4C displays a nega-
tive regulatory function and suppresses TLR mediated 
production of type I IFN, as siRNA-mediated silencing 
of PP4C results in elevated responses towards LPS or 
poly(I:C) [96]. In particular, PP4C targets and dephos-
phorylates TBK1 at residue Ser-172. This dephos-
phorylation inhibits TBK1 kinase activity and thereby 
restrains IRF3 activation and type I IFN production 
[96]. Similarly, other viral agents, including polyomavi-
ruses, exploit the PP4R1/PP4C module to interfere with 
NF-kB activation, thereby evading antiviral immune 
responses [97–99]. In these cases, the viral small T 
antigen connects PP4R1 and PP4C with NEMO, the 
scaffold of the IKK complex, and this interaction is 
instrumental to inhibit NF-kB activation [100]. This is 
reminiscent of the situation in T-cells, where PP4R1/
PP4C are shown to act on IKKα and IKKβ [95] a sce-
nario that is compatible with the findings from pol-
yomavirus-infected cells. Together, several lines of 

evidence support a negative regulatory role of PP4 
together with the regulatory subunit PP4R1 for NF-kB 
activation, while regulatory subunits of PP4 involved 
in promoting NF-kB signaling are currently not clearly 
established.

Protein phosphatase 6 (PP6)
PP6, closely related to PP2A and PP4, is a Ser/Thr 
phosphatase with a bimetallic catalytic center and is 
expressed in most human cells and tissues [38, 101]. 
PP6 comprises a catalytic core domain and three regu-
latory subunits, namely PP6R1, PP6R2 and PP6R3, and 
is involved NF-kB signaling regulation. The PP6R1 is 
highly expressed in hematopoietic and lymphoid cells 
[102].

Proteomic and gene depletion analyses revealed 
that PP6 specifically down-regulates TAK1 activity by 
dephosphorylating the phospho-Thr-187 residue in the 
activation loop of the kinase [103]. As phosphorylation at 
Thr-187 is connected to increased TAK-1-induced NF-κB 
activity [104], it is reasonable to assume that PP6 is a neg-
ative regulator of this pathway. However, it is currently 
unknown, which PP6 regulatory protein is involved in 
this process and how the overall outcome of TLR-initited 
NF-κB activation is affected by PP6 activity.

PPM family members in TLR pathway regulation
The PPM serine/threonine phosphatase family comprises 
16 members (PPM1A-N) and most of them are widely 
expressed in human tissues [105, 106]. Structurally, 
these phosphatases are monomeric Mg2+/Mn2+ depend-
ent phosphatases with a highly conserved core catalytic 
domain. Importantly, they generally differ from the PPP 
phosphatases by not forming holoenzymes. Instead, all 
PPM members possess N-terminal or C-terminal non-
enzymatic domains, which contribute to substrate speci-
ficity and/or structural stability (Fig.  3) [38, 106–108]. 
Some PPM members contain, besides their phosphatase 
domain, typical structural folds such as a pleckstrin 
homology (PH) domain and a leucine-rich repeat (LRR) 
region in PHLPP [109, 110]. Moreover, a few PPMs con-
tain distinct structural insertions within the catalytic 
core and a recent study involving PPM1G suggests that 
this enzyme can form a PPP-type holoenzyme using the 

(See figure on next page.)
Fig. 3  Structural organisation of members of the human PPM family. Representative members of the PPM family are depicted schematically. The 
PP2C-catalytic core domains of each protein are represented by the green boxes and the delimiting amino acid residues are given. The amino 
acids involved in chelating metal-ions are highlighted with red, blue and brown circles. N-myristoylation sites (yellow circle), sequence motifs, and 
protein- or lipid-binding domains are indicated
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regulatory domain B56δ of PP2A to operate in the con-
text of adherens junction integrity [111].

Generally, PPM phosphatases are involved in diverse 
cellular processes such as cell proliferation, growth, sur-
vival, apoptosis, regulation of metabolism, and stress 
signaling [105, 106, 112–116]. However, only few stud-
ies have investigated the role of PPM phosphatases in the 
immune response and in particular in TLR-initiated sign-
aling cascades.

Protein phosphatase Mg2+/Mn2+ dependent 1A 
(PPM1A/α)
PPM1A is ubiquitously expressed in human tissues and, 
together with PPM1B, is the PPM family member, which 
has been studied most intensively with respect to innate 
immunity. [117] In the context of antiviral immunity, 
PPM1A was assigned an important role in governing 
antiviral defense and balancing anti-viral signal transduc-
tion. This phosphatase antagonizes TANK-binding kinase 
(TBK1)-mediated phosphorylation and aggregation of 
STING, which is orchestrating innate immune responses 
upon detection of cytosolic DNA as a sign of viral infec-
tion or mitochondrial damage [118, 119]. In addition, 
PPM1A antagonizes RIG-I-like receptors (RLRs), which 
respond to RNA viruses. Cytosolic double-stranded 
RNA-sensing by RLRs activates TBK1/IKKε kinases via 
mitochondria-associated anti-viral signaling proteins 
(MAVS). Analogous to counteracting TBK1 in response 
to DNA, PPM1A dephosphorylates the TBK1/IKKε com-
plex and MAVS, thereby limiting the immune response 
against RNA viruses. As a result, PPM1A knock-out mice 
are resistant against RNA viruses, whereas zebrafish 
overexpressing PPM1A are more susceptible to RNA 
virus infection [120].

Likewise, PPM1A also limits TLR-initiated responses, 
as cytokine release upon LPS stimulation or upon Myco-
bacterium tuberculosis infection are reduced in PPM1A-
overexpressing THP-1 monocytic cells [121]. In contrast, 
knock-down of PPM1A results in elevated levels of 
TNFα-release and PPM1A expression is upregulated in 
response to TLR stimulation by the agonists imiquimod 
and Pam3CSK4 [122]. These results could indicate that 
PPM1A operates in a negative feedback-loop to pre-
vent an exaggerated and prolonged TLR response and to 
restore pre-inflammatory conditions [122].

The ability of PPM1A to dampen TLR signaling appears 
to hinge on the dephosphorylation of IKKβ at residues 
p-Ser-177 and p-Ser-181 [123]. PPM1A activity towards 
IKKβ terminates TNFα-induced NF-κB signaling and 
the same situation has been reported for PPM1B [123]. 
Therefore, PPM1A-mediated control of TBK1 and IKKβ 
phosphorylation can explain the negative regulatory role 
of this enzyme in TLR signaling.

Protein phosphatase Mg2+/Mn2+ dependent 1B 
(PPM1B/β)
PPM1B is structurally similar to PPM1A and its genetic 
deletion abrogates embryonic development [124]. 
PPM1B plays a prominent role in inflammation by 
restoring the balance between apoptotic and anti-apop-
totic signaling in response to TNFα in various cell lines. 
Together with PPM1A, PPM1B functions by specifi-
cally associating with and dephosphorylating the IKKβ 
complex at p-Ser-177/p-Ser-181 [125] and the upstream 
kinase TAK1 to terminate TNFα-induced NF-κB activity 
[123, 125, 126]. The adapter protein 14–3-3ε seems to be 
involved in the spatial and temporal co-ordination of the 
PPM1B—TAK1 interaction [127]. Accordingly, PPM1B 
is part of a negative feedback loop, which helps to limit 
and resolve NF-κB pathway activity at later time points 
following cytokine stimulation [125]. The negative feed-
back excerted by PPM1B on the NFκB pathway can be 
counter-regulated itself via PKA-mediated phosphoryla-
tion of PPM1B at Ser-195, which results in proteasomal 
degradation of PPM1B [128]. With regard to TLR sign-
aling, there are striking parallels between PPM1B and 
PPM1A: Upon viral infection, PPM1B blocks the antiviral 
response by increased association with and dephospho-
rylation of TBK1 at Ser-172, allowing enhanced virus 
replication [129]. This negative regulatory function of 
PPM1B is exploited by certain viral proteins, which direct 
this phosphatase to suppress interferon production [130]. 
Though PPM1B has mainly been studied in the context of 
antiviral responses, it is highly plausible that this enzyme 
also controls TLR-initiated signaling during encounters 
with pathogenic bacteria, an area clearly demanding fur-
ther exploration.

Protein phosphatase Mg2+/Mn2+ dependent 1D 
(PPM1D/Wip1)
The wildtype p53-induced phosphatase 1 (Wip1, encoded 
by PPM1D) is a well-studied oncogenic member of the 
PPM family. It is rapidly and transiently expressed upon 
DNA-damaging agents and ionizing or UV irradiation in 
a p53-dependent manner [131–133]. As its name implies, 
Wip1 has a key role in restoring pre-stress cell homeosta-
sis by controlling critical cellular functions such as prolif-
eration, cell cycle arrest and programmed cell death after 
p53-dependent stress stimuli [134–138].

Wip1 is essential for immune cell development and 
differentiation including T and B cells, neutrophils and 
macrophages by regulating p53-dependent and p53-inde-
pendent p38 MAPK-STAT1 pathways [138–141]. PPM1D 
knock-out mice exhibit both neutrophilia and an abnor-
mal lymphoid histopathology in thymus and spleen, 
accompanied by severe defects in immune cell functions 
[140–142]. Not surprisingly, PPM1D-depleted mice also 
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show increased susceptibility to pathogens and viral 
infections [143].

For example, PPM1D negatively regulates pro-inflam-
matory cytokine production of neutrophils after bacterial 
infection [144]. Accordingly, neutrophils from Wip1-defi-
cient mice release increased amounts of pro-inflamma-
tory cytokines and facors such as elastase, lactoferrin, and 
myeloperoxidase upon LPS stimulation. Apparently due 
to this gain in bactericidal potency, Wip1-KO mice can 
better contain Staphylococcus aureus infection in a skin 
abscess model [144]. On the other hand, the enhanced 
neutrophil functions result in pronounced LPS-induced 
lung damage accompanied by increased neutrophil infil-
tration and inflammation in the Wip1-KO mice [144]. 
Ppm1d-/-mice display a pro-inflammatory phenotype in 
skin and intestine with elevated levels of the cytokines 
TNFα, IL-6, IL-12 and IL-17 [143]. Finally, Wip1 appears 
to be involved in LPS-induced neuro-inflammation in a 
blood–brain-barrier (BBB) model, where Wip1 expres-
sion levels decreased upon LPS stimulation and the 
decrease in Wip1 is accompanied by augmented levels of 
the inflammatory cytokines TNFα, IL-1β, IL-12 and IL-6 
[145].

While Wip1 expression is positively regulated by 
NF-κB [146], the p65 subunit of the transcription factor 
itself seems to be the main target of Wip1 activity [147]. 
In particular, Wip1 dephosphorylates p-Ser-536 of the 
NF-κB p65 subunit and this phospho-residue is essential 
for the transactivation function of p65 in recruiting the 
co-activator p300 [147]. Thus, this p65-directed activity 
of Wip1/ PPM1D can nicely explain the negative effect of 
this phosphatase on the expression of NF-κB-dependent 
inflammatory factors such as IL-1, IL-6 and IL-8 [147]. 
Together, the phosphatase Wip1 appears as a further 
PPM family member involved in negative feedback regu-
lation of TLR-induced NF-κB signaling.

Protein phosphatase Mg2+/Mn2+ dependent 1E 
(PPM1E)
The relatively large, 755 amino acids containing PPM 
family member PPM1E localizes to the nucleus and is 
predominantly expressed in brain and testis [148]. Only 
one prominent study on inflammatory pathway con-
trol by PPM1E has been published so far. PPM1E seems 
to indirectly affect TLR signaling, and its action has 
opposing consequences compared to other PPM family 
members [149]. In particular, expression of miR-135-5b 
in human cultured monocytes downregulates PPM1E 
expression and thereby activates AMPKα signaling via 
increased phosphorylation of AMPKa residue Thr-172. 
This yields in a marked attenuation of LPS-induced 
TNFα expression by suppression of ROS production and 
NF-κB activation [149]. Therefore, PPM1E positively 

contributes to LPS-induced responses by keeping the 
negative player—AMPK—under control.

Protein phosphatase, Mg2+/Mn2+ dependent 1F 
(PPM1F)
The ubiquitously expressed cytoplasmic PPM1F is 
implicated in determining integrin-mediated cell adhe-
sion, migration and survival and plays a key role in 
controlling neuronal functions by regulating Ca2+/Calm-
odulin-dependent kinase cascades [150–155]. Accord-
ingly, ppm1f-/-mice show severe developmental defects 
and die around day E10.5 in utero [155]. PPM1F function 
in innate immunity has not been intensively studied, but 
recently PPM1F has been recognized as negative regu-
lator of the IKK-NF-κB pathway in response to DNA-
damage by dephosphorylating p-Thr-187 of TAK1 [156]. 
Accordingly, cells with low expression levels of PPM1F 
exhibit higher TAK1 activity and, in turn, show increased 
nuclear translocation of NF-κB and upregulation of anti-
apoptotic proteins to promote cell survival and thus 
chemo-resistance [156]. Consequently, PPM1F might 
also play a role in the TLR-TAK1-NF-κB axis. Support-
ing this idea, Zhang et  al. reported that the production 
of inflammatory cytokines and chemokines (IL-6, TNFα 
and CXCL10) was significantly augmented in THP1 
PPM1F knock-down macrophages upon LPS-TLR4 stim-
ulation [157]. Hence, it is conceivable that PPM1F sup-
presses the TLR4-TAK1-NF-κB signaling pathway similar 
to other PPM family members. Nevertheless, the molec-
ular substrate(s) and the target residue(s) of PPM1F upon 
LPS stimulation still remain to be clarified.

Protein phosphatase Mg2+/Mn2+ dependent 1L 
(PPM1L/ε)
PPM1L is a phosphatase localized at the endoplasmic 
reticulum (ER) [158]. Similar to other family members, 
PPM1L appears to be capable to suppress the TAK1-
NF-κB pathway. Li and colleagues analyzed IL-1 / IL-
1-receptor signaling and found that the activities of JNK 
and p38 were constantly counterregulated by PPM1L 
[159]. PPM1L associates with and dephosphorylates 
TAK1 and thereby inhibits MKK4/MKK6 binding to 
TAK1. On the other hand, the activity of PPM1L is dimin-
ished upon IL-1 treatment of cells resulting in transient 
activation of transcription factors such as AP-1 [159]. 
Accordingly, PPM1L appears as a further anti-inflamma-
tory regulator [105, 159]. In line with that, a recent study 
assigned PPM1L a function overlapping with the activi-
ties of PPM1A and PPM1B: inhibiting NF-κB signaling 
via dephosphorylation of IKKβ. Clearly, PPM1L directly 
binds IKKβ and dephosphorylates p-Ser-177/p-Ser-181 
in IKKβ, which are phosphorylated in macrophages by 
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TAK1 upon TLR signaling [160]. Accordingly, PPM1L 
activity diminishes the release of inflammatory cytokines 
IL-1β, IL-6, TNF-α, and IL-12 [160], an activity, which 
could help to prevent excessive inflammatory responses.

Protein phosphatase, Mg2+/Mn2+ dependent 1 M 
(PPM1M/η)
PPM1M accumulates in the nucleus and its function cor-
relates with other members of the PPM family such as 
PPM1A and B in selectively acting on IKKβ downstream 
of TAK1 to suppress IL-1-induced NF-κB activation 
[161]. Accordingly, this phosphatase appears to suppress 
the TLR-initiated TAK1-NF-κB axis in a way similar to 
other PPM family members.

Protein phosphatase Mg2+/Mn2+ dependent 1 N 
(PPM1N)
PPM1N is one of the least studied members of the PPM 
family. However, genome-wide investigations revealed 
that PPM1N expression in bone marrow macrophages 
was up-regulated upon B. abortus infection [162], sug-
gesting a function of PPM1N either in the immune 
response towards bacteria or in inflammation.

Conclusion
Identifying the involved protein phosphatases and 
their molecular targets in TLR signaling provides a 
rational basis to expand existing therapeutic strategies 
in acute and chronic inflammation as well as autoim-
mune diseases [163]. A detailed knowledge of the pro-
tein phosphatases, which counteract the various kinases 
downstream of TLR stimulation, could also open up 
novel opportunities to cope with viral or bacterial path-
ogens that evade host immune responses. The serine/
threonine phosphatases involved in TLR signaling and 
their point of interception as presented in this review is 
summarized in   Fig. 4.  It has become clear that numer-
ous pathogenic bacteria interfere with innate immu-
nity by exploiting host protein phosphatases. In this 
regard, the protein tyrosine phosphatase SHP-1 is acti-
vated by Bordetella pertussis to block iNOS expression 
and NO production in TLR-activated macrophages and 
also exploited by Neisseria gonorrhoeae or Moraxella 
catarrhalis to block IL-1β production via regulation of 
the SYK-TLR4-CEACAM1 complex [164, 165]. Simi-
larly, Listeria monocytogenes directly hijacks PPM1A and 
PPM1B to dephosphorylate and translocate SIRT2 into 
the nucleus to promote effective infection [166]. Since 
these two Ser/Thr phosphatases are also an integral part 
of a negative regulatory feedback loop in TLR signal-
ing, it is plausible that Listeria—triggered PPM1A and 

PPM1B activities also interfere with TLR-initiated innate 
immune signaling.

In general, pinpointing the contribution of a particular 
protein phosphatase to specific cellular events remains 
a challenge for several reasons: (i) in contrast to protein 
kinases there is a lack of potent and selective phosphatase 
inhibitors; (ii) the action of a phosphatase can in many 
cases only be revealed upon a positive stimulus, hamper-
ing the direct evaluation of phosphatase action; (iii) the 
low complexity and essential function of catalytic subu-
nits, especially in the case of PPPs, often leads to lethal 
phenotypes in knock-out approaches; and (iv) redun-
dancy between closely related enzymes, as seen for PPMs, 
often results in similar phenotypes upon overexpression.

The absence of highly specific enzyme inhibitors is a 
major obstacle for the phosphatase field in general. In 
the past, inhibitors such as ocadaic acid or microcyst-
ins have been widely used, but the explanatory power 
of such findings is often limited as PP1, PP2A, PP4, and 
PP6, with their extensive homology, are all sensitive 
to the same class of inhibitors. Thus, it is desirable, but 
also more demanding, to complement such pharmacolo-
gial approaches with genetic manipulation of individual 
phosphatases. However, one has to be aware that genetic 
approaches requiring prolonged selection, e.g. generation 
of clonal knock-out or knock-down cell lines, can trigger 
compensatory mechanisms that entail altered expres-
sion of related enzymes. Such compensatory activity by 
other, related phosphatases with overlapping substrate 
spectrum can easily mask a phenotype. Therefore, novel 
small molecule inhibitors or activators of specific phos-
phatases that allosterically interfere with enzyme activ-
ity of the catalytic subunit are welcome additions to the 
investigators toolbox [167, 168]. Furthermore, innovative 
strategies triggering the rapid and selective degradation 
of a particular phosphatase allow instant interrogation 
of protein function in the model system of choice [169]. 
Together, these approaches are poised to overcome cur-
rent limitations in phosphatase research.

Given the prominent role of protein phosphorylation 
as a regulatory principle in TLR signaling, it is obvious, 
that manipulation of phosphatase activity represents a 
promising strategy to control innate immune responses. 
As we have discussed, there are numerous examples of 
protein phosphatases exerting negative regulatory roles 
in TLR signaling, but the opposite situation, a positive 
contribution to NF-κB activation, is also known for some 
phosphatase enzymes. Accordingly, a suite of small mol-
ecule stimulators as well as inhibitors of defined protein 
phosphatases would be ideally suited to allow a transient 
tuning of the TLR pathway in either direction: towards 
increased signaling output, when the ultimate goal is to 
limit infectious agents, or towards dampened responses 
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in a situation of exaggerated or chronic inflammation. 
Though such approaches are still in their infancy, it is 
about time to unleash the translational potential of pro-
tein phosphatases in innate immunity.

Abbreviations
AMPKα: 5′ AMP-activated protein kinase; AP-1: Activation protein-1; CUEDC2: 
Coupling of ubiquitin conjugation to ER degradation (CUE) domain-contain-
ing protein 2; DAMPs: Damage-associated molecular patterns (DAMPs); FCP/
SCP: TFIIF-associating component of RNA polymerase II C-terminal domain IL-; 
GADD34: Growth arrest and DNA damage-inducible protein; HAD: Halo acid 
dehydrogenase; 1R: Interleukin 1 receptor; IL-1R: Interleukin-1 receptor; IRFs: 
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Interferon regulatory factors; IRAKs: Interleukin-1 receptor-associated kinases; 
IκB: Inhibitory κappa B; IKK: IκB kinase; LPS: Lipopolysaccharides; MAPK: 
Mitogen-activated protein kinase; MAVS: Mitochondrial antiviral-signaling 
protein; MKK: Mitogen-activated protein kinase kinase; MST4: Mammalian 
STE20-like protein kinase 4; MyD88: Myeloid differentiation primary response 
88; NEMO: NF-Kappa-B essential modulator; NFAT: Nuclear factor of activated 
T-cells; NF-κB: Nuclear factor kappa-light chain enhancer of activated B-cells; 
NIK: NF-kappa-B-inducing kinase; PAM3CSK4: Tripalmitoylated lipopeptide; 
PAMPs: Pathogen-associated molecular patterns; PPM: Metal-dependent 
protein phosphatase; PPP: Phosphoprotein phosphatases; PSPs: Protein serine/
threonine phosphatases; RCAN-1: Regulator of calcineurin 1; RIPK: Receptor-
interacting serine/threonine-protein kinase; RLR: Retinoic acid-inducible 
Gene-I-like receptor; STAT1: Signal transducer and activator of transcription 
1; STING: Stimulator of interferon genes protein; TAK-1: Transforming growth 
factor-β-activated kinase 1; TANK: TRAF family member-associated NF-Kappa-B 
activator; TBK-1: TANK-binding kinase 1; TCR​: T cell receptor; TIR: Toll/interleu-
kin-1 receptor; TLR: Toll-like receptor; TRAF: Tumor necrosis factor receptor-
associated factor; TRIF: TIR-domain-containing adapter-inducing interferon-β; 
TRAM: TRIF-related adaptor molecule; TAB1/2: TAK1-binding protein 1/2; TNF-α: 
Tumor necrosis factor alpha; WIP1: Wild-type p53-induced phosphatase 1.
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