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Abstract: Transposable elements (TEs) are DNA fragments that can be replicated or transposed within
a genome. TEs make up a high proportion of the plant genome and contribute to genetic diversity
and evolution, affecting genome structure or gene activity. Miniature inverted-repeat transposable
elements (MITEs) are short, non-autonomous class II DNA transposable elements. MITEs have
specific sequences, target site duplications (TSDs), and terminal inverted repeats(TIRs), which are
characteristics of the classification of MITE families. In this study, a Stowaway-like MITE, PTE-2, was
activated in transgenic Chinese cabbage lines. PTE-2 was revealed by in silico analysis as the putative
activated element in transgenic Chinese cabbage lines. To verify the in silico analysis data, MITE
insertion polymorphism (MIP) PCR was conducted and PTE-2 was confirmed to be activated in
transgenic Chinese cabbage lines. The activation tendency of the copy elements of PTE-2 at different
loci was also analyzed and only one more element was activated in the transgenic Chinese cabbage
lines. Analyzing the sequence of MIP PCR products, the TSD sequence and TIR motif of PTE-2
were identified and matched to the characteristics of the Stowaway-like MITE family. In addition, the
flanking region of PTE-2 was modified when PTE-2 was activated.

Keywords: Brassica rapa; transposable elements; miniature inverted-repeat transposable elements;
next-generation sequencing; Stowaway-like family

1. Introduction

Transposable elements(TEs) are genetic components that can be replicated or trans-
posed within a genome [1]. TEs can be transposed by transposase (TPase) or replicated by re-
verse transcriptase (RT), which is encoded in autonomous TEs. Although non-autonomous
TEs do not encode TPase or RT, it depends on the enzymes produced by autonomous
TEs [2]. When autonomous TEs are excised, its derivatives arise from abortive gap repair
at the excision site [2]. If the derivatives have identical terminal sequences to the original
autonomous TEs, they can be recognized and activated by the TPase produced from the
autonomous TEs. Derivatives with a terminal inverted repeats (TIRs) motif and target site
duplications (TSDs), without any coding domains, are called miniature inverted-repeat
transposable elements (MITEs). MITEs are non-autonomous class II DNA TEs. They are
short (<800 bp), AT-rich, and present in high copy numbers in eukaryotic genomes [3].

Wicker et al. [4] proposed a hierarchical classification system for TEs. According to
this classification system, superfamilies are distinguished by the structure of their coding
proteins. In plants, six superfamilies of MITEs have been reported and abbreviated as three-
letter codes: Tc1/mariner (DTT), PIF/Harbinger (DTH), hAT (DTA), Mutator (DTM), CACTA
(DTC), and P element (DTP) [4,5]. Each superfamily contains several families distinguished
by their conserved DNA sequences. As MITEs do not encode TPase or other proteins, it
is difficult to classify MITEs by their protein domains. However, MITEs are classified by
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sequence homology compared with autonomous TEs. In particular, the TIR motif and TSD
sequence are important for classifying MITEs. Two main families of MITEs are major in
plants: Tourist-like family and Stowaway-like family. Tourist and Stowaway were the first
MITEs elements discovered [6,7]. The Tourist-like family has target site preferences of
3 bp, TAA or TTA, whereas the Stowaway-like family has TA as the TSD. The autonomous
superfamily encoding the TPase for the transposition of the Tourist-like and Stowaway-like
MITEs are the PIF/Harbinger superfamily and Tc1/mariner superfamily, respectively, which
share the same TSD sequence and TIR motif as the MITEs [8]. The other family, the hAT
superfamily, also has the unique features of an 8 bp TSD sequence and a short TIR motif [9].

TEs are activated or repressed under stress conditions [10]. In stress conditions, plant
tissue culture is the acknowledged motive for TEs activation. In rice, the retrotransposon
Tos17 has been cultured for a longer period in vitro, and a high frequency of its activation
has been detected [11]. Several TEs in diverse plants have also been activated under
tissue culture, such as the Spm and TCUP elements in maize [12,13] and Tto1, Tto2, and
Tnt1 elements in tobacco [14]. Plant tissue culture forms the basis of biotechnology, such
as genetic transformation and subsequent regeneration. There are few studies on the
activation of TEs during genetic transformation. Tag1 and Tos17 are the retrotransposons
in Arabidopsis and rice, respectively. Both showed a higher transposition activation ratio
in transgenic plants than in regenerated plants [15,16]. In Chinese cabbage (also called
kimchi cabbage), a MITE named PTE-1 was found to be activated by the transformation
procedure [17]. In rice, mPing, a MITE in the rice genome, was mobilized in transgenic rice
plants [18].

Using the resequencing data of pseudomolecule of ‘CT001’ and Chinese cabbage
transgenic lines, a Stowaway-like MITE named PTE-2 was characterized in this study.

2. Materials and Methods
2.1. Plant Materials

Brassica rapa (B. rapa) L. ssp. pekinensis, inbred line ‘CT001’ was used to develop
transgenic Chinese cabbage lines. The ‘CT001’ inbred line was used as the control line for
comparison with transgenic lines.

Five transgenic Chinese cabbage lines were developed from ‘CT001’ using Agrobac-
terium-mediated transformation. ‘IGA’; the Glutathione-S-transferase (GST) gene down-
regulated transgenic lines [19], ‘COPB2’; the Tetranychus urticae-resistant transgenic lines [20],
‘BTTP’; the Bacillus thuringiensis (Bt)-resistant transgenic lines with transit peptide, ‘PPi’; the
self-incompatibility down-regulated lines [21], and ‘BT’; the other Bt-resistant transgenic
lines were analyzed for transposition and characteristics of MITE.

2.2. Identification of Activated PTE-2 by In Silico Analysis

To detect activated MITEs in transgenic Chinese cabbage lines, a three-point analysis
was conducted in a previous study [17]. The resequencing data of ‘IGA’ transgenic lines
were aligned and compared with MITE-mapped ‘CT001’ pseudomolecule. The read depths
at three points of the resequencing data, 10 bp upstream from PTE-2 start locus, the middle
of PTE-2 locus, and 10 bp downstream from PTE-2 end locus, were measured. These three
points were termed UP, ON, and DN, respectively (Figure 1).

2.3. MITE Insertion Polymorphism (MIP) PCR Analysis

Genomic DNA of Chinese cabbage was extracted from leaves using a RICE buffer
[500 mM NaCl, 100 mM Tris-HCl (pH 8.0), 50 mM EDTA, and 1.25% (w/v) SDS]. MIP PCR
analysis was used to detect MITEs transposition status (Figure 2). Forward and reverse
primers were designed from 200 to 300 bp regions flanking the MITE locus. If MITE is
activated, the length of the amplicon should be shorter than that of the inactivated amplicon.
Primer sequences were obtained from previous research: 5′-TAT ACA TGA CGA GTA TAC
GAG GG-3′ as the forward primer and 5′-CCA CAA GTG ATC GTT GTC TAG-3′ as the
reverse primer [17]. BioFACT™ 2X Taq PCR Pre-Mix (BIOFACT, Seoul, Korea) was used to
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carry out PCR amplification with 10 pmol of forward primer, 10 pmol of reverse primer,
and 50–100 ng of gDNA template. PCR amplification was conducted using a thermocy-
cler (Applied Biosystem, Carlsbad, CA, USA) with an amplification program comprising
a pre-denaturation step at 95 ◦C for 2 min, 35 cycles (denaturation step at 95 ◦C for 20 s,
annealing step at 61 ◦C for 30 s, and extension step at 72 ◦C for 1 min) and a final extension
step at 72 ◦C for 5 min.
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Figure 2. Identification of MITE activation polymorphism using MIP PCR analysis. a, MITE inacti-
vated amplicon; b, MITE activated amplicon; F, Forward primer; R, Reverse primer.

2.4. Detection of the Other PTE-2 Elements at Different Loci

PTE-2 and copy elements at different loci within the Chinese cabbage genome were
investigated from the MITE-mapped pseudomolecule using the genome browser of ‘CT001’
(DNAcare, Seoul, Korea). MIP PCR was conducted for each locus to identify the activation
of copy elements. The primer sets used for the MIP PCR of the copy elements are listed in
Supplementary Table S1.

2.5. Confirmation of PTE-2 Structure and Classification

PTE-2 and its flanking regions were sequenced from the amplicons by MIP PCR. The
target amplicon was eluted from the loaded MIP PCR amplicon on a 1% agarose gel using
NucleoSpin Gel and a PCR Clean-up Kit (MACHENERY-NAGEL, Duren, Germany). To
obtain an accurate consensus sequence for MITEs, the eluted DNA fragment of interest
was cloned into the TOPO vector using the MG TA TOPO Cloning kit (MGmed, Seoul,
Korea). The consensus sequence was confirmed by multiple alignments created using CLC
Sequence Viewer 8.0 (QIAGEN, Hilden, Germany). PTE-2 structure was visualized using
the mfold web server (http://www.unafold.org/mfold/applications/dna-folding-form.
php/; accessed on 20 May 2020), which provides a predictive secondary structure using
FASTA format.

http://www.unafold.org/mfold/applications/dna-folding-form.php/
http://www.unafold.org/mfold/applications/dna-folding-form.php/
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3. Results
3.1. In Silico Detection of Activated MITE with NGS Analysis

P-MITE is a database of putative plant MITE information constructed using MITE in-
vestigation programs, MITE Digger, MITE-Hunter, and RSPB [5,22–24]. MITE information
of Chinese cabbage from P-MITE was mapped on a pseudomolecule of ‘CT001’. It was
discovered that 280,501 MITEs from the P-MITE database are distributed in the ‘CT001’
genome [17].

Among the MITE mapped on ‘CT001’, SQ041022219 was selected to be activated at
the locus of the ‘IGA’ 6 transgenic lines. SQ041022219 from P-MITE was designated PTE-2.

3.2. MIP PCR Analysis of PTE-2 in Transgenic Chinese Cabbage Lines

To verify the in silico analysis data of activated MITEs in ‘IGA’ transgenic lines, MIP
PCR was performed with advanced generations of ‘IGA’ lines. PTE-2 loci, which were
excised from ‘IGA’ 6 resequencing data, showed an activated status in the MIP PCR test
of the T1 ‘IGA’ 6 lines (Figure 3A). These results suggested that the selection of activated
MITEs by in silico analysis was valid.
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Figure 3. The activation analysis of the PTE-2 by MIP PCR analysis. (A) MIP PCR analysis of the
PTE-2 in the control line, ‘CT001’ and the ‘IGA’ transgenic lines. M, 100 bp DNA ladder; C, ‘CT001’;
lane, ‘IGA’ transgenic lines of the T1 generation advanced from ‘IGA’6. (B) MIP PCR analysis of the
PTE-2 in the control line, ‘CT001’ and four transgenic lines (‘COPB2’, ‘BTTP’, ‘PPi’, and ‘BT’). M,
100 bp DNA ladder; C, ‘CT001’; Lane, the transgenic lines. Black arrow, PTE-2-inserted amplicon;
White arrow, PTE-2-excised amplicon.

Each of the 15 plants from the ‘COPB2’, ‘BTTP’, ‘PPi’, and ‘BT’ transgenic lines was
used to analyze PTE-2 activation. PTE-2 was activated in several transgenic plants of
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four transgenic lines (Figure 3B). The length of PTE-2-excised MIP PCR products was
longer than that expected in the in silico analysis (Table 1 and Figure 3).

Table 1. PTE-2-excised detection combine mapping and read depth coverage.

Line UP z ON y DN x

‘CT001’ 6.3 8 6
‘IGA’6 7 0.09 3

z Read depth coverage at a point 10 bp upstream from PTE-2 start locus. y Read depth coverage at the middle of
PTE-2 locus. x The read depth coverage at the point 10 bp downstream from PTE-2 end locus.

TEs absence detection modules combined mapping and read depth coverage informa-
tion to identify reads providing evidence for the presence and for the absence, respectively.

3.3. MIP PCR Analysis of PTE-2 Copy Elements at Different Loci in Transgenic Chinese
Cabbage Lines

MITEs in the ‘CT001’ genome were classified by family and the location of each
MITE was analyzed. MITEs located in the intergenic region accounted for the largest
portion, whereas MITEs located in the exonic region accounted for only a few (Table S2
and Figure 4A). The copy elements that concluded the homologous sequences of PTE-2
were detected by the BLAST tool using the PTE-2 sequence as a query. Fifteen PTE-2 copy
elements were distributed in the ‘CT001’ genome (Table 2 and Figure 4B). Based on in silico
analysis, PTE-2 copy elements were mapped to the ‘CT001’ genome and distributed, except
for the A01, A05, and A10 chromosomes (Figure 4B). Fifteen copies (3, 1, 1, 2, 4, 2, and 2 on
chromosomes 2–4, 6–9, respectively) were positioned.

Genes 2022, 13, x FOR PEER REVIEW 6 of 13 
 

 

transgenic lines (Figure 5). In conclusion, although the copy elements had identical se-
quences, only a few copies were activated, and the activation tendencies were different. 

Table 2. PTE-2 copy elements at different loci in ‘CT001’ genome. 

cN z Chr y Start End Strand 
Length 

(bp) Identity x 

PTE-2 A06 637,582 637,854 + 273 100 
PTE-2_c1 A02 10,813,956 10,814,192 + 238 86.97 
PTE-2_c2 A02 16,240,447 16,240,682 + 237 86.08 
PTE-2_c3 A02 19,985,345 19,985,574 + 239 86.19 
PTE-2_c4 A03 26,668,867 26,669,128 - 278 82.01 
PTE-2_c5 A04 3,356,039 3,356,288 - 252 84.92 
PTE-2_c6 A06 5,906,593 5,906,822 + 233 87.12 
PTE-2_c7 A07 814,580 814,816 + 240 80.42 
PTE-2_c8 A07 1,776,244 1,776,481 + 239 88.28 
PTE-2_c9 A07 7,412,914 7,413,154 + 244 86.07 

PTE-2_c10 A07 16,535,966 16,536,195 + 236 80.51 
PTE-2_c11 A08 7,875,571 7,875,815 - 248 86.69 
PTE-2_c12 A08 8,011,522 8,011,748 - 229 87.77 
PTE-2_c13 A09 8,224,067 8,224,306 - 244 88.53 
PTE-2_c14 A09 26,516,545 26,516,815 + 280 82.50 

z PTE-2 copy elements, where N is the consecutive number. y MITEs loci on ‘CT001’ chromosome. 
Chr, chromosome. x The identity value was derived by a BLAST search using PTE-2 sequence as a 
query. 

 
Figure 4. In silico mapping of PTE-2 and copy elements in ‘CT001’ genome. (A) Distribution of MITE 
family in ‘CT001’ genome. DTT, Tc1/mariner; DTH, PIF/Harbinger; DTA, hAT; DTM, Mutator; DTC, 
CACTA; and DTP, P element. 1kup, 1k bp upstream from gene locus; 1kdn, 1k bp downstream from 
gene locus. (B) Location of PTE-2 and copy elements in ‘CT001’ genome. Black bar, PTE-2 and copy 
elements; Black arrow, PTE-2 position. 

Figure 4. In silico mapping of PTE-2 and copy elements in ‘CT001’ genome. (A) Distribution of MITE
family in ‘CT001’ genome. DTT, Tc1/mariner; DTH, PIF/Harbinger; DTA, hAT; DTM, Mutator; DTC,
CACTA; and DTP, P element. 1kup, 1k bp upstream from gene locus; 1kdn, 1k bp downstream from
gene locus. (B) Location of PTE-2 and copy elements in ‘CT001’ genome. Black bar, PTE-2 and copy
elements; Black arrow, PTE-2 position.
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Table 2. PTE-2 copy elements at different loci in ‘CT001’ genome.

cN z Chr y Start End Strand Length
(bp) Identity x

PTE-2 A06 637,582 637,854 + 273 100
PTE-2_c1 A02 10,813,956 10,814,192 + 238 86.97
PTE-2_c2 A02 16,240,447 16,240,682 + 237 86.08
PTE-2_c3 A02 19,985,345 19,985,574 + 239 86.19
PTE-2_c4 A03 26,668,867 26,669,128 - 278 82.01
PTE-2_c5 A04 3,356,039 3,356,288 - 252 84.92
PTE-2_c6 A06 5,906,593 5,906,822 + 233 87.12
PTE-2_c7 A07 814,580 814,816 + 240 80.42
PTE-2_c8 A07 1,776,244 1,776,481 + 239 88.28
PTE-2_c9 A07 7,412,914 7,413,154 + 244 86.07

PTE-2_c10 A07 16,535,966 16,536,195 + 236 80.51
PTE-2_c11 A08 7,875,571 7,875,815 - 248 86.69
PTE-2_c12 A08 8,011,522 8,011,748 - 229 87.77
PTE-2_c13 A09 8,224,067 8,224,306 - 244 88.53
PTE-2_c14 A09 26,516,545 26,516,815 + 280 82.50

z PTE-2 copy elements, where N is the consecutive number. y MITEs loci on ‘CT001’ chromosome. Chr, chromo-
some. x The identity value was derived by a BLAST search using PTE-2 sequence as a query.

To analyze the transposition activity of PTE-2 copy elements, MIP PCR analysis of the
copy elements was conducted. PTE-2 copy elements were selected to include all loci on
every chromosome and were located adjacent to the genic region. The copy elements were
named PTE-2_cN, where N is the consecutive number (Table 2).

MIP PCR analysis was conducted on transgenic lines that were identified to be acti-
vated. The PCR results of copy elements were compared to the loci of PTE-2 activated in
the transgenic lines (Figure 5). Among the PTE-2 copy elements, PTE-2_c1 was activated
in ‘COPB2’ and ‘BTTP’ transgenic lines and PTE-2_c10 was activated in ‘COPB2’ and
‘BT’ transgenic lines (Figure 5). In conclusion, although the copy elements had identical
sequences, only a few copies were activated, and the activation tendencies were different.

3.4. Structural Characterization of PTE-2

To identify the PTE-2 activated in the transgenic lines, MIP PCR amplicons were
sequenced. The sequences of the ‘CT001’ and PTE-2-activated transgenic lines were com-
pared to identify the PTE-2 sequence. The PTE-2-inserted sequences were collected from
more than three amplicons of the ‘CT001’ lines to obtain the PTE-2 consensus sequence.
The PTE-2 consensus sequence was used to confirm structural characteristics.
The secondary structure of PTE-2 was displayed using the mfold web server
(http://www.unafold.org/mfold/applications/dna-folding-form.php/; accessed on
20 May 2020), which provides a predictive secondary structure from the sequence of nucleic
acids [25]. The TIR motif was investigated from the PTE-2 secondary structure, which
analyzes hairpin-like base pairing with the 5′ and 3′ ends of PTE-2. The TSD sequence was
investigated by comparing the excision site of PTE-2-excised transgenic lines with that of
the PTE-2-inserted ‘CT001’ lines. The TSD sequence was duplicated and flanked by the
PTE-2 sequence at the PTE-2-inserted sequence, whereas the single TSD sequence remained
at the PTE-2-excised sequence. The superfamily of the PTE-2 was classified based on its TSD
sequence and TIR motif. The CENSOR web server (https://www.girinst.org/censor/; ac-
cessed on 9 June 2020) was used to confirm the similarity to previously described repetitive
DNA sequences collected in the Repbase database [26].

The PTE-2 had 78% of A+T content and was 268 bp in length. The TSD sequence of
PTE-2 was 5’–TA–3’, which is homologous to the Stowaway MITE family (Figure 6B). The
TIR motif of PTE-2 was determined to be 23 bp, with base pairing in the secondary structure
(Figure 6A). Using the consensus sequence of the PTE-2 as a query for the CENSOR tool, it
was masked to the Tc1/Mariner DNA transposon in the Brassica oleracea genome, matching
the 2 bp TSD sequence and the 26 bp TIR motif (Table 3).

http://www.unafold.org/mfold/applications/dna-folding-form.php/
https://www.girinst.org/censor/
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Figure 6. Confirmation of structural characteristics of the PTE-2. (A) A secondary structure was
constructed from consensus sequence of the PTE-2. The entropy values (∆G) indicating the stability
of this secondary structure was −19.16. The brace indicated the base pair produced by the TIR motif.
The TIR motif was determined by comparing the 5′ terminal sequence and reverse-complementary
sequence of 3′ terminal. (B) The remaining TSD sequence from excision of the PTE-2. Grey box, TSD
sequence; White arrow, TIR motif.
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Table 3. The structural characteristics of PTE-2.

A + T
(%)

Length
(bp)

TSD
(5′–3′)

TIR
(5′–3′) MITE Family

78 268 TA TTCANTCTGTTTCNNAATAAGTG Stowaway
(DTT)

3.5. Flanking Sequence Duplication of PTE-2-Excised Site

The product of the MIP PCR analysis with the PTE-2-excised fragment was identified
to be longer than expected (Figure 7A). The amplicons were sequenced to align them with
the PTE-2-inserted sequences. As a result, there were four nucleotide insertions adjacent to
the PTE-2-excised site, which were generated by duplication of the PTE-2 flanking sequence
(Figure 7B). The insertions were generated by duplications of the sequences before each
insertion (Figure 7B,C). In Figure 7C, a’ is a duplicated sequence from the a sequence and it
was 19 bp in length. Between a and a’, the 13 bp sequences, including (A)7 microsatellites,
were spaced. b’ is a duplicated sequence from the b sequence and it was 9 bp in length. Only
eight microsatellites were spaced between the b and b’. c’ is a duplicated sequence from the
c sequence and it is 12 bp in length. Between c and c’, 17 bp of sequences, including (T)11
microsatellites, were spaced. d’ is a duplicated sequence from the d sequence, and it was
15 bp in length. Between d and d’, 14 bp of sequences, including (A)8 microsatellites,
were spaced.
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4. Discussion

The number of studies on TEs has increased for many crops. McClintock observed that
the specific locus on chromosome 9 of maize had broken frequently and termed this locus
a dissociator (Ds) element. The Ds element can move to a new location within the genome
only if the activator (Ac) element has provided a transposase (TPase), which is responsible
for the transposition event of Ds element [27]. The Ac/Ds system represents the relationship
between autonomous TEs and non-autonomous TEs. TEs can be divided into two major
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classes. Class I retrotransposons possess a copy-and-paste transposition mechanism. The
class I element is transcribed into mRNA, the intermediate of its transposition, by RNA
polymerase II. The mRNA was converted into to cDNA by RT and integrated into the new
location of the genome. Because of its transposition event, the retrotransposon element
is replicated to a new location, remaining in the donor location. In contrast, class II DNA
transposons exhibit a cut-and-paste mechanism. Class II elements are excised from their
donor location and moved to a new location by TPase [28]. Although DNA transposons
are not replicated through the transposition process, PTE-2, a class II element, has mul-
tiple copies within the genome (Figure 4). MITEs are the major type of TEs, comprising
approximately 4.05% of the Chinese cabbage genome by having 6637 different elements
and 280,501 copies [17].

TEs make up a high proportion of the plant genome, accounting for 18.5% of Ara-
bidopsis thaliana, 58.7% of Glycine max, 39.5% of Oryza sativa (O. sativa), and 84.7% of Zea
mays [29]. The transposition and amplification of TEs contribute to genetic diversity and
evolution, affecting genome structure and the gene activity [30]. The TE-Thrust hypothesis
states that TEs have the potential to facilitate evolution by promoting ectopic recombination
and reformatting genomes by TE transposition and integration [31].

P-MITE is a database of MITE information for 41 plant species. A total of 174 MITE
families, including 1 DTC, 11 DTM, 16 DTT, 56 DTH, and 90 DTA families, in the B. rapa
reference genome were published in the P-MITE database [5,32]. The MITE information
derived from computer programs can be used to develop MITEs characteristics and to study
the dynamics of MITEs in plant genomes. From the structural characteristic analysis, PTE-2
was classified as the DTT family, the third largest family in B. rapa. Because the Tc1/Mariner
superfamily of DNA transposons was considered to be the origin of the Stowaway-like
family via its internal deletion [33], PTE-2 was classified into the Stowaway-like family
based on its 2 bp TSD sequence of 5′–TA–3′ and TIR motif homology to the Tc1/Mariner
superfamily. Although studies on the activity of MITE belonging to the DTT family are
limited, studies have shown that gene expression changes according to the activity of
MITE belonging to the DTM family. MnM2, a member of the Mutator family, regulates
the MnANR gene associated with the color of tobacco flowers in mulberry trees (Morus
notabilis). The expression level of the MnANR gene in transgenic plants was higher than
that in the wild type [34].

TEs are activated or repressed under stress conditions [10]. In stress conditions, plant
tissue culture is the acknowledged motive for MITE activation. In rice, mPing, a MITE
in the O. sativa genome, was mobilized in transgenic rice plants [18]. nDaiZ, a member
of the hATt family, was activated during tissue culture. In scutellum-induced rice plants,
nDaiZ was confirmed to transpose another genomic region through PCR analysis [35]. In
addition, peanut AhMITE1, was activated during tissue culture. AhMITE1 was activated
with a 6.25% transposition frequency in cultivar “Tifrunner” [36]. These results indicate
that tissue cultures may create an appropriate environment for transposon activation
in plants.

MITEs have contributed to the evolution of the Brassica genome by comparing
20 MITEs that have shown dynamic activity throughout the Brassica genus [37]. PTE-1,
which is a MITE in the Brassica genome, was found to be activated during the transforma-
tion procedure [17]. Likewise, PTE-2, PTE-2_c1, and PTE-2_c10 were partially activated in
transgenic Chinese cabbage lines (Figures 3 and 5).

Activated MITEs have been used to analyze the relationship between changes in the
characteristic variations in various food crops. In maize, early flowering was induced by
MITE insertion in major quantitative trait loci related to flowering time [38]. The MITE
insertion position was extraordinarily methylated and related to the ZmRap2.7 transcription
level. In addition, MITE inserted upstream of the multidrug and toxic compound extrusion
(MATE) gene increased aluminum toxicity as the gene expression changed [39]. As MITEs
were activated and inserted into the gene, color variations were observed in potato tuber
skin [40] and gentian petals [41].
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In general, DNA transposons left only a single TSD or footprint, the remnant se-
quence from the excised transposon sequence when TEs have been activated [42,43]. When
PTE-2 elements were activated, only a single TSD sequence was left at the excised site;
however, the sequences flanking the PTE-2-excised site were modified by generating in-
sertions in four regions. It was confirmed that nucleotides A and T remained in the PTE-2
adjacent region when activated (Figure 7B,C). When PTE-2 was activated, duplications
and mononucleotide repeats were generated near the PTE-2-excised site. A few studies
have analyzed the modifications induced by TEs transposition. The overall frequency of
nucleotide substitutions and indels increased in the TEs-excised site [44]. TEs activation can
trigger the generation of tandem repeats [45], and the genomic structure can be modified by
the insertion of MITEs without TPase. Gene expression may be affected by the activation
or inactivation of MITEs or by small RNA derived from MITEs [46,47].

5. Conclusions

TEs were composed of 40% B. rapa genome. In particular, MITEs, which are TEs,
have high copy numbers and play a significant role in genetic evolution. In this study,
PTE-2 was selected by resequencing data from in silico analysis. MIP PCR was performed
to identify MITE activation polymorphisms. The activation tendency of PTE-2 and copy
elements at different loci was confirmed in transgenic Chinese cabbage lines. Sequencing
and analysis of the TSD sequence and TIR motif of PTE-2 classified it as a Stowaway-like
family. In addition, when PTE-2 was activated, duplications and mononucleotide repeats
were generated adjacent to the PTE-2-excised site. The results of this study indicated that
MITEs are activated during tissue culture and transformation and will provide helpful
information for the genetic diversity of the plant genome.

6. Patents

We are in the process of obtaining a patent for the data in Korea (patent application
number 10-2021-0055780; application date 29 April 2021).
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