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Abstract

Background: Multidrug resistance (MDR) is a major problem in successful treatment of cancers. Human ABCG2, a member
of the ATP-binding cassette transporter superfamily, plays a key role in MDR and an important role in protecting cancer
stem cells. Knockout of ABCG2 had no apparent adverse effect on the mice. Thus, ABCG2 is an ideal target for development
of chemo-sensitizing agents for better treatment of drug resistant cancers and helping eradicate cancer stem cells.

Methods/Preliminary Findings: Using rational screening of representatives from a chemical compound library, we found a
novel inhibitor of ABCG2, PZ-39 (N-(4-chlorophenyl)-2-[(6-{[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl]amino}-1,3-benzothiazol-
2-yl)sulfanyl]acetamide), that has two modes of actions by inhibiting ABCG2 activity and by accelerating its lysosome-
dependent degradation. PZ-39 has no effect on ABCB1 and ABCC1-mediated drug efflux, resistance, and their expression,
indicating that it may be specific to ABCG2. Analyses of its analogue compounds showed that the pharmacophore of PZ-39
is benzothiazole linked to a triazine ring backbone.

Conclusion/Significance: Unlike any previously known ABCG2 transporter inhibitors, PZ-39 has a novel two-mode action by
inhibiting ABCG2 activity, an acute effect, and by accelerating lysosome-dependent degradation, a chronic effect. PZ-39 is
potentially a valuable probe for structure-function studies of ABCG2 and a lead compound for developing therapeutics
targeting ABCG2-mediated MDR in combinational cancer chemotherapy.

Citation: Peng H, Dong Z, Qi J, Yang Y, Liu Y, et al. (2009) A Novel Two Mode-Acting Inhibitor of ABCG2-Mediated Multidrug Transport and Resistance in Cancer
Chemotherapy. PLoS ONE 4(5): e5676. doi:10.1371/journal.pone.0005676

Editor: Paul Cobine, Auburn University, United States of America

Received March 30, 2009; Accepted May 1, 2009; Published May 24, 2009

Copyright: � 2009 Peng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by National Institutes of Health grants R01 CA120221 and R01 CA113384. ZD and YY were supported, in part, by the
NRSA T32 DK07519 and T32 HL07910 from the National Institutes of Health, respectively. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jianzhan@iupui.edu

¤ Current address: Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, People’s Republic of China

. These authors contributed equally to this work.

Introduction

Multidrug resistance (MDR) is a major problem in successful

treatment of cancers. Over-expression of some members of the

ABC (ATP-binding cassette) transporter superfamily has been

suggested to cause MDR. P-glycoprotein (MDR1/ABCB1),

multidrug resistance protein 1 (MRP1/ABCC1), and breast

cancer resistance protein (BCRP/ABCG2) are three major ABC

transporters that are major players in the clinical development of

MDR [1]. One of these members, ABCG2 which is thought to

exist and work as homo-oligomers of 8–12 subunits [2,3,4], has

also been implicated to play roles in protecting cancer stem cells,

resulting in drug resistance and failure of cancer chemotherapy

[5]. Anticancer drug substrates of ABCG2 include but are not

limited to the commonly used anticancer drugs such as

Adriamycin, mitoxantrone, and topotecan. Indeed, recent clinical

studies have shown that over-expression of ABCG2 in both adult

and childhood leukemia correlates very well with poor prognosis

(for a review see [6]). Knockout of ABCG2 had no apparent

adverse effect on the development, biochemistry, and life of the

mice [7]. All these previous observations make ABCG2 an ideal

target for development of chemo-sensitizing agents for better

treatment of drug resistant cancers and suggest that inhibiting

ABCG2 unlikely will cause any side effect if the inhibitor is specific

to ABCG2.

Compared with the well known drug resistance-causing ABC

transporters such as ABCB1 and ABCC1, ABCG2 was discovered

relatively recently and, thus, few specific inhibitors of ABCG2

have been reported. One of the known specific ABCG2 inhibitors

is the potent mycotoxin Fumitremorgin C (FTC) secreted from

Aspergillus fumigatus [8,9]. However, the neurotoxicity of FTC limits

its therapeutic potential. Analogues of FTC, such as Ko132 and

Ko143, have been developed with low toxicity [10], but not yet

known if effective in clinical trials. In addition, other inhibitors of
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ABCG2 have been reported [11,12]. However, these agents, such

as GF120918, appear to lack specificity due to their effect on

ABCB1 and/or ABCC1 [13,14]. Clearly, more specific ABCG2

inhibitors are needed for future development of potential chemo-

sensitizers to better treat drug resistant cancers.

In this paper, we report discovery of a novel specific ABCG2

inhibitor, PZ-39 (N-(4-chlorophenyl)-2-[(6-{[4,6-di(4-morpholi-

nyl)-1,3,5-triazin-2-yl]amino}-1,3-benzothiazol-2-yl) sulfanyl]ace-

tamide), which is much more effective in reversing ABCG2-

mediated drug resistance and less cytotoxic to cultured cells

compared with FTC. PZ-39 appears to have two modes of actions

by causing ABCG2 degradation (chronic) in addition to inhibiting

its activity (acute). The similar effect of three PZ-39 related

compounds revealed structural basis for the design of more potent

specific ABCG2 inhibitors in the future.

Results

Effect of compound PZ-39 on mitoxantrone
accumulation

Using a rational screening of representatives of different classes

of a small molecule compound library from Specs (www.specs.net)

for potential inhibitors of ABCG2-mediated drug efflux, we

identified a compound, N-(4-chlorophenyl)-2-[(6-{[4,6-di(4-mor-

pholinyl)-1,3,5-triazin-2-yl]amino}-1,3-benzothiazol-2-yl)sulfanyl]

acetamide) with benzothiazole linked to triazine ring backbone,

(named PZ-39 thereafter, see Fig. 1) that drastically reversed

mitoxantrone accumulation in MCF7/AdVp3000 cells that over-

express ABCG2. As shown in Fig. 2A, PZ-39 enhanced

mitoxantrone accumulation in MCF7/AdVp3000 but not the

parental sensitive MCF7 cells that do not produce ABCG2,

suggesting that ABCG2-mediated drug efflux has been inhibited.

Because MCF7/AdVp3000 cells also over-express other ABC

transporters such as ABCC3 in addition to ABCG2 [15], PZ-39

may inhibit ABC transporters other than ABCG2, leading to

increased mitoxantrone accumulation. To directly test if PZ-39

inhibits ABCG2, we performed similar studies using ABCG2-

transfected stable HEK293 (HEK293/ABCG2) cells [3]. As

shown in Fig. 2B, pre-incubation of cells with PZ-39 enhanced

intracellular mitoxantrone accumulation in HEK293/ABCG2 but

not in the vector-transfected control (HEK293/Vec) cells. Thus,

PZ-39 likely inhibits ABCG2-mediated mitoxantrone efflux.

Figs. 2A and 2B also show that PZ-39 at 3.3 mM achieved

equivalent level of effect to the known specific ABCG2 inhibitor

FTC at 10 mM, suggesting that PZ-39 may be ,3 times more

potent than FTC.

To further investigate the potency of PZ-39 for ABCG2, the

dose response effect of PZ-39 on mitoxantrone accumulation in

HEK293/ABCG2 cells were determined using flow cytometry. As

shown in Fig. 2C, the intracellular mitoxantrone level was

increased by PZ-39 in a dose-dependent manner. At 3.3 mM,

PZ-39 completely restored intracellular mitoxantrone level in

HEK293/ABCG2 cells. FTC, on the other hand, achieved similar

level of effect only at 10 mM (Fig. 2D), supporting the argument

that PZ-39 is more potent than FTC (see above).

Sensitization of drug resistance by PZ-39
To investigate the potential use of PZ-39 as a chemo-sensitizer

of ABCG2-mediated drug resistance, the effect of PZ-39 on drug

Figure 1. Schematic 2-dimensional chemical structures of PZ-39 and related compounds. PZ-39, N-(4-chlorophenyl)-2-[(6-{[4,6-di(4-
morpholinyl)-1,3,5-triazin-2-yl]amino}-1,3-benzothiazol-2-yl)sulfanyl]acetamide, and its analogues C6, C8 and E2 all contain a benzothiazole linked to a
triazine ring backbone. The three intact rings are labeled as A, B and C.
doi:10.1371/journal.pone.0005676.g001
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response of HEK293/ABCG2 cells was determined in the absence

or presence of 0.1 mM mitoxantrone which alone produced ,10%

cell killing. As shown in Fig. 3A and 3B, PZ-39 is not cytotoxic to

HEK293/ABCG2 cells and its IC50 is not measurable within the

concentration range used whereas the IC50 of FTC is ,24 mM. The

IC50 of PZ-39 and FTC required to sensitize mitoxantrone resistance

is ,15 nM and ,387 nM, respectively. The potency index of PZ-39

is estimated to be .1600 whereas that of FTC is only ,62 (Table 1).

To further investigate the inhibitory activity of PZ-39 on

ABCG2, the effects of PZ-39 on mitoxantrone cytotoxicity in

HEK293/ABCG2 cells were evaluated in the presence of three

different concentrations of PZ-39 (50, 200, and 500 nM) or the

vehicle control (0.1% DMSO). As shown in Fig. 3C, PZ-39 at

50 nM significantly reduced the IC50 of mitoxantrone with a

sensitization index of 0.4 (Table 2). At 500 nM, the sensitization

index of PZ-39 is 0.04 whereas that of FTC at the same

concentration is 0.26 (Fig. 3D and Table 2). These results show

that PZ-39 is a very potent novel ABCG2 inhibitor.

To investigate if PZ-39 can reverse ABCG2-mediated multidrug

resistance in a drug resistant cancer cell line, we used the drug-

selected MCF7/AdVp3000 cells and tested two additional

anticancer drug substrates of ABCG2, Adriamycin and campto-

thecin. As shown in Fig. 3E, PZ-39 at 200 nM drastically reduced

the resistance of MCF7/AdVp3000 to Adriamycin and Campto-

thecin similar to mitoxantrone, whereas the control FTC showed

much less sensitization effect for all three drugs compared to PZ-

39 at the same concentration.

Two modes of action
To understand the mechanism of PZ-39 action in inhibiting

ABCG2-mediated drug transport, we first investigated the kinetics

of PZ-39 inhibition using isolated inside-out membrane vesicles

[16]. We determined the change in mitoxantrone uptake in the

presence of different concentrations of PZ-39. As shown in the

Lineweaver-Burk plot (Fig. 4A), the Km and Vmax of mitoxan-

trone transport in the absence of PZ-39 were estimated to be

2.3 mM and 455 pmol/mg protein, respectively. It appears that

both the Km and Vmax of mitoxantrone transport have been

decreased in the presence of PZ-39 with an estimated Ki of

,0.52 mM, suggesting that PZ-39 behaves as a mixed-type

inhibitor of mitoxantrone transport [17]. Because it was also

originally speculated that some inhibitors would compete with the

ATP-binding site on ABCG2 transporter, we performed another

experiment using ATP as a varying substrate. As shown in Fig. 4B,

both the Km and Vmax of mitoxantrone transport were also

altered by PZ-39. Thus, our study showed that the process of

mitoxantrone transport and ATP binding may be inhibited by PZ-

39 with a mixed type of mechanism. Likely, PZ-39 binds to a

different site on ABCG2 from both mitoxantrone and ATP, not

competitive inhibitor of either one of them.

We next tested if PZ-39 possibly inhibits ABCG2 oligomeriza-

tion since ABCG2 has been suggested to function as a homodimer

or higher forms of oligomers and oligomerization may be used as

target for therapeutic drug development [2,3]. For this purpose,

co-immunoprecipitation of two differentially tagged ABCG2 was

performed as previously described [2] following a 6-hr treatment

with PZ-39 at 3.3 mM. However, no effect of PZ-39 on ABCG2

co-immunoprecipitation was found (supplemental Fig. S1),

suggesting that PZ-39 does not affect ABCG2 oligomerization.

To further examine the mechanism of PZ-39 effect on ABCG2,

we performed a western blot analysis of ABCG2 expression

following PZ-39 treatment. As shown in Fig. 5A, the steady state

Figure 2. Effect of PZ-39 on intracellular mitoxantrone accumulation. A and B, mitoxantrone accumulation in MCF7 or its drug-resistant
subline MCF7/AdVp3000 (A) and HEK293 cells transfected with vector or ABCG2 (B) following a 30 minute incubation in the absence or presence of
PZ-39 (3.3 mM) or FTC (10 mM). The data are means6SD from three independent experiments (*P,0.05; **P,0.01 compared with DMSO vehicle). C
and D, dose response of PZ-39 and FTC in restoring mitoxantrone accumulation in ABCG2-transfected HEK293 cells. The thick line shows the level of
mitoxantrone accumulation in vector-transfected HEK293 cells, serving as a control.
doi:10.1371/journal.pone.0005676.g002
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level of ABCG2 protein drastically decreased at 1 day after PZ-39

treatment. But, it had only marginal decrease at 2 hours after PZ-

39 treatment. As described above, PZ-39 was able to inhibit

ABCG2-mediated mitoxantrone efflux of drug resistant cells with

1 hr of incubation. These findings suggest that PZ-39 may have

two modes of action by inhibiting the activity (acute effect) and

expression (chronic effect) of ABCG2 and consistent with our

observation that PZ-39 is about 3 times better than FTC in drug

accumulation assay (acute effect) but ,7 times more potent in

drug sensitization assay (chronic effect).

To determine if the chronic effect of PZ-39 on ABCG2

expression is at the mRNA level, we performed real-time RT-PCR

analysis of MCF7/AdVp3000 and HEK293/ABCG2 cells treated

with PZ-39 for various times up to 3 days. No significant change

was found in ABCG2 mRNA level following PZ-39 treatment in

either cell line (see supplemental Fig. S2). Thus, PZ-39 unlikely

affects ABCG2 expression at its mRNA level. We next

hypothesized that the mechanism of PZ-39-mediated inhibition

would be a posttranscriptional process and examined the

possibility that PZ-39 may accelerate the degradation of ABCG2.

To test this possibility, HEK293/ABCG2 cells were pre-treated

with cycloheximide, which acts by inhibiting elongation during

protein synthesis, followed by treatment with PZ-39 for various

times to determine ABCG2 degradation rate. As shown in Fig. 5B,

the loss of ABCG2 in cells treated with a combination of PZ-39

and cycloheximide was much faster than that of the control

Figure 3. Effect of PZ-39 on sensitizing drug resistance. A and B, potency index of PZ-39 compared with FTC in reversing mitoxantrone
resistance. HEK293/ABCG2 cells were treated without or with 0.1 mM (IC10) mitoxantrone in the absence or presence of different concentrations of PZ-
39 (A) or FTC (B) followed by SRB assay. The data are a representative of four independent experiments. C and D, sensitization index of PZ-39 (C)
compared with FTC (D) in HEK293/ABCG2 cells. HEK293/ABCG2 cells were treated with various concentrations of mitoxantrone in the absence or
presence of different concentrations of PZ-39 followed by SRB assay. The data are a representative of four independent experiments. E, multidrug
sensitization index of PZ-39 in drug-selected MCF7/AdVp3000 cells. MCF7/AdVp3000 cells were treated with various concentrations of adriamycin
(Adr), camptothecin (Cpt), or mitoxantrone (MX) in the presence of DMSO (vehicle), 200 nM PZ-39, or FTC followed by SRB assay. Sensitization index
was calculated using IC50 of mitoxantrone in the absence or presence of PZ-39 or FTC. The data shown are mean6SD of three independent
experiments.
doi:10.1371/journal.pone.0005676.g003
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treatment without PZ-39. The half-life of ABCG2 in the presence

of PZ-39 is estimated to be ,5 hrs whereas it is stable with an

estimated half-life of ,54 hrs in the control (Fig. 5C). Thus, PZ-39

likely accelerates the degradation of ABCG2 protein.

Effect of PZ-39 on ABCG2 conformation and stability
The accelerated degradation of ABCG2 by PZ-39 may be due

to that PZ-39 induces conformational change and target ABCG2

for degradation. To determine if PZ-39 potentially causes

conformational changes of ABCG2, we used the monoclonal

antibody 5D3 which has been reported previously to bind to

ABCG2 on cell surface more readily in the presence of ABCG2

inhibitors presumably due to inhibitor-induced conformational

changes [12,18]. As shown in Fig. 5D, PZ-39 caused an increase in

5D3 staining, suggesting a possible conformational change of

ABCG2 upon PZ-39 binding. FTC also increased 5D3 staining as

expected. However, it did not affect the level of ABCG2 (Fig. 5E),

suggesting that the conformational change induced by FTC and

PZ-39 may be different. It has been reported recently that two

distinct pathways exist for degradation of wild-type and mutant

ABCG2 proteins [19]. While wild-type and correctly-folded

protein is degraded in lysosomes, the mutant and misfolded

protein is involved in ubiquitin-mediated protein degradation in

proteasomes. To further determine the mechanism of PZ-39-

induced ABCG2 degradation, we employed Bafilomycin A1, an

inhibitor of protein degradation in lysosomes, and MG-132, a

proteosome inhibitor. As shown in Fig. 5F, co-treatment of cells

with Bafilomycin A1 and PZ-39 inhibited PZ-39-induced ABCG2

degradation whereas co-treatment with MG-132 and PZ-39 did

not, indicating that PZ-39-induced ABCG2 degradation is likely

lysosome-dependent. Taken together, we conclude that PZ-39

causes conformational change of ABCG2 and targets it for normal

degradation in lysosomes.

Effect of PZ-39 on ABCB1- or ABCC1-mediated
drug transport

To determine the specificity of PZ-39, we tested the effect of PZ-

39 on the other two important ABC transporters well known in

MDR, ABCB1 and ABCC1. The effect of PZ-39 on ABCB1 and

ABCC1-mediated decrease in intracellular Adriamycin accumu-

lation was tested using MCF7 cells-transfected with ABCB1

(BC19) [20] and HEK293 cells-transfected with ABCC1

(HEK293/ABCC1) [16,21]. We found no effect of PZ-39 on the

activity of ABCB1 and ABCC1 in decreasing Adriamycin

accumulation (see supplemental Fig. S3A). We also found no

effect of PZ-39 on the steady state protein level of ABCB1 and

ABCC1 after 3 days of treatment (Fig. S3B). Thus, likely PZ-39 is

specific to ABCG2 among these three well known MDR-causing

ABC transporters that are believed to play important roles in

clinical drug resistance.

Effect of PZ-39 analogues on ABCG2
To better understand the pharmacophore of PZ-39, we

apprehended 3 analogues of PZ-39 for drug accumulation and

resistance assays using HEK293/ABCG2 cells in comparison with

PZ-39. These analogues (C6, C8, and E2) all have the same intact

rings A, B and C as PZ-39 but with different side groups (Fig. 1). All

three analogues had similar activity as PZ-39 in enhancing

mitoxantrone accumulation (Fig. 6A) and sensitizing mitoxantrone

resistance in HEK293/ABCG2 (Fig. 6B). To determine the chronic

effect of these analogues on ABCG2 expression, we performed a

western blot analysis following treatment with C6, C8, and E2 for

various times up to 3 days. As shown in Fig. 6C, all three analogues

caused the decreased expression of ABCG2. Furthermore, all these

analogues also caused conformational changes in ABCG2 similar to

PZ-39 (Fig. 6D). Thus, likely the benzothiazole linked to a triazine

ring backbone may be the core structure for binding to and

inhibiting ABCG2 function and stability.

Discussion

In this study, we investigated a novel potent specific inhibitor of

human ABCG2, PZ-39, as a potential therapeutic agent to

sensitize drug resistance in cancer chemotherapy. PZ-39 contains

benzothiazole linked to a triazine ring backbone. Its mechanism of

action appears to be in two modes; mixed type inhibition in drug

transport function and accelerated lysosome-dependent degrada-

tion of ABCG2. PZ-39 is not cytotoxic itself with an IC50 of

.24 mM while being very potent in sensitizing MDR of cancer

cells over-expressing ABCG2.

Many previously reported ABCG2 inhibitors have a broad-

spectrum of ABC transporter targets. ABCG2 inhibitor

GF120918, for example, in fact, inhibits ABCB1 function more

potently than ABCG2. Until now, very few compounds have been

identified as specific inhibitors of ABCG2. One such example is

the non-toxic FTC derivative, Ko143. It is more potent than other

FTC analogues, and has no toxicity in mice at 10–50 mg/kg oral

dose [10]. Recently, two of the flavone compounds, 6-prenylchry-

sin and tectochrysin, have been shown to be specific for ABCG2

and no interaction was detected with either ABCB1 or ABCC1

[22]. Using high throughput screening, Henrich et al. found

several compounds that have similar or less inhibitory activity

compared with FTC [11,12]. Nevertheless, none of these reported

specific ABCG2 inhibitors has been tested clinically.

Compared to some of the past known specific ABCG2

inhibitors, such as FTC, the novel compound PZ-39 has three

Table 1. Potency index of PZ-39 in sensitizing drug resistance
of HEK293/ABCG2 cells.

Inhibitors IC50 (mM)

Inhibitor alone Inhibitor+MXa Potency Indexb

PZ-39 .24c 0.01560.005 .1600

FTC 2461.04 0.38760.054 62

aMX = mitoxantrone at 0.1 mM which produces ,10% inhibition of growth
(IC10).

bPotency Index = ratio of inhibitor IC50 in the absence and presence of
anticancer drug mitoxantrone at low concentration (,IC10).

cPZ-39 has no measurable cytotoxicity within the concentration range used and
its IC50 value was estimated to be bigger than that of FTC which is ,24 mM.

doi:10.1371/journal.pone.0005676.t001

Table 2. Sensitization index of PZ-39 in HEK293/ABCG2 cells.

Inhibitors Mitoxantrone IC50 (nM)

50 nM (SIa) 200 nM (SI) 500 nM (SI)

DMSO 551.1620.8 (1)

PZ-39 216.765.3 (0.39) 53.2613.2 (0.10) 23.2614.2 (0.04)

FTC 467.8642.6 (0.85) 254.767.9 (0.46) 143.1639.3 (0.26)

aSI = sensitization index, determined by dividing IC50 of mitoxantrone in the
presence of inhibitors by IC50 of mitoxantrone in the presence of DMSO
vehicle.

doi:10.1371/journal.pone.0005676.t002
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distinctive advantages. First, PZ-39 is much more potent than

FTC in inhibiting ABCG2 function. In the drug accumulation

assay, PZ-39 clearly achieved the same level of inhibition at

3.3 mM compared with FTC at 10 mM. In cell survival assay, PZ-

39 at 500 nM was able to sensitize ABCG2-mediated mitoxan-

trone resistance with an index of 0.04 whereas FTC at the same

concentration has a sensitization index of 0.26, ,7-fold difference.

Second, PZ-39 has very low intrinsic cytotoxicity in vitro

(.24 mM) but its potency index is much better than FTC (1600

versus 62). Thus, the window of therapeutic index of PZ-39 may

be large. An ideal chemo-sensitizer is that it should not be toxic

itself. Clearly, PZ-39 satisfies this requirement in in-vitro studies.

However, future studies are needed to evaluate the toxicity of PZ-

39 in animal models. Third, PZ-39 appears to have two modes of

action. In addition to its ability to inhibit ABCG2 activity, PZ-39

also accelerates its lysosome-dependent degradation. This second

mode of action is a distinctive nature and clearly increases the

potency of PZ-39 on ABCG2 possibly by recycled use of PZ-39.

This nature has not been reported for any previous known ABC

transporter inhibitors.

The two modes of action make PZ-39 a very interesting, novel,

and promising ABCG2 inhibitor for further exploitation. In the

first mode of acute effect on ABCG2 function, PZ-39 appears to

exert a mixed type of inhibition in drug uptake assay. PZ-39 may

interact with ABCG2 directly, but do not appear to compete

directly with mitoxantrone or ATP binding. Future studies are

needed to identify the PZ-39 binding sites in ABCG2. In the

second mode, PZ-39 appears to accelerate the ABCG2 degrada-

tion in lysosomes, a chronic effect. It is possible that binding of PZ-

39 causes conformational change in ABCG2 which targets it for

degradation in lysosomes. It is, however, noteworthy that binding

of FTC also causes ABCG2 conformational change but it does no

accelerate ABCG2 degradation. This finding suggests that the

conformational change induced by PZ-39 and FTC may be

different. Previously, it has been found that the cysteine mutant

ABCG2 degradation is via proteosome whereas the normal

degradation of wild type ABCG2 is via lysosome [19] with a

half-life of ,37 hrs [23]. It has also been found that the agonist-

induced degradation of b2-adrenergic receptor is via lysosome

possibly by enhanced endocytosis [24]. It is tempting to propose

that the binding of PZ-39 to ABCG2 is able to accelerate the

endocytosis and trafficking of cell surface ABCG2 into lysosomes

for degradation. Extensive efforts to further evaluate this

hypothesis are currently ongoing in our laboratory.

The analogues of PZ-39, C6, C8 and E2 with the same core

structure all appear to work using the same mechanism as PZ-39.

Clearly, further studies will be required to test more analogues of

PZ-39 with more alterations on the core benzothiazole linked to a

triazine ring backbone and to elucidate structure-activity relation-

ship of PZ-39 in ABCG2 inhibition. Nevertheless, the observations

Figure 4. Kinetics of PZ-39 inhibition on ABCG2-mediated mitoxantrone uptake. Inside-out plasma membrane vesicles from HEK293/
ABCG2 cells were incubated with 0.6, 1.2, and 1.8 mM [3H]mitoxantrone (A) or with 0.1, 0.2, 0.5, 1, and 5 mM ATP together with 0.6 mM [3H]
mitoxantrone (B) in the absence or presence of different concentrations of PZ-39 at 37uC for 5 min followed by determination of mitoxantrone
uptake. Data shown are mean6S.D. of three independent experiments.
doi:10.1371/journal.pone.0005676.g004

Specific Inhibitor of ABCG2

PLoS ONE | www.plosone.org 6 May 2009 | Volume 4 | Issue 5 | e5676



from this study clearly indicate that PZ-39 may serve as a lead

compound for further design and optimization of more specific

ABCG2 inhibitors for better treatment of drug resistant human

cancers in combinational therapy.

Materials and Methods

Materials
Monoclonal antibody BXP-21 against ABCG2, anti-Myc and

anti-HA antibodies were from ID Labs, Cell Signaling, and

Roche, respectively. Monoclonal antigody against Pgp, C219,

was a kind gift from Dr. Victor Ling (The British Columbia

Cancer Center, Vancouver, Canada). Monoclonal antibody

against MRP, MRPr1, were purchased from Kamiya Biomedical

Company. Biotin-conjugated 5D3 antibody and Phycoerythrin-

Streptavidin conjugates were from eBiosciences. All electropho-

resis reagents, protein concentration assay kit, precast polyacryl-

amide gradient gels and polyvinylidene difluoride membranes

were purchased from Bio-Rad. FTC, adriamycin, mitoxantrone,

camptothecin, DTT, Sulforhodamine B (SRB), and Triton X-

100 were from Sigma. Protein-G PLUS-Agarose and SYBR

Green PCR Master Mix were from Santa Cruz Biotechnology

and Applied Biosystems, respectively. LipofectAMINE Plus and

G418 were from Invitrogen. Cell culture medium IMEM,

DMEM, and [3H]mitoxantrone were from BioSource Interna-

tional, Media Tech., and Moravek Biochemical, respectively.

PZ-39 and three related compounds were purchased from

SPECS. All other chemicals were of molecular biology grade

from Sigma or Fisher Scientific.

Cell culture, lysate, and membrane preparations
Human breast cancer cell line MCF7 (ATCC) and its derivative

lines BC19 (a gift from Julie Horton at National Institute of

Environmental Health Sciences) and MCF7/AdVp3000 (a gift

from Susan Bates at National Cancer Institute), HEK293/

ABCC1, HEK293/vector, HEK293/ABCG2 were cultured as

previously described [2,16,20,25]. Lysate preparation was per-

formed as described previously [25]. Cell membranes were

prepared in exactly the same way as previously described [16]

and final membranes were resuspended in STBS (250 mM

sucrose, 150 mM NaCl, 10 mM Tris/HCl, pH7.5).

Western blot, immunoprecipitation, and flow cytometry
Western blot, immunoprecipitation, and flow cytometry analysis

of drug accumulation were performed exactly as we previously

described [2,3]. To determine the mechanism of ABCG2

degradation, HEK293/ABCG2 cells were first treated with

10 nM Bafilomycin A1 or 2 mM MG132 for 24 hrs followed by

additional treatment with 3 mM PZ-39 for various times. Cell

lysates were then collected for western blot analysis of ABCG2. To

determine the half-life of ABCG2, HEK293/ABCG2 cells were

treated with 5 mg/ml cycloheximide, 3 mM PZ-39, or both for

various times followed by collection of cell lysates for western blot

Figure 5. Effect of PZ-39 on ABCG2 expression, conformational change, and degradation. A, effect of PZ-39 on ABCG2 steady state level.
HEK293/ABCG2 cells were treated with DMSO vehicle or 3.3 mM PZ-39 for various times and harvested for western blot analysis of ABCG2 expression.
B, effect of PZ-39 on ABCG2 stability. HEK293/ABCG2 cells were first treated with cycloheximide (5 mg/ml) followed by addition of 3.3 mM PZ-39 or
DMSO for various times and harvested for western blot analysis. C, half-life of ABCG2. ABCG2 levels on western blot as shown in B were determined
using Scion Image and plotted against time of treatment. Data shown are mean6S.D of four experiments. D, effect of PZ-39 on 5D3 staining of
ABCG2. HEK293/ABCG2 cells were treated without (thin line) or with (thick line) DMSO vehicle, 10 mM PZ-39 or FTC followed by staining with
monoclonal antibody 5D3 and flow cytometry analysis. E, effect of FTC on ABCG2 expression. HEK293/ABCG2 cells were treated with 10 mM FTC for
various times and harvested for western blot analysis of ABCG2 expression. F, effect of bafilomycin A1 and MG-132 on PZ-39-induced ABCG2
degradation. HEK293/ABCG2 cells were treated with 3 mM PZ-39 in the absence or presence of 10 nM Bafilomycin A1 or 2 mM MG-132 for various
times and harvested for western blot analysis of ABCG2 expression. GAPDH was used as a loading control in all western blot analyses.
doi:10.1371/journal.pone.0005676.g005
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analysis of ABCG2 expression. To determine the change in

antibody 5D3 staining following treatment with inhibitors,

HEK293/ABCG2 cells were incubated with 10 mM PZ-39, C6,

C8, E2, or FTC at 37uC for 30 min before biotin-conjugated 5D3

antibody (1:100 dilution) was added and incubated for 2 hrs.

Then, the cells were washed 3 times and incubated with

Phycoerythrin-Streptavidin for 30 min followed by washing for 3

times and analyzed by flow cytometry.

Real time RT-PCR and Cytotoxicity assay
RNA extraction and real-time RT-PCR were performed as we

described previously [25]. The sequences of ABCG2 primers are

59-GGCTTTCTACCTGCACGAAAACCAGTTGAG-39 (for-

ward) and 59-ATGGCGTTGAGACCAG-39 (reverse). The se-

quences of GAPDH primers are 59-AAGGACTCATGACCA-

CAGTCCAT-39 (forward) and 59-CCATCACGCCACAGTTT-

CC-39 (reverse). The relative ABCG2 RNA level (2DCT) treated

with inhibitors was expressed as percentage of the control (in the

presence of 0.1% DMSO) where DCT (threshold cycle) = (C-

TABCG2-CTGAPDH).

Cytotoxicity was determined using SRB colorimetric assay as

previously described [25]. The effect of compound inhibitors on

drug resistance was determined by exposing cells to a range of

concentrations of anticancer drugs such as mitoxantrone in the

absence or presence of different concentrations of the inhibitor.

The potency and sensitization index of the inhibitors were

calculated as follows:

Potency index~IC50 inhibitorð Þ=IC50 inhibitorzdrugð Þ

Sensitization index~IC50 drugzinhibitorð Þ=IC50 drugð Þ

Drug accumulation and transport kinetic analysis
Drug accumulation assay was performed as described previously

[16,26] with some modifications. Briefly, 106 cells in culture were

pre-incubated with various concentrations of PZ-39, FTC, or

vehicle control (0.1% DMSO) for 1 hr at 37uC, followed by

addition of 20 mM mitoxantrone and incubation for 30 min. The

reaction was stopped by addition of ice-cold PBS and centrifuga-

tion, washed with ice-cold PBS, and subjected analysis flow

cytometry.

Drug-uptake assay using membrane vesicles was performed as

we previously described [16] using [3H]mitoxantrone as ABCG2

substrate. Kinetic analyses was performed using data generated in

the presence of different concentrations of [3H]mitoxantrone,

ATP, and PZ-39 to generate Lineweaver-Burk plot. Kinetic

Figure 6. Effect of PZ-39 analogues on the function and expression of ABCG2. A, effects of PZ-39 and its analogue compounds (3 mM) on
mitoxantrone accumulation in HEK293/ABCG2 cells. Data shown are mean6S.D. of triplicate experiments. B, sensitization index of PZ-39 and related
compounds in HEK293/ABCG2 cells. HEK293/ABCG2 cells were treated with various concentrations of mitoxantrone in the absence or presence of
50 nM PZ-39, C6, C8, and E2 followed by SRB assay. Sensitization index was calculated using IC50 of mitoxantrone in the absence or presence of
compound inhibitors. The data are mean6S.D. of four independent experiments. C, effect of selected PZ-39 and related compounds on ABCG2
steady state level. HEK293/ABCG2 cells were treated with DMSO vehicle or 3 mM PZ-39, C6, C8, or E2 for various times and harvested for western blot
analysis of ABCG2 expression. D, effect of PZ-39 and related compounds on 5D3 staining of ABCG2. HEK293/ABCG2 cells were treated without (thin
line) or with (thick line) DMSO vehicle, 10 mM PZ-39 or its related compounds C6, C8, and E2 followed by staining with monoclonal antibody 5D3 and
flow cytometry analysis.
doi:10.1371/journal.pone.0005676.g006
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constants Km, Vmax, and Ki were calculated using procedures as

previously described [27].

Supporting Information

Figure S1 Effect of PZ-39 on ABCG2 oligomerization. HEK293

cells co-transfected with Myc- and HA-tagged ABCG2 were

exposed to 3.3 mM PZ-39 for 6 hrs and cell lysates were subjected

to immunoprecipitation with anti-Myc or anti-HA monoclonal

antibody followed by western blot analysis probed using anti-HA

and anti-Myc antibody.

Found at: doi:10.1371/journal.pone.0005676.s001 (0.12 MB TIF)

Figure S2 Effect of PZ-39 on ABCG2 mRNA level. MCF7/

AdVp3000 (A) and HEK293/ABCG2 (B) cells were treated with

DMSO vehicle (open bar) or PZ-39 (filled bar) for various times

and harvested for RNA preparation and real-time RT-PCR

analysis. Data shown are mean6SD from three independent

experiments.

Found at: doi:10.1371/journal.pone.0005676.s002 (0.30 MB TIF)

Figure S3 Effect of PZ-39 on function and expression of ABCB1

and ABCC1. BC19 and HEK293/ABCC1 cells were treated with

DMSO vehicle or 3.3 mM PZ-39 for 30 min followed by

determination of intracellular accumulation of Adriamycin (A) or

treated with DMSO vehicle or 3.3 mM PZ-39 for 3 days followed

by western blot analysis of protein level (B). Thick lines represent

control MCF7 cells transfected with vector for BC19 and HEK293

cells transfected with vector for HEK293/ABCC1. The gray areas

and thick lines represent cells treated with DMSO and PZ-39,

respectively. GAPDH was used as a loading control.

Found at: doi:10.1371/journal.pone.0005676.s003 (0.57 MB TIF)
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