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Abstract: This study uses the fourteen stock indices as the sample and then utilizes eight parametric
volatility forecasting models and eight composed volatility forecasting models to explore whether
the neural network approach and the settings of leverage effect and non-normal return distribution
can promote the performance of volatility forecasting, and which one of the sixteen models possesses
the best volatility forecasting performance. The eight parametric volatility forecasts models are
composed of the generalized autoregressive conditional heteroskedasticity (GARCH) or GJR-GARCH
volatility specification combining with the normal, Student’s t, skewed Student’s t, and generalized
skewed Student’s t distributions. Empirical results show that, the performance for the composed
volatility forecasting approach is significantly superior to that for the parametric volatility forecasting
approach. Furthermore, the GJR-GARCH volatility specification has better performance than the
GARCH one. In addition, the non-normal distribution does not have better forecasting performance
than the normal distribution. In addition, the GJR-GARCH model combined with both the normal
distribution and a neural network approach has the best performance of volatility forecasting among
sixteen models. Thus, a neural network approach significantly promotes the performance of volatility
forecasting. On the other hand, the setting of leverage effect can encourage the performance of
volatility forecasting whereas the setting of non-normal distribution cannot.

Keywords: volatility forecasting; neural networks; GARCH; skewed generalized Student’s t;
stock market

1. Introduction

Volatility is a statistical measure of the dispersion of returns for a given asset. A
higher volatility means that an asset’s price can change dramatically over a short time
period in either direction, and thus is expected to be less predictable. On the other hand,
a lower volatility means that an asset’s price does not fluctuate dramatically, and then
tends to be more steady (volatility is often measured by either the standard deviation or
variance between returns from that same asset). Hence, volatility can be used to measure
the amount of uncertainty or risk related to the size of changes in an asset’s price, and
it obeys the criteria: ‘the higher the volatility and then the riskier the asset’. Because of
the above property for volatility, volatility is usually used in asset allocation [1–3], option
pricing [4,5], risk management [6–9] and hedge strategy [10,11]. Thus, how to accurately
predict the volatility of an asset is a very important issue in the actual investment process
in the financial field. As to the issue of volatility forecasting, most of literatures used
the generalized autoregressive conditional heteroskedasticity (GARCH) family models,
a parametric volatility forecasting approach, to predict the volatility of an asset [12–19].
Because this type of model can capture most common features of financial assets such
as both the linear dependence and strong autoregressive conditional heteroskedasticity
(ARCH) effect subsisting on the return series, and both the volatility clustering and leverage
effect usually existing at the volatility of financial asset returns series [8,20–23] (Volatility
clustering means that large changes tend to be followed by large changes, of either sign,
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and small changes tend to be followed by small changes [23]. Conversely, the leverage
effect is the extra increase of volatility caused by the bad news [20]. Notably, the volatility
clustering and leverage effect appear significantly for financial assets, especially for the
stock market [8,22]).

Regarding past literatures about volatility forecasting, they tried to use a more flexible
model or a complex approach to increase the performance of volatility forecasting [15–17,19].
For example, Aliyev et al. [12] used the GARCH, exponential GARCH (EGARCH) and the
GJR-GARCH model of Glosten, Jagannathan and Runkle [24] models with normal distribu-
tion (i.e., the GARCH-N, EGARCH-N and GJR-GARCH-N) to estimate the volatility of the
Nasdaq-100. Chun et al. [14] used the above three models, the GARCH-N, EGARCH-N
and GJR-GARCH-N, to forecast the volatility in the KOSPI200 in the Korean market. They
found that the GJR-GARCH model has the best performance of volatility forecasting among
the above three GARCH-family models. Lee and Pai [15] used the GARCH with the normal,
skewed Student’s t and skewed generalized error distributions (SGED) (i.e., the GARCH-N,
GARCH-ST and GARCH-SGED) to forecast the volatility of REIT in the United States.
They found that the GARCH-SGED model is superior to the GARCH-N and GARCH-ST
models. Liu and Hung [16] applied the GARCH-N, GARCH-T, GARCH-HT, GARCH-SGT,
GJR-GARCH-N and EGARCH-N models to forecast the volatility of the Standard & Poor’s
100 stock index. They found that the GJR-GARCH-N model achieves the most accurate
volatility forecasts, followed by the EGARCH-N model (the GARCH-T, GARCH-HT and
GARCH-SGT models are the GARCH model with the Student’s t, heavy-tailed and skewed
generalized Student’s t distributions, respectively). Lv and Shan [17] used the RiskMetrics,
GARCH, IGARCH, GJR-GARCH, EGARCH, FIGARCH and FIEGARCH with the normal
and skewed Student’s t distributions to forecast the spot and futures price volatilities of
natural gas. They found that the simple linear GARCH-class models overwhelmingly out-
perform nonlinear models in forecasting spot price volatility. However, nonlinear models
are also superior to linear models in forecasting future price volatility (the simple linear
GARCH-class models include the RiskMetrics, GARCH and IGARCH models whereas
the nonlinear models contain the GJR-GARCH, EGARCH, FIGARCH and FIEGARCH
models. Moreover, the IGARCH is the integrated GARCH model whereas the FIGARCH is
the fractionally integrated GARCH model. In addition, the FIEGARCH is the fractionally
integrated EGARCH model). Su [18] applied the GARCH and GJR-GARCH model with the
SGED distribution (GJR-GARCH-SGED) to forecast the volatility of six stock indices such as
the NYSE, Brussels, CAC40, DAX, SWISS and NIKKEI. He found that asymmetric volatility
specification (GJR-GARCH model) forecasts out-of-sample volatility more accurately than
symmetric volatility specification (GARCH model). From the above discussion, I discov-
ered the following phenomena: First, most of literatures only used one sample asset such
as the Nasdaq-100 [12], KOSPI200 [14], REIT [15], Standard & Poor’s 100 [16] and natural
gas [17], indicating that the results may not be credible because the number of sample
assets is not enough. Second, the empirical model may be a model with a flexible volatility
specification [12,14], generalized return distribution [15] or with both flexible volatility
specification and generalized return distribution [16–18]. Moreover, among the flexible
volatility specifications the GJR–GARCH model has the best performance of volatility
forecasting [13,14,16,18]. In addition, the GJR-GARCH-SGED model in Su [18] is the most
flexible model among the models with both flexible volatility specification and generalized
return distribution [16–18]. Third, the volatility forecasting models in the above literatures
all focus on the GARCH-family with alternative distributions—a parametric approach.

Hence, in order to fill the gap of the above literatures, this study uses the fourteen
stock indices as the sample assets and then utilizes a more flexible parametric volatility
forecasting model combining with a neural network approach, an artificial intelligence
technique, to promote the performance of volatility forecasting in the stock markets. The
fourteen stock indices are the stock indices in the developed and emerging markets. This
is the first contribution of this study because the number of sample assets is sufficient
and the fourteen stock indices are distributed between countries with different degrees of
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economic development, indicating that the results obtained from this study are credible
and representative in the stock market. The parametric volatility forecasting models
in this study are mainly the asymmetric type of GARCH model, the GJR-GARCH of
Glosten et al. [24], combined with the skewed generalized Student’s t (SGT) distribution of
Theodossiou [25]. This is the second contribution of this study because the GJR-GARCH
model with the SGT distribution (hereafter, the GJR-GARCH-SGT) is more flexible than the
GJR-GARCH-SGED model in Su [18] and it can seize most of common features of financial
assets such as, the volatility clustering and leverage effect existing on the volatility, and
the skewness and kurtosis appearing on the return distribution (the GJR-GARCH model
of Glosten et al. [24] can significantly seize the volatility clustering and leverage effect
appearing at financial assets especially for the stock market. On the contrary, the skewed
generalized Student’s t (SGT) distribution of Theodossiou [25] is able to capture the features
of non-normal distribution such as the distribution of returns being left-skewed and having
a larger and thicker tail than the normal distribution. In addition, the standardized SGT
distribution degenerates into the standardized SGED distribution if n→ ∞ ). A neural
network (NN) model is a multilayer perceptron, with one input layer, at least one hidden
layer and one output layer, and one or more nodes within each layer. Moreover, each input
node is connected to each hidden node, and in turn, each hidden node is connected to each
output node (an artificial neural network is an interconnected group of nodes, inspired by
a simplification of neurons in the brain. Here, each circular node represents an artificial
neuron and an arrow represents a connection from the output of one artificial neuron
to the input of another. Please see Figure 1 for more details). In other words, a neural
network model is composed of an interconnected group of nodes. Hence, the structure
of neural network models is similar to that of the network topology, and thus they both
have the same concept (network topology is the topological structure of a network and
may be depicted physically or logically. Physical topology is the placement of the various
components of a network including several device locations and the cable installation
between them. The device locations are regarded as the nodes of a network and the cable
installation connects the device locations. Thus, the cable installation can be considered as
the links or lines between the nodes in that network. On the other hand, logical topology
illustrates how data flows within a network). Notably, because of the special training
process of neural networks, a neural network approach is particularly useful for handling
complex, non-linear univariate and multivariate relationships that would be difficult to fit
using other techniques (in the training process of neural networks, these rules are initially
determined by a set of initial weight values, and their weights are adjusted during the
learning process to increase efficiency. Through continuous adjustment and learning, the
true network output and target value are achieved. After reaching the same value, the
weighted value in the network is fixed, and the training is considered complete). Hence,
this study utilizes a neural network approach to promote the performance of volatility
forecasts for alternative GARCH family models in the stock market. This is the third
contribution of this study because the above literatures of volatility forecasting never use
this approach.

Thus, this study uses the stock indices in the developed and emerging markets as the
sample and then utilizes eight parametric volatility forecasting models and eight composed
volatility forecasting models to explore whether the neural network approach can promote
the performance of volatility forecasts, whether the settings of the leverage effect and
return distribution can encourage the performance of volatility forecasts and which one of
the 16 models possesses the best volatility forecasting performance. In addition, for each
of fourteen stock indices, this study also investigates which model is the most suitable
for it. The stock indices in the Group of Seven (G7) and Emerging Seven (E7) are used to
represent the developed and emerging markets in this study, respectively (the Group of
Seven (G7) is an intergovernmental organization consisting of the United States, Canada,
the United Kingdom, France, Germany, Italy and Japan. Its members are the world’s largest
IMF-advanced economies and wealthiest liberal democracies. On the other hand, the
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Emerging 7 (E7) is the seven countries Brazil, Russia, India, China, Mexico, Indonesia and
Turkey. They have the highest economic performance in the class of emerging economies
or they are the seven biggest emerging countries in terms of economic growth). The eight
parametric volatility forecasting models are composed of the GJR-GARCH-SGT model
and its seven degenerate models. The eight composed volatility forecasting models are
obtained by eight parametric volatility forecasting models combined with a neural network
approach. From the empirical results of both the preliminary analysis of data and the
performance comparison of the 16 models, I discovered the following phenomena. The
preliminary analysis of data includes the descriptive statistics of data and estimation results
of the GJR-GARCH-SGT model. First, the stock indices in the E7 have higher return and
higher risk than those in the G7. Second, all the stock indices in the G7 and E7 for the
forecasting period have higher risk than those for the overall period because of COVID-19
spreading throughout the world in the last year. Third, the leverage effect is significant
in the stock indices in the G7 and E7, especially for the G7. Fourth, the distribution of
returns is left-skewed and has a larger and thicker tail than the normal distribution. Fifth,
the performance for the composed volatility forecasting models is significantly superior to
that for the parametric volatility forecasting models, and thus the neural network approach
can significantly promote the performance of volatility forecasting. Sixth, the performance
for the GJR-based models is significantly superior to that of the GARCH-based models,
and thus the setting of the leverage effect can significantly encourage the performance of
volatility forecasting. Seventh, the performance of the models with non-normal distribution
is not superior to that of the models with normal distribution, and thus the setting of the
non-normal return distribution cannot promote the performance of volatility forecasting.
Eighth, among the 16 models in this study, the performance of the GJR-GARCH-N-NN
models is the best followed by the GJR-GARCH-N, GJR-GARCH-T-NN and GJR-GARCH-
SGT-NN, and thus the GJR-GARCH model combining both the normal distribution and a
neural network approach has the better performance of volatility forecasting. Finally, for
each of the 14 stock indices, the most suitable models are not necessarily the same but they
possess the setting of leverage effect and further combine with a neural network approach,
and thus these results are the same as those obtained from the analysis of previous issues.
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Figure 1. The structure of backpropagation neural network. (a) One backpropagation neural networks with an input layer
including two input nodes (x1 and x2), a hidden layer of three hidden nodes (h̃1, h̃2 and h̃3), and an output layer containing
an output node (y). (b) One backpropagation neural networks with an input layer including one input node (x), a hidden
layer of five hidden nodes (h̃1, h̃2, h̃3, h̃4, and h̃5), and an output layer containing one output node (y).

The remainder of this paper is organized as follows. Section 2 describes the empirical
models utilized in this study, eight parametric volatility forecasting models and eight
composed volatility forecasting models, and two types of loss function to evaluate the
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above models. Section 3 states the basic statistical features of the return series for the stock
indices in the E7 and G7 during the overall period and two sub-periods: estimation period
and forecast period. Section 4 analyzes the results of the empirical model and further
explores the issues addressed in this study. Finally, Section 5 concludes the findings in
Sections 3 and 4.

2. Methodology

In order to accurately forecast volatility, the selected empirical model should capture
the common features of financial assets. For example, the distribution of returns is skewed
to the right or left and has a larger and thicker tail than the normal distribution. In other
words, the return series is not normally distributed. Moreover, the return series exhibits
linear dependence and strong ARCH effect. In addition, the volatility clustering and
leverage effect usually exists in the volatility of financial asset return series [8,20,23]. Hence,
the empirical models include a symmetric type of volatility specification, the GARCH,
and an asymmetric one, the GJR-GARCH, combined with the normal (N), Student’s t (T),
skewed Student’s t (ST) and skewed generalized Student’s t (SGT) distributions, totaling
eight different models (the GJR-GARCH model of Glosten et al. [24] is an asymmetric type
of GARCH-based model, and it can seize the financial features: the volatility clustering and
leverage effect. On the contrary, the asymmetric type of distributions, skewed Student’s t
(ST) and skewed generalized Student’s t (SGT), can capture the skewness and fat-tails on
the distribution of return). The eight models above can be divided into two categories. The
first category of model includes the GARCH-N, GARCH-T, GARCH-ST and GARCH-SGT
models, named the GARCH-based models. The second category of model consists of the
GJR-GARCH-N, GJR-GARCH-T, GJR-GARCH-ST and GJR-GARCH-SGT models, called
the GJR-based models. The eight models above are called parametric volatility forecasting
models. Notably, this study combines the above parametric volatility forecasting models
with a neural network (NN) approach to promote the volatility forecasting performance
in the stock market. Hence, there are an additional eight models, the GARCH-N-NN,
GARCH-T-NN, GARCH-ST-NN, GARCH-SGT-NN, GJR-GARCH-N-NN, GJR-GARCH-T-
NN, GJR-GARCH-ST-NN and GJR-GARCH-SGT-NN models, respectively, representing
the GARCH-N, GARCH-T, GARCH-ST, GARCH-SGT, GJR-GARCH-N, GJR-GARCH-T,
GJR-GARCH-ST and GJR-GARCH-SGT models combined with a neural network approach.
The above eight models are named as composed volatility forecasting models.

2.1. Parametric Volatility Forecasting Models

Among the eight parametric volatility forecasting models in this study, the GJR-
GARCH-SGT model can degenerate into the other seven models. Hence, in this subsection,
I mainly illustrate the mean and variance equations of the GJR-GARCH-SGT model and
then describe how the GJR-GARCH-SGT model be degenerated into the other seven models.
The mean and variance equations of the GJR-GARCH-SGT model are expressed as follows:

rt = µt + et, µt = φ0 +φ1rt−1, et = zt
√

ht , zt ∼ IID SGT(0, 1;κ, λ, n) (1)

ht = ω+
(
α+ ηI−t−1

)
e2

t−1 + βht−1 (2)

where rt represents the return of the stock indices in the emerging and developed markets
where rt = (lnPt − lnPt−1) × 100. Pt is the close price of the stock index at time t and
et is the current error. µt and ht represent the conditional mean and variance of return,
respectively. Moreover, I−t−1 is an indicator dummy that takes the value of 1 if et−1 < 0 and
zero otherwise, and thus parameter η is used to capture the leverage effect of volatility. Fur-
thermore,ω, α and β are the parameters of variance equation and they obey the constraints
ω, α, β > 0 and β+ α+ 0.5η < 1 (according to Example 2.1 of Ling and McAleer [26],
the necessary and sufficient condition for the existence of the second moment condition
for all GJR-based models is β+ α+ 0.5η < 1). Notably, if η = 0 in Equation (2), then the
GJR-GARCH volatility specification degenerates into the GARCH volatility specification.
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IID denotes that the standardized errors zt are independent and identically distributed.
Because zt is drawn from the standardized SGT distribution which allows returns innova-
tion to follow a flexible treatment of both skewness and excess kurtosis in the conditional
distribution of returns. The probability density function for the standardized SGT distri-
bution is derived in Lee and Su [7] and can be represented as follows (the standardized
SGT distribution, which has zero mean and unit variance, was checked by Mathematica
software and another analogous standardized SGT distribution was proposed by Bali and
Theodossiou [27]):

f(zt) = C
{

1 +
|zt + δ|κ

[1 + sign(zt + δ)λ]
κθκ

}− n+1
κ

(3)

where θ = 1
S(λ)B

(
1
κ , n
κ

) 1
2 B
( 3
κ , n−2

κ

)− 1
2 , S(λ) =

√
1 + 3λ2 − 4A2λ2,

A = B
(

2
κ , n−1

κ

)
B
(

1
κ , n
κ

)− 1
2 B
( 3
κ , n−2

κ

)− 1
2 , δ = 2λA

S(λ) , C = κ
2θB

(
1
κ , n
κ

)−1
.

where κ, n and λ are the scaling parameters and C and θ are the normalizing constants
ensuring that f(·) is a proper probability density function. The parameters κ and n control
the height and tails of density with the constraints κ > 0 and n > 2, respectively. The
skewness parameter λ controls the rate of descent of the density around the mode of zt
with −1 < λ < 1. In the case of positive and negative skewness, the density function
skews toward to the right and left, respectively. B(·) is the beta function whereas ‘sign’
denotes a sign function. The parameter n has the degrees of freedom interpretation in case
λ = 0 and κ = 2. The log-likelihood function of the GJR-GARCH-SGT model thus can be
expressed as:

L(Ψ) = ln f(rt|Ωt−1; Ψ )

= ln C− ln
√

ht − n+1
κ ln

{
1 +

∣∣∣ rt−µt√
ht

+ δ
∣∣∣κ[1 + sign

(
rt−µt√

ht
+ δ
)
λ
]−κ

θ−κ
} (4)

where Ψ = [φ0,φ1, ω,α,β,η, κ, λ, n] is the vector of parameters to be estimated, and Ωt−1
denotes the information set of all observed returns up to time t−1. Notably, if κ = 2 in
Equation (3), then the standardized SGT distribution degenerates into the standardized
ST distribution. Using the same inference process, the standardized SGT distribution
degenerates into the standardized Student’s t distribution if κ = 2 and λ = 0 and it
also degenerates into the standardized normal distribution if κ = 2, λ = 0 and n→ ∞
(regarding the process of the SGT distribution degenerating into the normal, Student’s t,
skewed Student’s t (ST) distributions, please see Lee and Su [7] for more details).

2.2. Composed Volatility Forecasting Models

The eight composed volatility forecasting models are the GARCH-N-NN, GARCH-T-
NN, GARCH-ST-NN, GARCH-SGT-NN, GJR-GARCH-N-NN, GJR-GARCH-T-NN, GJR-
GARCH-ST-NN and GJR-GARCH-SGT-NN models. They are obtained by eight parametric
volatility forecasting models combined with a neural network approach. A neural network
(NN) approach is particularly useful for handling the complex, non-linear univariate and
multivariate relationships that would be difficult to fit by using other techniques. A neural
network model is composed of a multilayer perceptron with an interconnected group of
nodes. For example, Figure 1a shows one backpropagation neural network with three
layers, an input layer including two input nodes (x1 and x2), a hidden layer of three hidden
nodes (h̃1, h̃2 and h̃3) and an output layer containing an output node (y). On the other hand,
Figure 1b displays the other backpropagation neural network with an input layer including
one input node (x), a hidden layer of five hidden nodes (h̃1, h̃2, h̃3, h̃4, and h̃5) and an output
layer containing one output node (y). Notably, the input nodes and the output nodes are
analogous to the explanatory variables and the dependent variables in a regression model,
respectively. The theory of neural network (NN) models is illustrated as follows (regarding
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the theory of neural network (NN) models, please see Lu et al. [28] and chapter 12 in the
user’s guide of RATS version 6 or Doan [29]): Subsequently, I used a vector to represent
the nodes of each layer and the total number of elements in a vector denote that of node
in a layer. For example, the vectors X = (x1, x2, . . . , xd) and Y =

(
y1, y2, . . . , yc

)
represent

the nodes in the input layer and output layer, respectively. On the other hand, the vector
H=

(
h̃1, h̃2, . . . , h̃m

)
denotes the nodes in the hidden layer. The three layers’ perceptron

model is obtained by a weighted linear combination of the d input values from the d input
nodes, X = (x1, x2, . . . , xd), and is expressed as follows:

aj = ∑d
i=1 w(1)

ji xi· (5)

The activation of hidden unit j can be achieved by transforming the linear sum via
using a logistic activation function g

(
aj
)
= 1/

(
1 + e−aj

)
:

h̃j = g
(
aj
)
= g

(
d

∑
i=1

w(1)
ji xi

)
(6)

Thus, the node of output layer is defined as:

yk = g̃

(
m

∑
j=1

w(2)
jk g

(
d

∑
i=1

w(1)
ji xi

))
(7)

If the output function is taken linear, g̃(a) = a, the output model reduces to:

yk = ∑m
j=1 w(2)

jk g
(
∑d

i=1 w(1)
ji xi

)
· (8)

where w(1)
ji and w(2)

jk are the weights of the hidden node and output node, respectively.
Notably, fitting a neural networks model involves a training process of this model. The
training process is executed by supplying a set of known input and output values, and
then allowing the neural networks algorithm to adjust the hidden node and output node
weights until the output produced by the networks matches the actual output in the
training sample to the desired degree of accuracy (in this study, the input values are a
volatility forecasting series ĥt obtained by the variance equation of parametric volatility
forecasting models as shown in Equation (2). On the contrary, the output values are the true
values of variance and are replaced by the squared intraday return series (r2

t ) as the proxies.
In addition, the neural networks algorithm in the training process is the instruction of
‘NNLEARN’ in RATS version 6, manufacturer, city and country). Once the training process
is completed, the model can be used to generate new output data from the other sets of
inputs (the new output data may be the fitted values for the in-sample volatility forecasts
or the forecast values for the out-of-sample volatility forecasts in this study. Notably, the
new output data is obtained by the instruction of ‘NNTEST’ in RATS version 6). Assuming
that the fit is good, the relationships represented by the sample input and output data
can generalize to other samples, thus the model can produce good predictions. Thus,
the volatility forecasts of the GJR-GARCH-SGT-NN model are obtained by assigning a
volatility forecasting series ĥt obtained from the GJR-GARCH-SGT model as the input
values and using a backpropagation neural network with one input node, five hidden
nodes and an output node as shown in Figure 1b. Thus, I took an example of the GJR-
GARCH-SGT-NN model to explain the process of the volatility forecasting for a neural
network approach. Figure 2 lists the schematic diagram for the process of the volatility
forecasting of the GJR-GARCH-SGT-NN model, and is illustrated as follows:

Step 1 Fit a return series (rt) into the GJR-GARCH-SGT model (see, Equations (1)–(4)).
Then, get a forecasted variance series (ĥt) (see, Equation (2))
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Step 2 Input a forecasted variance series (ĥt) obtained from step 1 and the true variance
series (r2

t ) into the ‘NNLEARN’ function. Then, obtain the weights of the hidden
nodes (w(1)

ji ) and the weights of the output node (w(2)
jk ). The ‘NNLEARN’ function

respectively regards ĥt and r2
t as the input value and output value of Figure 1b, and

then substitutes them (ĥt and r2
t ) into Equation (8) to execute a training process of the

neural network in order to obtain the weights w(1)
ji and w(2)

jk (in the training process

of neural networks, the weights of the hidden nodes and the output node (w(1)
ji and

w(2)
jk ) are initially determined by a set of initial weights values, and their weights

are adjusted until the output produced by the networks (ĥt) matches the actual
output (r2

t ) in the training sample to the desired degree of accuracy. Te training is
then considered complete, the weights w(1)

ji and w(2)
jk are obtained). Figure 1b is a

structure of a backpropagation neural network with one node in the input layer, five
nodes in the hidden layer and one node in the output layer.

Step 3 Input a forecasted variance series (ĥt) obtained from step 1 and the weights of the

hidden nodes (w(1)
ji ) and the weights of the output node (w(2)

jk ) obtained from step 2
into the ‘NNTEST’ function. Furthermore, obtain the forecasted variance series for
a neural network approach (ĥ

NN
t ). That is, the ‘NNTEST’ function substitutes the

input value ĥt and weights of the hidden nodes and output node (w(1)
ji and w(2)

jk )

into Equation (8), and then the output value ĥ
NN
t is obtained.

Step 4 Given a forecasted variance series for a neural network approach (ĥ
NN
t ) and the true

variance series (r2
t ), then calculate the values of loss functions, MAE and RMSE (see

Equations (9) and (10)).
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In addition, I used two types of loss function to perform the performance comparison
of volatility forecasting for the sixteen models or four categories of model. The first
category of model is composed of one parametric volatility forecasting model and one
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corresponding composed volatility forecasting model (for example, the GARCH-N and
GARCH-N-NN, the GARCH-T and GARCH-T-NN, the GARCH-ST and GARCH-ST-NN,
the GARCH-SGT and GARCH-SGT-NN, the GJR-GARCH-N and GJR-GARCH-N-NN, the
GJR-GARCH-T and GJR-GARCH-T-NN, the GJR-GARCH-ST and GJR-GARCH-ST-NN
and the GJR-GARCH-SGT and GJR-GARCH-SGT-NN, totaling 8 paired models in the first
category of model). The second category of model is composed of one GARCH-based
model and one corresponding GJR-based model (for instance, the GARCH-N and GJR-
GARCH-N, the GARCH-T and GJR-GARCH-T, the GARCH-ST and GJR-GARCH-ST, the
GARCH-SGT and GJR-GARCH-SGT, the GARCH-N-NN and GJR-GARCH-N-NN, the
GARCH-T-NN and GJR-GARCH-T-NN, the GARCH-ST-NN and GJR-GARCH-ST-NN
and the GARCH-SGT-NN and GJR-GARCH-SGT-NN, totaling 8 paired models in the
second category of model). The third category of model is a group of models with the same
volatility specification and volatility forecasting approach but different distribution (for
example, the GARCH-N, GARCH-T, GARCH-ST and GARCH-SGT; the GJR-GARCH-N,
GJR-GARCH-T, GJR-GARCH-ST and GJR-GARCH-SGT; the GARCH-N-NN, GARCH-T-
NN, GARCH-ST-NN and GARCH-SGT-NN; and the GJR-GARCH-N-NN, GJR-GARCH-T-
NN, GJR-GARCH-ST-NN and GJR-GARCH-SGT-NN, totaling four groups of model in the
third category of model). The fourth category of model is composed of all sixteen models in
this study. Hence, the performance comparison of volatility forecasting for the first category
of model can explore whether the neural network approach can promote the performance of
volatility forecasting. On the contrary, the performance comparison of volatility forecasting
for the second and third categories of model can investigate whether the settings of the
leverage effect and return distribution can encourage the performance of volatility forecasts,
respectively. In addition, the performance comparison of volatility forecasting for the fourth
category of model can explore which one of the 16 models possesses the best volatility
forecasting performance. Two types of loss function are the mean absolute error (MAE) and
root mean squared error (RMSE). The MAE measures the average magnitude of the errors
in a set of forecasts, without considering their direction. The MAE for the out-of-sample
volatility forecasting can be evaluated by the following equation.

MAE =
1
T′ ∑

T′

i=1|εi|=
1
T′ ∑

T′

i=1

∣∣∣ĥt+i|t+i−1 − ht+i

∣∣∣ (9)

where εi denotes the forecast error; ĥt+i|t+i−1 is the one-step-ahead forecast of the variance
of the returns dependent on all information upon the time t + i−1 and can be estimated by
one of the sixteen models in this study; ht+i is the true value of variance and is replaced by
the squared intraday returns as the proxies; T′ is the number of computing 1-day-ahead
variance and is equal to 250 in this study. Moreover, the RMSE for the out-of-sample
volatility forecasting can be obtained by the following equation (the MAE and RMSE for
in-sample volatility forecasting can be evaluated by the equation: MAE = 1

T′ ∑T′
i=1|εi| =

1
T′ ∑T′

i=1

∣∣∣ĥi − hi

∣∣∣ and RMSE =
√

1
T′ ∑T′

i=1(εi)
2 =

√
1
T′ ∑T′

i=1

(
ĥi − hi

)2
where T′ is the total

number of observations for overall period and is equal to 3501 in this study).

RMSE =

√
1
T′ ∑

T′

i=1(εi)
2 =

√
1
T′ ∑

T′

i=1

(
ĥt+i|t+i−1 − ht+i

)2
(10)

where εi, ĥt+i|t+i−1, ht+i and T′ are defined the same as for Equation (9). Hence, the MAE
and RMSE can measure the differences between the values predicted by a model and the
values actually observed from the thing being modeled or estimated.

3. Data and Descriptive Statistics

This study uses the stock indices in the developed and emerging markets as the
sample to explore the issue of ‘how to promote the performance of parametric volatility
forecasting models? A neural networks approach’. I used the stock indices in the G7 and
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E7 to represent the stock markets in the developed and emerging markets, respectively.
The stock indices in the G7 include the Dow Jones (DJ), TSX, FTSE, CAC40, DAX, MIB
and N225, respectively corresponding to the United States, Canada, the United Kingdom,
France, Germany, Italy and Japan. On the contrary, the stock indices in the E7 are the BVSP,
RTSI, BSE, SSE, MXX, JKSE and XU100, respectively corresponding to Brazil, Russia, India,
China, Mexico, Indonesia and Turkey.

Table 1 reports basic descriptive statistics of daily return of stock indices in the G7
and E7 during the overall period and two sub-periods. The overall period starts from
10 January 2001 and ends 27 July 2020 and is used to perform the in-sample volatility
forecasting. The overall period is divided into two sub-periods, the estimation period
and forecasting period, to execute the out-of-sample volatility forecasting. The estimation
period is from 10 January 2001 to 8 April 2019 whereas the forecasting period is from
9 April 2019 to 27 July 2020. Notably, all the daily close price data of the 14 stock indices
were obtained from the Yahoo finance website. As shown in panel A of Table 1, the mean
values of G7 are between −0.0215 (MIB) and 0.0263 (DJ) whereas those of E7 range from
0.0254 (SSE) to 0.0717 (JKSE). Conversely, the values of standard deviation for the G7 are
between 1.2631 (TSX) and 1.8306 (MIB) whereas those for the E7 range from 1.4361 (MXX)
to 2.3155 (RTSI). These results indicate that during the overall period, the stock indices in
the E7 have the higher return and higher risk than those in the G7 (the reason is that the
maximum value of mean for the E7 (0.0717) is greater than that for the G7 (0.0263) and the
minimum value of mean for the E7 (0.0254) is also greater than that for the G7 (−0.0215). On
the other hand, the maximum value of standard deviation for the E7 (2.3155) is greater than
that for the G7 (1.8306) and the minimum value of standard deviation for the E7 (1.4361) is
also greater than that for the G7 (1.2631)). The above finding is consistent with that found
in Su [9]. As illustrated in panel B and panel C of Table 1, I discovered that the stock indices
in the G7 and E7 for the estimation and forecasting periods possess the same phenomena
found from the overall period. That is, the stock indices in the E7 have higher return and
higher risk than those in the G7. Notably, regarding the forecasting period, the values of
standard deviation for the G7 are between 1.7269 (N225) and 2.3058 (MIB) whereas those
for the E7 range from 1.6095 (MXX) to 3.1898 (SSE). These results indicate that the stock
indices in the G7 and E7 for the forecasting period have higher risk than those for the
overall period (the reason is, regarding the G7, the maximum value of standard deviation
for the forecasting period (2.3058) is greater than that for the overall period (1.8306) and
the minimum value of standard deviation for the forecasting period (1.7269) is greater than
that for the overall period (1.2631). Conversely, regarding the E7, the maximum value of
standard deviation for the forecasting period (3.1898) is greater than that for the overall
period (2.3155) and the minimum value of standard deviation for the forecasting period
(1.6095) is greater than that for the overall period (1.4361)). This phenomenon is attributed
to COVID-19 spreading throughout the world in the last year. Figure 3 illustrates the
trend of price levels, and the variation of return for the 14 stock indices during the overall
period. From Figure 3, I also discovered that in the last year, the price of stock indices
underwent a severe decline and its return experienced a serious variation, indicating that
the high risk appears at the forecasting period. This phenomenon is the same as that found
from the above analysis. In addition, the volatility clustering occurs significantly in the
overall period.

Table 1. Descriptive statistics of daily return for the G7 and E7 stock indices.

Mean SD Max. Min. SK KUR J-B Q2(20) Obs.

Panel A. Overall period

DJ 0.0263 1.3563 10.764 −12.577 −0.6470 c 11.298 c 18,866.79 c 4031.63 c 3501
TSX 0.0181 1.2631 11.294 −16.998 −1.3781 c 24.159 c 86,251.62 c 2302.80 c 3501

FTSE 7 × 10−5 1.3977 10.870 −11.512 −0.3820 c 8.844 c 11,495.47 c 2956.18 c 3501
CAC40 −0.0039 1.6809 11.285 −13.098 −0.3211 c 6.579 c 6374.96 c 2364.63 c 3501
DAX 0.0198 1.7382 11.588 −13.054 −0.3698 c 6.076 c 5466.49 c 2320.15 c 3501



Entropy 2021, 23, 1151 11 of 26

Table 1. Cont.

Mean SD Max. Min. SK KUR J-B Q2(20) Obs.

MIB −0.0215 1.8306 13.761 −18.541 −0.8287 c 10.120 c 15,341.27 c 1130.00 c 3501
N225 0.0146 1.7015 11.805 −12.715 −0.3951 c 6.136 c 5584.40 c 1438.09 c 3501

BVSP 0.0519 2.0885 13.022 −18.749 −0.5818 c 7.231 c 7826.8 c 2207.54 c 3501
RTSI 0.0665 2.3155 15.642 −20.779 −0.5733 c 8.425 c 10,546.1 c 803.26 c 3501
BSE 0.0633 1.7259 14.412 −17.183 −0.5704 c 11.296 c 18,804.7 c 777.52 c 3501
SSE 0.0254 1.9996 45.160 −12.763 3.1136 c 77.546 c 882,866.9 c 8.47 3501

MXX 0.0529 1.4361 10.153 −16.277 −0.5429 c 10.026 c 14,837.2 c 1372.47 c 3501
JKSE 0.0717 1.6150 13.624 −12.925 −0.3663 c 11.109 c 18,081.8 c 922.40 c 3501

XU100 0.0685 2.2764 15.642 −20.330 −0.4234 c 8.447 c 10,514.0 c 582.22 c 3501

Panel B. Estimation period

DJ 0.0280 1.2554 7.877 −11.269 −0.5146 c 6.8384 c 6478.18 c 2837.12 c 3251
TSX 0.0199 1.1800 8.709 −16.998 −1.1476 c 20.079 c 55,328.6 c 1291.52 c 3251

FTSE 0.0062 1.3506 10.870 −10.327 −0.1799 c 7.4255 c 7486.55 c 3469.63 c 3251
CAC40 −0.0010 1.6441 11.285 −11.476 −0.1231 c 5.4008 c 3959.36 c 2637.30 c 3251
DAX 0.0192 1.7058 11.588 −11.829 −0.2596 c 4.8478 c 3220.02 c 2745.92 c 3251
MIB −0.0206 1.7888 13.761 −13.331 −0.4568 c 6.8566 c 6481.45 c 1414.19 c 3251
N225 0.0144 1.6995 11.805 −12.715 −0.3750 c 6.2068 c 5294.73 c 1379.55 c 3251

BVSP 0.0537 2.0182 10.967 −18.749 −0.4689 c 5.598 c 4365.59 c 1502.78 c 3251
RTSI 0.0678 2.3383 15.642 −20.779 −0.5240 c 8.347 c 9587.39 c 805.08 c 3251
BSE 0.0688 1.6886 14.412 −17.183 −0.5087 c 11.009 c 16,558.95 c 632.53 c 3251
SSE 0.0133 1.8765 12.950 −12.763 −0.1915 c 5.443 c 4033.75 c 914.03 c 3251

MXX 0.0627 1.4227 10.153 −16.277 −0.5190 c 10.645 c 15,495.60 c 1239.05 c 3251
JKSE 0.0842 1.6079 13.624 −12.925 −0.3487 c 11.231 c 17,152.38 c 810.85 c 3251

XU100 0.0673 2.3067 15.642 −20.330 −0.3862 c 8.431 c 9710.74 c 537.72 c 3251

Panel C. Forecasting period

DJ 0.0030 2.2948 10.764 −12.577 −0.7590 c 10.203 c 1113.02 c 355.686 c 251
TSX −0.0036 2.0577 11.294 −13.176 −1.6405 c 18.926 c 3859.00 c 376.123 c 251

FTSE −0.0767 1.9063 8.666 −11.512 −1.2277 c 10.858 c 1296.15 c 198.535 c 251
CAC40 −0.0401 2.1009 8.056 −13.098 −1.5277 c 11.175 c 1403.71 c 171.667 c 251
DAX 0.0273 2.1156 10.414 −13.054 −1.1140 c 12.113 c 1586.48 c 144.527 c 251
MIB −0.0322 2.3058 8.549 −18.541 −3.0502 c 24.071 c 6449.01 c 96.842 c 251
N225 0.0177 1.7269 6.889 −7.142 −0.6490 c 5.439 c 327.02 c 109.667 c 251

BVSP 0.0324 2.8492 13.022 −15.993 −1.0412 c 10.454 c 1188.4 c 343.631 c 251
RTSI 0.0587 1.9986 8.280 −12.049 −1.6007 c 9.016 c 957.3 c 15.876 251
BSE −0.0077 2.1521 11.573 −11.3274 −0.8935 c 10.961 c 1290.0 c 113.595 c 251
SSE 0.1812 3.1898 45.160 −6.7124 11.2323 c 159.326 c 270,762 c 0.325 251

MXX −0.0605 1.6095 5.618 −7.3361 −0.6836 c 4.408 c 222.7 c 206.215 c 251
JKSE −0.0950 1.6979 9.704 −9.6359 −0.5312 c 10.033 c 1064.5 c 193.267 c 251

XU100 0.0778 1.8411 5.810 −9.6871 −1.3201 c 5.618 c 403.0 c 80.058 c 251

Notes: 1. The superscripts a, b and c denote significance at the 10%, 5% and 1% levels, respectively. 2. SK and KUR denote the skewness
and excess kurtosis, respectively. 3. J-B statistics are based on Jarque and Bera (1987) and are asymptotically chi-squared-distributed with
2 degrees of freedom. 4. Q2 (20) statistics are asymptotically chi-squared-distributed with 20 degrees of freedom. 5. Obs. denotes the
number of observations. 6. The overall period starts from 10 January 2001 to 27 July 2020. On the other hand, the estimation period is
from 10 January 2001 to 8 April 2019 whereas the forecasting period is from 9 April 2019 to 27 July 2020. 7. Bold font in column ‘Mean’
(resp. ‘SD’) of each panel denotes the largest value when all seven numbers in column ‘Mean’ (resp. ‘SD’) corresponding to the G7 or E7
are compared with each other. 8. Underline font in column ‘Mean’ (resp. ‘SD’) of each panel denotes the smallest value when all seven
numbers in column ‘Mean’ (resp. ‘SD’) corresponding to the G7 or E7 are compared with each other.
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Finally, regarding the other descriptive statistics, they have the same features as those
for most of the financial return series. For example, the distribution of returns is left-skewed
and has a larger and thicker tail than the normal distribution, indicating that the return
series is not normally distributed. The above results are found by coefficient of skewness,
excess kurtosis and the J-B normality test statistics [30]. In addition, the return series exhibit
linear dependence and strong ARCH effect as shown by the Ljung–Box Q2(20) statistics
for the squared returns. From the above findings, a GARCH family model is very suitable
to seize the fat tails and time-varying volatility found in these asset return series.
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4. Empirical Results

As described in Section 2, the empirical models in this study can be divided into
two categories: the parametric volatility forecasting models and composed volatility fore-
casting models. The composed volatility forecasting models are the parametric volatility
forecasting models combined with a neural network approach. The parametric volatility
forecasting models include the GARCH-N, GARCH-T, GARCH-ST, GARCH-SGT, GJR-
GARCH-N, GJR-GARCH-T, GJR-GARCH-ST and GJR-GARCH-SGT models. Among the
above eight parametric volatility forecasting models, the GJR-GARCH-SGT model is the
most flexible because this model can capture most of the common features of financial
assets and this model can degenerate into the other seven models under the setting of some
restrictions. Hence, I will report some financial features for the 14 stock indices via using
the empirical results of the GJR-GARCH-SGT model.

4.1. Estimation Results for the GJR-GARCH-SGT Model

Table 2 illustrates the empirical results of the GJR-GARCH-SGT model for the stock
indices in the G7 and E7. As shown in Table 2, parameters ω, α and β are significantly
positive for most stock indices and all stock indices obey the constraint β+ α+ 0.5η < 1
as reported by the numbers listed in row ‘C’ of Table 2. For example, the constraint
β+α+ 0.5η for BVSP is equal to 0.9756, and is less than 1 because the values of parameters
β, α and η are equal to 0.9197, 0.0143 and 0.0832, respectively. Moreover, parameter η
is significantly positive at 1% for all stock indices. The values of parameter η for the
stock indices in the G7 are greater than 0.1421 (TSX) whereas those for the stock indices
in the E7 are smaller than 0.0873 (MXX) except for BSE. These results indicate that the
leverage effect exists significantly in the stock indices in the G7 and E7, especially for the
G7 because the values of parameter η for the case of G7 are greater than those for the E7.
In addition, the shape parameters κ, n and λ are significant for most of stock indices and
obey the constraints κ > 0, n > 2 and −1 < λ < 1. Notably, the values of parameter λ are
significantly negative for most of stock indices. These results indicate that the distribution
of returns is left-skewed and has a larger and thicker tail than the normal distribution.
Finally, regarding the Ljung–Box Q2 (20) statistics for the squared returns, they are not
significant at the 10% level for most of cases and they are all far smaller than the same
statistics appearing in Table 1. These results indicate that the serial correlation does not
exist in standard residuals and the GJR-GARCH-SGT model is sufficient to correct the
serial correlation of these returns series in the conditional variance equation for the stock
indices in the G7 and E7.

Table 2. The empirical results of the GJR-GARCH-SGT model for the overall period.

DJ TSX FTSE CAC40 DAX MIB N225

φ0 0.0391 (0.013) c 0.0367 (0.012) c 0.0018 (0.015) 0.0187 (0.018) 0.0377 (0.019) a 0.0177 (0.020) 0.0380 (0.022) a

φ1 −0.0472 (0.016) c 0.0037 (0.016) −0.0306 (0.016) a −0.0303 (0.016) a 0.0012 (0.016) −0.0217 (0.016) −0.0252 (0.016)
ω 0.0290 (0.004) c 0.0227 (0.004) c 0.0309 (0.005) c 0.0398 (0.004) c 0.0387 (0.006) c 0.0326 (0.006) c 0.0861 (0.016) c

α −0.0218 (0.008) c 0.0241 (0.009) b −0.0168 (0.007) b −0.0222 (0.006) c −0.0162 (0.005) c −0.0007 (0.008) 0.0232 (0.009) b

β 0.8929 (0.010) c 0.8837 (0.011) c 0.9008 (0.012) c 0.9026 (0.003) c 0.9121 (0.008) c 0.9150 (0.010) c 0.8732 (0.014) c

η 0.2176 (0.021) c 0.1421 (0.020) c 0.1943 (0.022) c 0.2046 (0.010) c 0.1759 (0.017) c 0.1433 (0.015) c 0.1488 (0.023) c

C 0.9799 0.97885 0.98115 0.9827 0.98385 0.98595 0.9708
n 7.0798 (1.423) c 5.1560 (0.701) c 5.7090 (0.905) c 5.9134 (0.917) c 9.5401 (2.326) c 5.7027 (0.886) c 7.1754 (1.542) c

λ −0.1229 (0.022) c −0.1548 (0.023) c −0.1143 (0.023) c −0.1380 (0.023) c −0.1090 (0.021) c −0.1445 (0.023) c −0.0554 (0.021) b

κ 1.7311 (0.126) c 2.1707 (0.162) c 2.1041 (0.163) c 2.1338 (0.159) c 1.6614 (0.119) c 2.0680 (0.157) c 1.7058 (0.139) c

Q2 (20) 3.380 39.941 c 12.510 10.813 9.605 48.903 c 7.029
LL −4974.32 −4631.04 −5207.87 −5922.27 −6058.64 −6215.33 −6306.45

BVSP RTSI BSE SSE MXX JKSE XU100

φ0 0.0565 (0.026) b 0.0991 (0.026) c 0.0778 (0.017) c 0.0116 (0.018) 0.0426 (0.018) b 0.0850 (0.016) c 0.0958 (0.030) c

φ1 −0.0144 (0.016) 0.0102 (0.015) 0.0463 (0.016) c 0.0142 (0.011) 0.0460 (0.016) c −0.0024 (0.015) −0.0004 (0.016)
ω 0.0946 (0.020) c 0.1205 (0.011) c 0.0671 (0.012) c 0.0351 (0.011)c 0.0360 (0.005) c 0.0613 (0.015) c 0.0960 (0.012) c

α 0.0143 (0.007) a 0.0449 (0.004) c 0.0363 (0.009) c 0.0460 (0.009)c 0.0296 (0.008) c 0.0698 (0.013) c 0.0425 (0.006) c

β 0.9197 (0.010) c 0.9002 (0.002) c 0.8701 (0.013) c 0.9235 (0.012)c 0.9089 (0.003) c 0.8706 (0.016) c 0.9161 (0.003) c

η 0.0832 (0.015) c 0.0672 (0.007) c 0.1534 (0.026) c 0.0520 (0.016)c 0.0873 (0.012) c 0.0824 (0.021) c 0.0455 (0.013) c

C 0.9756 0.9787 0.9831 0.9955 0.98215 0.9816 0.98135
n 4.9911 (0.709) c 4.2549 (0.547) c 3.8139 (0.386) c 6.9225 (1.712) c 4.8618 (0.651) c 4.5756 (0.669) c 4.1622 (0.503) c
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Table 2. Cont.

BVSP RTSI BSE SSE MXX JKSE XU100

λ −0.0808 (0.022) c −0.0262 (0.020) −0.0428 (0.020) b −0.0070 (0.007) −0.0784 (0.023) c −0.0603 (0.018) c −0.0593 (0.022) c

κ 2.1926 (0.180) c 1.9903 (0.165) c 2.4594 (0.220) c 1.3106 (0.104) c 2.0735 (0.158) c 1.7512 (0.146) c 2.1166 (0.169) c

Q2 (20) 27.438 4.758 2.465 31.257 a 21.581 13.741 6.592
LL −7048.77 −7280.81 −6022.33 −6451.92 −5582.73 −5838.77 −7254.09

Note: 1. The superscripts a, b and c denote significance at the 10%, 5% and 1% levels, respectively. 2. Numbers in parentheses at the rows of
parameters are standard errors. 3. LL indicates the log-likelihood value. 4. Q2 (20) statistics are asymptotically chi-squared-distributed with
20 degrees of freedom. 5. The numbers in row ‘C’ denote the value of the expression ‘β+ α+ 0.5η‘ and are used to check the constraint
‘β+α+ 0.5η < 1′, the necessary and sufficient condition for the existence of the second moment condition for all GJR-based models. Please
see Example 2.1 of Ling and McAleer [26] for more details.

4.2. The Performance Assessment of Volatility Forecasts

Via the analysis of empirical results in Table 2, the selected empirical model in this
study can capture the common features of financial assets well. I then executed the
in-sample and out-of-sample volatility forecasts of the 16 models for the the 14 stock
indices in the G7 and E7. Tables 3 and 4 report the results of in-sample volatility forecasts,
respectively, based on the MAE and RMSE loss functions for the overall period. On the
contrary, Tables 5 and 6 list the results of out-of-sample volatility forecasts, respectively,
based on the MAE and RMSE loss functions for the forecasting period via using a rolling
window approach (for each data series, the eight parametric volatility forecasting models
and eight composed volatility forecasting models, totaling sixteen models, were first
estimated using a sample of 3250 daily returns, and a volatility forecast for the next period
was obtained. Subsequently, the estimation period was rolled forward by adding one new
day and omitting the most distant day. By repeating this procedure, the out-of-sample
volatility forecasts were calculated for the next 250 days). Figure 4 shows the trend of actual
variance and its two out-of-sample variance forecasts obtained by the GJR-GARCH-SGT
and GJR-GARCH-SGT-NN models. From Figure 4, I observed that there is a significantly
sharp value of variance on March of last year owing to COVID-19 spreading througout
the world.

Subsequently, regarding Tables 3–6, I performed the volatility forecasting performance
comparison for four categories of model to explore whether the neural network approach
can promote the performance of volatility forecasting, whether the settings of leverage
effect and non-normal return distribution can encourage the performance of volatility
forecasting and which one of the 16 models possesses the best volatility forecasting per-
formance, and then record the results of performance comparison in columns S1, S2, S3
and S4 of each table (regarding four categories of model, please see Section 2.2 for more
details). The results in columns S1, S2, S3 and S4 of Tables 3–6 are also summarized in
Table 7 in order to easily explore the four main issues of this study. I used the data in
Table 3 to illustrate the performance comparison of volatility forecasting for the four cate-
gories of the model. Regarding the performance comparison of volatility forecasting for
the first category of model, I took the following two examples in Table 3 to illustrate it.
First, regarding the paired models, ‘the GARCH-N and GARCH-N-NN’, the GARCH-N
model has the lower value of MAE for the cases of DJ, TSX, FTSE and BVSP whereas the
GARCH-N-NN model possesses the lower value of MAE for the cases of the other ten
stock indices. For example, regarding the DJ, the value of MAE for the GARCH-N model
(1.94301) is lower than that for the GARCH-N-NN model (1.94312). Furthermore, in Table 3
the results ‘4’ for the GARCH-N model and ‘10’ for the GARCH-N-NN model are recorded
in column ‘S1’, respectively corresponding to the rows ‘GARCH-N’ and ‘GARCH-N-NN’.
In Table 7, the above results, ‘4’ and ‘10’, are also recorded in column ‘MAE’ below ‘In-
sample’ of S1, respectively corresponding to the rows ‘GARCH-N’ and ‘GARCH-N-NN’.
Second, regarding the paired models, ‘the GJR-GARCH-SGT and GJR-GARCH-SGT-NN’,
the GJR-GARCH-SGT-NN model possesses the lower value of MAE for all 14 stock indices
but the GJR-GARCH-SGT model does not obtain the lower value of MAE. In Table 3 the
results ‘0’ and ‘14’ are then recorded in column ‘S1’, respectively corresponding to the rows
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‘GJR-GARCH-SGT’ and ‘GJR-GARCH-SGT-NN’. In Table 7, the above results, ‘0’ and ‘14’,
are also recorded in column ‘MAE’ below ‘In-sample’ of S1, respectively corresponding
to the rows ‘GJR-GARCH-SGT’ and ‘GJR-GARCH-SGT-NN’. Regarding the performance
comparison of volatility forecasting for the second category of model, I took the follow-
ing example in Table 3 to explain it. Regarding the paired models, ‘the GARCH-N and
GJR-GARCH-N models’, the GARCH-N model has the lower value of MAE for the cases
of MIB, RTSI, BSE and XU100 whereas the GJR-GARCH-N model possesses the lower
value of MAE for the other ten stock indices. For example, regarding the MIB, the value of
MAE for the GARCH-N model (3.79126) is lower than that for the GJR-GARCH-N model
(3.79163). In Table 3 the results ‘4’ and ‘10’ are then recorded in column ‘S2’, respectively
corresponding to the rows ‘GARCH-N’ and ‘GJR-GARCH-N’. In Table 7, the above results,
‘4’ and ‘10’, are also recorded in column ‘MAE’ below ‘In-sample’ of S2, respectively cor-
responding to the rows ‘GARCH-N’ and ‘GJR-GARCH-N’. Regarding the performance
comparison of volatility forecasting for the third category of model, I took the following
example in Table 3 to explain it. Among a group of models, ‘the GARCH-N, GARCH-T,
GARCH-ST and GARCH-SGT’, the GARCH-N model possesses the lowest value of MAE
for the cases of DJ, TSX, FTSE, CAC40, DAX, BVSP and RTSI but the GARCH-T model
never obtains the lowest value of MAE. For instance, regarding the DJ, the value of MAE
for the GARCH-N model (1.94301) is lower than that for the other three GARCH-based
models such as the GARCH-T (1.99808), GARCH-ST (1.98032) and GARCH-SGT (1.95943).
In other words, regarding the DJ, the GARCH-N model possesses the lowest value of MAE
among four GARCH-based models. In addition, the GARCH-ST model has the lowest
value of MAE for the cases of BSE, MXX and XU100 whereas the GARCH-SGT model
obtains the lowest value of MAE for the cases of MIB, N225, SSE and JKSE. In Table 3 the
results ‘7’, ‘0’, ‘3’, and ‘4’ are then recorded in column ‘S3’, respectively corresponding to
the rows ‘GARCH-N’, ‘GARCH-T’, ‘GARCH-ST’ and ‘GARCH-SGT’. In Table 7, the above
results ‘7’, ‘0’, ‘3’, and ‘4’ are also recorded in column ‘MAE’ below ‘In-sample’ of S3, respec-
tively corresponding to the rows ‘GARCH-N’, ‘GARCH-T’, ‘GARCH-ST’ and ‘GARCH-
SGT’. Regarding the performance comparison of volatility forecasting for the fourth cate-
gory of model, I took the following example in Table 3 to explain it. Among all 16 models,
the GJR-GARCH-N model has the lowest value of MAE for the cases of TSX and BVSP. For
example, regarding the TSX, the value of MAE for the GJR-GARCH-N model (1.64781) is
lower than that for the other fifteen models such as the GARCH-N (1.67592), GARCH-T
(1.72006), GARCH-ST (1.70677), GARCH-SGT (1.70920), GJR-GARCH-T (1.69383), GJR-
GARCH-ST (1.68906), GJR-GARCH-SGT (1.69515), GARCH-N-NN (1.71390), GARCH-T-
NN (1.71509), GARCH-ST-NN (1.71786), GARCH-SGT-NN (1.71812), GJR-GARCH-N-NN
(1.68169), GJR-GARCH-T-NN (1.69363), GJR-GARCH-ST-NN (1.69340) and GJR-GARCH-
SGT-NN (1.69350). In other words, regarding the TSX, the GJR-GARCH-N model has the
lowest value of MAE among all sixteen models. In Table 3 the result ‘2’ is then recorded
in column ‘S4’, corresponding to the row ‘GJR-GARCH-N’. In Table 7, the above result ‘2’
is also recorded in column ‘MAE’ below ‘In-sample’ of S4, corresponding to the row
‘GJR-GARCH-N’.
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Table 3. The results of in-sample volatility forecasts based on the MAE loss function for the overall period.

DJ TSX FTSE CAC40 DAX MIB N225 BVSP RTSI BSE SSE MXX JKSE XU100 S1 S2 S3 S4

Panel A. Parametric volatility forecasting model

G-n 1.94301 1.67592 2.10058 3.02461 3.22976 3.79126 3.20712 4.61172 6.04452 3.36402 5.50737 2.24133 3.12675 5.81786 4 4 7 0
G-t 1.99808 1.72006 2.11773 3.06766 3.26971 3.73640 3.23995 4.65463 6.08147 3.36680 5.35293 2.24215 3.17611 5.81197 1 4 0 0
G-st 1.98032 1.70677 2.11096 3.04609 3.24980 3.70646 3.22753 4.64909 6.07069 3.36179 5.35735 2.24080 3.17068 5.79920 3 5 3 0

G-sgt 1.95943 1.70920 2.10996 3.04463 3.23786 3.70150 3.20270 4.66265 6.06473 3.38882 5.07430 2.24376 3.11594 5.82081 3 5 4 0
GJR-n 1.90932 1.64781 2.04673 2.97039 3.19964 3.79163 3.18855 4.56913 6.10394 3.4345 5.35130 2.21215 3.09989 5.82530 2 10 10 2
GJR-t 1.93222 1.69383 2.06506 3.01771 3.23644 3.75008 3.23776 4.61684 6.15222 3.4073 5.21295 2.22328 3.14403 5.82462 0 10 0 0
GJR-st 1.92962 1.68906 2.06817 3.01458 3.23019 3.73637 3.22787 4.61636 6.14280 3.4061 5.21859 2.22640 3.14468 5.81643 1 9 3 0

GJR-sgt 1.91756 1.69515 2.07205 3.01955 3.22419 3.74066 3.20802 4.63335 6.14009 3.4585 4.94037 2.23054 3.10001 5.84387 0 9 1 0

Panel B. Composed volatility forecasting model

G-n-NN 1.94312 1.71390 2.11361 3.01633 3.21802 3.64754 3.17210 4.65849 6.01401 3.33401 4.87450 2.23829 3.03618 5.78184 10 0 5 0
G-t-NN 1.94726 1.71509 2.11215 3.01060 3.21702 3.65168 3.17156 4.66779 6.00547 3.33830 4.83083 2.23706 3.02826 5.77879 13 2 8 1
G-st-NN 1.94974 1.71786 2.11302 3.01324 3.21994 3.65578 3.17275 4.67251 6.00691 3.33898 4.83020 2.23795 3.02936 5.77980 11 2 1 0

G-sgt-NN 1.94958 1.71812 2.11348 3.01321 3.21988 3.65567 3.17288 4.67957 6.00691 3.33889 4.83381 2.23791 3.02896 5.77989 11 2 0 0
GJR-n-NN 1.88192 1.68169 2.03321 2.93390 3.14309 3.59397 3.14176 4.59718 6.01255 3.3246 4.82876 2.20981 3.01293 5.77303 12 14 5 3

GJR-t-NN 1.85525 1.69363 2.03463 2.93273 3.14297 3.59830 3.11303 4.60219 6.00800 3.3004 4.86149 2.20971 3.00418 5.76911 14 12 6 5

GJR-st-NN 1.85510 1.69349 2.03404 2.93265 3.14357 3.60006 3.11200 4.60396 6.00837 3.3007 4.85811 2.20980 3.00526 5.76948 13 12 1 1

GJR-sgt-NN 1.85489 1.69350 2.03400 2.93292 3.14333 3.60015 3.11165 4.60426 6.00833 3.3004 4.85552 2.20983 3.00551 5.76948 14 12 3 3

Note: 1. G-n, G-t, G-st, G-sgt, GJR-n, GJR-t, GJR-st and GJR-sgt respectively denote the GARCH-N, GARCH-T, GARCH-ST, GARCH-SGT, GJR-GARCH-N, GJR-GARCH-T, GJR-GARCH-ST and GJR-GARCH-SGT
models. On the other hand, G-n-NN, G-t-NN, G-st-NN, G-sgt-NN, GJR-n-NN, GJR-t-NN, GJR-st-NN and GJR-sgt-NN respectively denote the GARCH-N, GARCH-T, GARCH-ST, GARCH-SGT, GJR-GARCH-N,
GJR-GARCH-T, GJR-GARCH-ST and GJR-GARCH-SGT models with a neural network approach. 2. Bold font denotes the lower value of loss function when the predictive accuracies of one parametric volatility
forecasting model and one corresponding composed volatility forecasting model are compared with each other based on the same volatility specification and return distribution. 3. Italic font denotes the lower
value of loss function when the predictive accuracies of one GARCH-based model and one corresponding GJR-based model are compared with each other based on the same volatility forecasting approach and
return distribution. 4. Underline font denotes the lowest value of loss function when the predictive accuracies of a group of models are compared with each other based on the same volatility specification and
volatility forecasting approach but the different distribution. 5. Shade font denotes the lowest value of loss function when the predictive accuracies of all sixteen models are compared with each other. 6. The
number in column S1 denotes the total number of indices that a specific model possesses, the lower value of loss function when the predictive accuracies of two models are compared with each other as shown by
note 2. This result can illustrate the performance comparison of two volatility forecasting models with different volatility forecasting approach, a parametric or composed volatility forecasting approach. 7. The
number in column S2 denotes the total number of indices that a specific model possesses, the lower value of loss function when the predictive accuracies of two models are compared with each other as shown by
note 3. This result can illustrate the performance comparison of two volatility forecasting models with different volatility specifications, the GJR-GARCH or GARCH. 8. The number in column S3 denotes the total
number of indices that a specific model possesses, the lowest value of loss function when the predictive accuracies of four models are compared with each other as shown by note 4. This result can illustrate the
performance comparison of a group of volatility forecasting models with different return distributions, the normal, Student’s t, ST, and SGT. 9. The number in column S4 denotes the total number of indices that a
specific model possesses, the lowest value of loss function when the predictive accuracies of all sixteen models are compared with each other as shown by note 5.
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Table 4. The results of in-sample volatility forecasts based on the RMSE loss function for the overall period.

DJ TSX FTSE CAC40 DAX MIB N225 BVSP RTSI BSE SSE MXX JKSE XU100 S1 S2 S3 S4

Panel A. Parametric volatility forecasting model

G-n 5.88987 7.46073 5.89514 7.65691 7.96846 11.2187 7.78205 12.2476 16.6405 10.4222 36.8334 6.78058 9.07556 16.2150 0 3 10 0
G-t 5.92925 7.49119 5.90315 7.67566 7.97518 11.1961 7.79092 12.2757 16.6594 10.4458 36.1581 6.78075 9.07132 16.2114 0 4 0 0
G-st 5.92579 7.49069 5.90379 7.67298 7.97296 11.1889 7.79059 12.2870 16.6587 10.4451 36.1602 6.78240 9.07138 16.2113 0 4 1 0

G-sgt 5.91719 7.49141 5.90355 7.67257 7.97120 11.1871 7.78675 12.2863 16.6581 10.4502 36.0788 6.78269 9.05736 16.2130 0 4 3 0
GJR-n 5.70424 7.38230 5.77953 7.57192 7.86956 11.2521 7.68501 12.0622 16.6892 10.4336 36.2758 6.74763 8.98016 16.2136 0 11 11 0
GJR-t 5.74383 7.43802 5.80208 7.61511 7.88250 11.2101 7.70976 12.0925 16.7084 10.4899 35.8114 6.75102 8.96937 16.2183 0 10 1 0
GJR-st 5.74790 7.43847 5.80758 7.62307 7.88265 11.2170 7.70583 12.1009 16.7058 10.4907 35.8165 6.75344 8.97349 16.2186 0 10 0 0

GJR-sgt 5.73878 7.44376 5.80979 7.62584 7.88251 11.2195 7.69860 12.1022 16.7053 10.5198 35.7892 6.75423 8.96183 16.2223 0 10 2 0

Panel B. Composed volatility forecasting model

G-n-NN 5.88973 7.44449 5.81596 7.61656 7.92175 11.0607 7.76945 12.2058 16.6279 10.3714 35.5475 6.77104 9.02154 16.1876 14 1 10 1
G-t-NN 5.90828 7.45553 5.82481 7.62301 7.92468 11.0969 7.77131 12.2550 16.6353 10.3811 35.5333 6.77054 9.01135 16.1838 14 0 3 0
G-st-NN 5.91183 7.46233 5.82701 7.62766 7.92847 11.0989 7.77327 12.2656 16.6360 10.3821 35.5329 6.77200 9.01313 16.1844 14 0 0 0

G-sgt-NN 5.90998 7.46188 5.82649 7.62748 7.92741 11.0978 7.77287 12.2618 16.6360 10.3818 35.5327 6.77197 9.01232 16.1845 14 0 1 0
GJR-n-NN 5.66838 7.32958 5.73452 7.47130 7.79466 10.9658 7.64847 12.0412 16.6300 10.3704 35.4988 6.73087 8.94364 16.1678 14 13 7 6

GJR-t-NN 5.65690 7.34451 5.73045 7.47338 7.79334 10.9964 7.54694 12.0920 16.6347 10.3346 35.5085 6.73146 8.91664 16.1633 14 14 3 3
GJR-st-NN 5.65575 7.34291 5.72990 7.47311 7.79390 10.9981 7.54500 12.1007 16.6351 10.3352 35.5083 6.73169 8.91944 16.1634 14 14 0 0

GJR-sgt-NN 5.65494 7.34184 5.72915 7.47296 7.79344 10.9985 7.54468 12.1021 16.6351 10.3343 35.5044 6.73176 8.92064 16.1634 14 14 4 4

Note: 1. G-n, G-t, G-st, G-sgt, GJR-n, GJR-t, GJR-st and GJR-sgt respectively denote the GARCH-N, GARCH-T, GARCH-ST, GARCH-SGT, GJR-GARCH-N, GJR-GARCH-T, GJR-GARCH-ST and GJR-GARCH-SGT
models. On the other hand, G-n-NN, G-t-NN, G-st-NN, G-sgt-NN, GJR-n-NN, GJR-t-NN, GJR-st-NN and GJR-sgt-NN respectively denote the GARCH-N, GARCH-T, GARCH-ST, GARCH-SGT, GJR-GARCH-N,
GJR-GARCH-T, GJR-GARCH-ST and GJR-GARCH-SGT models with a neural network approach. 2. Bold font denotes the lower value of loss function when the predictive accuracies of one parametric volatility
forecasting model and one corresponding composed volatility forecasting model are compared with each other based on the same volatility specification and return distribution. 3. Italic font denotes the lower
value of loss function when the predictive accuracies of one GARCH-based model and one corresponding GJR-based model are compared with each other based on the same volatility forecasting approach and
return distribution. 4. Underline font denotes the lowest value of loss function when the predictive accuracies of a group of models are compared with each other based on the same volatility specification and
volatility forecasting approach but the different distribution. 5. Shade font denotes the lowest value of loss function when the predictive accuracies of all sixteen models are compared with each other. 6. The
number in column S1 denotes the total number of indices that a specific model possesses, the lower value of loss function when the predictive accuracies of two models are compared with each other as shown by
note 2. This result can illustrate the performance comparison of two volatility forecasting models with different volatility forecasting approach, a parametric or composed volatility forecasting approach. 7. The
number in column S2 denotes the total number of indices that a specific model possesses, the lower value of loss function when the predictive accuracies of two models are compared with each other as shown by
note 3. This result can illustrate the performance comparison of two volatility forecasting models with different volatility specifications, the GJR-GARCH or GARCH. 8. The number in column S3 denotes the total
number of indices that a specific model possesses, the lowest value of loss function when the predictive accuracies of four models are compared with each other as shown by note 4. This result can illustrate the
performance comparison of a group of volatility forecasting models with different return distributions, the normal, Student’s t, ST, and SGT. 9. The number in column S4 denotes the total number of indices that a
specific model possesses, the lowest value of loss function when the predictive accuracies of all sixteen models are compared with each other as shown by note 5.
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Table 5. The results of out-of-sample volatility forecasts based on the MAE loss function for the forecasting period.

DJ TSX FTSE CAC40 DAX MIB N225 BVSP RTSI BSE SSE MXX JKSE XU100 S1 S2 S3 S4

Panel A. Parametric volatility forecasting model

G-n 5.23835 4.08614 4.00723 4.88746 5.25529 6.87391 3.58023 8.45408 5.21086 5.54409 19.7119 2.53884 3.21863 4.25112 3 8 8 0
G-t 5.48781 4.34579 4.10754 5.05897 5.41590 6.80322 3.61923 8.70583 5.20198 5.57355 17.8097 2.53597 3.28406 4.28156 4 9 0 0
G-st 5.45056 4.33698 4.09935 5.04040 5.39462 6.77097 3.60625 8.74539 5.18925 5.57756 17.7633 2.53355 3.27678 4.27488 4 9 1 0

G-sgt 5.39303 4.33220 4.09407 5.02931 5.36438 6.75901 3.57434 8.75180 5.18462 5.61967 17.1715 2.53716 3.20656 4.28206 3 9 5 0
GJR-n 4.81345 3.77181 4.36983 5.20351 5.44052 7.41404 3.53313 8.14552 5.45733 5.66595 17.8680 2.52363 3.22240 4.31663 4 6 13 3
GJR-t 4.97463 3.99525 4.40601 5.38883 5.60222 7.47680 3.56840 8.40549 5.57311 5.74500 15.8210 2.54620 3.28613 4.37388 3 5 0 0
GJR-st 4.97868 3.99444 4.43572 5.42069 5.62017 7.51899 3.56041 8.46082 5.56537 5.76024 15.8078 2.55058 3.28866 4.37328 3 5 0 0

GJR-sgt 4.94163 3.99792 4.44068 5.42710 5.60309 7.52452 3.54297 8.47717 5.56592 5.85565 15.4829 2.55956 3.23212 4.39085 4 5 1 0

Panel B. Composed volatility forecasting model

G-n-NN 5.24135 4.26528 3.92162 4.68967 4.94144 6.13239 3.54364 8.78185 5.14861 5.14944 11.6175 2.53873 3.03769 4.23808 11 8 12 6
G-t-NN 5.34439 4.39402 4.00536 4.72423 5.03107 6.20466 3.53207 9.00670 5.18240 5.30239 11.6262 2.54594 3.03722 4.30382 10 6 1 0
G-st-NN 5.35238 4.43273 3.99540 4.78152 5.00909 6.23998 3.57905 9.17592 5.16946 5.30356 11.3741 2.54548 3.06566 4.29301 10 8 1 1

G-sgt-NN 5.36960 4.45364 4.02441 4.78124 5.04596 6.20504 3.54173 9.07422 5.16616 5.30945 11.5982 2.54708 3.11389 4.28028 11 7 0 0
GJR-n-NN 4.40175 3.94553 4.00938 4.72984 4.94126 6.24450 3.60694 8.36262 5.39025 5.23549 11.8965 2.52882 2.99607 4.29655 10 6 11 3

GJR-t-NN 4.55368 4.08222 4.04434 4.74660 5.02959 6.39646 3.49599 8.68141 5.47566 5.33312 11.5189 2.54544 3.02102 4.39763 11 8 2 1
GJR-st-NN 4.61519 4.07934 4.11441 4.74246 5.04989 6.48982 3.50090 8.73967 5.47415 5.33983 12.5474 2.54155 3.16545 4.39122 11 6 0 0

GJR-sgt-NN 4.60464 4.07151 4.11678 4.70148 5.00459 6.58809 3.59051 8.81177 5.47806 5.33477 11.6727 2.54063 3.01503 4.39734 10 7 1 0

Note: 1. G-n, G-t, G-st, G-sgt, GJR-n, GJR-t, GJR-st and GJR-sgt respectively denote the GARCH-N, GARCH-T, GARCH-ST, GARCH-SGT, GJR-GARCH-N, GJR-GARCH-T, GJR-GARCH-ST and GJR-GARCH-SGT
models. On the other hand, G-n-NN, G-t-NN, G-st-NN, G-sgt-NN, GJR-n-NN, GJR-t-NN, GJR-st-NN and GJR-sgt-NN respectively denote the GARCH-N, GARCH-T, GARCH-ST, GARCH-SGT, GJR-GARCH-N,
GJR-GARCH-T, GJR-GARCH-ST and GJR-GARCH-SGT models with a neural network approach. 2. Bold font denotes the lower value of loss function when the predictive accuracies of one parametric volatility
forecasting model and one corresponding composed volatility forecasting model are compared with each other based on the same volatility specification and return distribution. 3. Italic font denotes the lower
value of loss function when the predictive accuracies of one GARCH-based model and one corresponding GJR-based model are compared with each other based on the same volatility forecasting approach and
return distribution. 4. Underline font denotes the lowest value of loss function when the predictive accuracies of a group of models are compared with each other based on the same volatility specification and
volatility forecasting approach but the different distribution. 5. Shade font denotes the lowest value of loss function when the predictive accuracies of all sixteen models are compared with each other. 6. The
number in column S1 denotes the total number of indices that a specific model possesses, the lower value of loss function when the predictive accuracies of two models are compared with each other as shown by
note 2. This result can illustrate the performance comparison of two volatility forecasting models with different volatility forecasting approach, a parametric or composed volatility forecasting approach. 7. The
number in column S2 denotes the total number of indices that a specific model possesses, the lower value of loss function when the predictive accuracies of two models are compared with each other as shown by
note 3. This result can illustrate the performance comparison of two volatility forecasting models with different volatility specifications, the GJR-GARCH or GARCH. 8. The number in column S3 denotes the total
number of indices that a specific model possesses, the lowest value of loss function when the predictive accuracies of four models are compared with each other as shown by note 4. This result can illustrate the
performance comparison of a group of volatility forecasting models with different return distributions, the normal, Student’s t, ST, and SGT. 9. The number in column S4 denotes the total number of indices that a
specific model possesses, the lowest value of loss function when the predictive accuracies of all sixteen models are compared with each other as shown by note 5.
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Table 6. The results of out-of-sample volatility forecasts based on the RMSE loss function for the forecasting period.

DJ TSX FTSE CAC40 DAX MIB N225 BVSP RTSI BSE SSE MXX JKSE XU100 S1 S2 S3 S4

Panel A. Parametric volatility forecasting model

G-n 15.7616 16.4357 12.2028 14.9531 15.8453 26.2827 7.65260 25.2073 13.0475 15.5771 133.482 6.00390 9.18619 8.79046 5 3 10 1
G-t 15.8326 16.5444 12.2558 15.0491 15.9001 26.3276 7.65756 25.3208 13.0901 15.6034 130.953 5.99677 9.17535 8.84355 6 4 1 0
G-st 15.8345 16.5793 12.2563 15.0556 15.9054 26.3198 7.65689 25.3994 13.0874 15.6054 130.920 5.99752 9.17864 8.84692 6 4 0 0

G-sgt 15.8172 16.5795 12.2550 15.0514 15.8985 26.3137 7.65226 25.3976 13.0867 15.6098 130.712 5.99771 9.16410 8.84833 6 4 3 0
GJR-n 14.7082 15.4637 12.1957 15.1460 15.6646 26.7312 7.54351 24.1080 13.2198 15.3434 131.852 5.94791 8.99512 8.73118 6 11 11 4

GJR-t 14.8234 15.6328 12.2648 15.4193 15.7535 26.7665 7.58346 24.1723 13.3201 15.2647 129.895 5.95827 8.95443 8.77517 5 10 1 1
GJR-st 14.8218 15.6234 12.2999 15.4737 15.7698 26.8319 7.57574 24.2560 13.3142 15.2693 129.888 5.96144 8.96129 8.77606 5 10 0 0

GJR-sgt 14.8051 15.6236 12.3048 15.4815 15.7660 26.8366 7.56853 24.2522 13.3144 15.2992 129.857 5.96565 8.94753 8.78103 5 10 2 1

Panel B. Composed volatility forecasting model

G-n-NN 15.7158 16.7954 11.9357 14.8658 15.7203 25.9199 7.64866 25.2355 13.0734 15.5384 128.780 6.01051 9.16953 8.84951 9 2 10 0
G-t-NN 15.8096 17.0290 12.1767 14.8586 15.7651 26.0282 7.65025 25.7240 13.0932 15.6256 128.775 6.01331 9.16124 8.89737 8 1 1 0
G-st-NN 15.8205 17.0909 12.0342 14.9238 15.6385 26.0064 7.66164 25.7570 13.0947 15.5870 128.742 6.01462 9.15128 8.90285 8 2 2 0

G-sgt-NN 15.8872 17.0906 12.1863 14.9109 15.7696 26.0238 7.65046 25.7959 13.0877 15.6027 128.736 6.01486 9.15479 8.90320 8 2 1 1

GJR-n-NN 14.5880 16.0961 11.6052 14.5095 15.3074 25.7060 7.58093 24.2990 13.1519 15.3102 128.813 5.94958 9.08563 8.76723 8 12 9 3
GJR-t-NN 14.7197 16.2601 11.7272 14.5034 15.3502 25.8360 7.52585 24.8464 13.1947 15.3500 128.741 5.95229 9.05318 8.82244 9 13 1 0
GJR-st-NN 14.6896 16.2826 11.8397 14.4597 15.3563 25.8105 7.52580 24.9499 13.1995 15.3505 128.930 5.94996 8.99093 8.82167 9 12 2 1

GJR-sgt-NN 14.6791 16.2717 11.8540 14.2583 15.1765 25.8009 7.55066 24.9547 13.2014 15.3489 128.759 5.95011 9.05288 8.82304 9 12 2 2

Note: 1. G-n, G-t, G-st, G-sgt, GJR-n, GJR-t, GJR-st and GJR-sgt respectively denote the GARCH-N, GARCH-T, GARCH-ST, GARCH-SGT, GJR-GARCH-N, GJR-GARCH-T, GJR-GARCH-ST and GJR-GARCH-SGT
models. On the other hand, G-n-NN, G-t-NN, G-st-NN, G-sgt-NN, GJR-n-NN, GJR-t-NN, GJR-st-NN and GJR-sgt-NN respectively denote the GARCH-N, GARCH-T, GARCH-ST, GARCH-SGT, GJR-GARCH-N,
GJR-GARCH-T, GJR-GARCH-ST and GJR-GARCH-SGT models with a neural network approach. 2. Bold font denotes the lower value of loss function when the predictive accuracies of one parametric volatility
forecasting model and one corresponding composed volatility forecasting model are compared with each other based on the same volatility specification and return distribution. 3. Italic font denotes the lower
value of loss function when the predictive accuracies of one GARCH-based model and one corresponding GJR-based model are compared with each other based on the same volatility forecasting approach and
return distribution. 4. Underline font denotes the lowest value of loss function when the predictive accuracies of a group of models are compared with each other based on the same volatility specification and
volatility forecasting approach but the different distribution. 5. Shade font denotes the lowest value of loss function when the predictive accuracies of all sixteen models are compared with each other. 6. The
number in column S1 denotes the total number of indices that a specific model possesses, the lower value of loss function when the predictive accuracies of two models are compared with each other as shown by
note 2. This result can illustrate the performance comparison of two volatility forecasting models with different volatility forecasting approach, a parametric or composed volatility forecasting approach. 7. The
number in column S2 denotes the total number of indices that a specific model possesses, the lower value of loss function when the predictive accuracies of two models are compared with each other as shown by
note 3. This result can illustrate the performance comparison of two volatility forecasting models with different volatility specifications, the GJR-GARCH or GARCH. 8. The number in column S3 denotes the total
number of indices that a specific model possesses, the lowest value of loss function when the predictive accuracies of four models are compared with each other as shown by note 4. This result can illustrate the
performance comparison of a group of volatility forecasting models with different return distributions, the normal, Student’s t, ST, and SGT. 9. The number in column S4 denotes the total number of indices that a
specific model possesses, the lowest value of loss function when the predictive accuracies of all sixteen models are compared with each other as shown by note 5.
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Table 7. The summary results of performance comparison for the in-sample and out-of-sample volatility forecasts.

S1 S2 S3 S4

In-Sample Out-of-
Sample Sum

In-Sample Out-of-
Sample Sum

In-Sample Out-of-
Sample Sum

In-Sample Out-of-
Sample Sum

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Panel A. Parametric volatility forecasting model

G-n 4 0 3 5 12 4 3 8 3 18 7 10 8 10 35 0 0 0 1 1
G-t 1 0 4 6 11 4 4 9 4 21 0 0 0 1 1 0 0 0 0 0
G-st 3 0 4 6 13 5 4 9 4 22 3 1 1 0 5 0 0 0 0 0

G-sgt 3 0 3 6 12 5 4 9 4 22 4 3 5 3 15 0 0 0 0 0
GJR-n 2 0 4 6 12 10 11 6 11 38 10 11 13 11 45 2 0 3 4 9
GJR-t 0 0 3 5 8 10 10 5 10 35 0 1 0 1 2 0 0 0 1 1
GJR-st 1 0 3 5 9 9 10 5 10 34 3 0 0 0 3 0 0 0 0 0

GJR-sgt 0 0 4 5 9 9 10 5 10 34 1 2 1 2 6 0 0 0 1 1

Panel B. Composed volatility forecasting model

G-n-NN 10 14 11 9 44 0 1 8 2 11 5 10 12 10 37 0 1 6 0 7
G-t-NN 13 14 10 8 45 2 0 6 1 9 8 3 1 1 13 1 0 0 0 1
G-st-NN 11 14 10 8 43 2 0 8 2 12 1 0 1 2 4 0 0 1 0 1

G-sgt-NN 11 14 11 8 44 2 0 7 2 11 0 1 0 1 2 0 0 0 1 1
GJR-n-NN 12 14 10 8 44 14 13 6 12 45 5 7 11 9 32 3 6 3 3 15
GJR-t-NN 14 14 11 9 48 12 14 8 13 47 6 3 2 1 12 5 3 1 0 9
GJR-st-NN 13 14 11 9 47 12 14 6 12 44 1 0 0 2 3 1 0 0 1 2

GJR-sgt-NN 14 14 10 9 47 12 14 7 12 45 3 4 1 2 10 3 4 0 2 9

Note: 1. The numbers in column ‘MAE’ below ‘In-sample’ of S1, S2, S3 and S4, respectively are summarized from those in columns ‘S1’, ‘S2’, ‘S3’ and ‘S4’ of Table 3. 2. The numbers in column ‘RMSE’ below
‘In-sample’ of S1, S2, S3 and S4, respectively are summarized from those in columns ‘S1’, ‘S2’, ‘S3’ and ‘S4’ of Table 4. 3. The numbers in column ‘MAE’ below ‘Out-of-sample’ of S1, S2, S3 and S4, respectively are
summarized from those in columns ‘S1’, ‘S2’, ‘S3’ and ‘S4’ of Table 5. 4. The numbers in column ‘RMSE’ below ‘Out-of-sample’ of S1, S2, S3 and S4, respectively are summarized from those in columns ‘S1’, ‘S2’,
‘S3’ and ‘S4’ of Table 6. 5. The numbers in column ‘Sum’ below ‘S1’ denote the summation of four numbers in columns ‘MAE’ and ‘RMSE’ below ‘In-sample’ and ‘Out-of-sample’ of S1. 6. The numbers in column
‘Sum’ below ‘S2’ denote the summation of four numbers in columns ‘MAE’ and ‘RMSE’ below ‘In-sample’ and ‘Out-of-sample’ of S2. 7. The numbers in column ‘Sum’ below ‘S3’ denote the summation of four
numbers in columns ‘MAE’ and ‘RMSE’ below ‘In-sample’ and ‘Out-of-sample’ of S3. 8. The numbers in column ‘Sum’ below ‘S4’ denote the summation of four numbers in columns ‘MAE’ and ‘RMSE’ below
‘In-sample’ and ‘Out-of-sample’ of S4. 9. Bold font in column ‘S1’ denotes the larger number when two numbers at the same column are compared with each other where two numbers respectively correspond to
a parametric volatility forecasting model and its corresponding composed volatility forecasting model, such as the GARCH-N and GARCH-N-N models. 10. Bold font in column ‘S2’ denotes the larger number
when two numbers at the same column are compared with each other where two numbers respectively correspond to a GARCH-based model and its corresponding GJR-based model, such as the GARCH-N and
GJR-GARCH-N models. 11. Bold font in column ‘S3’ denotes the largest number when four numbers at the same column are compared with each other where four numbers respectively correspond to four
models with the same volatility specification and volatility forecasting approach but different return distributions. 12. Bold font in column ‘S4’ denotes the largest number when all sixteen numbers in the same
column are compared with each other where sixteen numbers respectively correspond to sixteen models.
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Table 7 lists the summary results of performance comparison for the in-sample and
out-of-sample volatility forecasts based on the MAE and RMSE loss functions. In other
words, the numbers in column ‘MAE’ below ‘In-sample’ of S1, S2, S3 and S4 are respectively
summarized from those in columns ‘S1’, ‘S2’, ‘S3’ and ‘S4’ of Table 3. On the contrary,
the numbers in column ‘RMSE’ below ‘In-sample’ of S1, S2, S3 and S4 are respectively
summarized from those in columns ‘S1’, ‘S2’, ‘S3’ and ‘S4’ of Table 4. The numbers in
column ‘MAE’ below ‘Out-of-sample’ of S1, S2, S3 and S4 are respectively summarized
from those in columns ‘S1’, ‘S2’, ‘S3’ and ‘S4’ of Table 5. Conversely, the numbers in column
‘RMSE’ below ‘Out-of-sample’ of S1, S2, S3 and S4 are respectively summarized from those
in columns ‘S1’, ‘S2’, ‘S3’ and ‘S4’ of Table 6. In order to easily explore the four main issues
of this study, I performed calculations for the summation of all four numbers in column
‘S1’ for each model, as well as columns ‘S2’, ‘S3’ and ‘S4’. For example, regarding the
GARCH-N model, the numbers ‘4′ and ‘0’ are respectively in columns ‘MAE’ and ‘RMSE’
below ‘In-sample’ of S1. Moreover, the numbers ‘3′ and ‘5′ are respectively in columns
‘MAE’ and ‘RMSE’ below ‘Out-of-sample’ of S1. Hence, in Table 7, the summation of all
four numbers in column ‘S1’ is equal to 12, and is recorded in the column ‘Sum’ below
‘S1’ and the row ‘GARCH-N’. Regarding the other 15 models, the summation of all four
numbers in columns ‘S1’ must be done with the same inference process. With regard to
the 16 models, the summation of all four numbers in columns ‘S2’, ‘S3’ or ‘S4’ must also
be evaluated with the same inference process. The above summation results in columns
‘S2’, ‘S3’ or ‘S4’ are recorded in the column ‘Sum’ below ‘S1’, ‘S3’ or ‘S4’, respectively.
Subsequently, I used all 16 numbers in column ‘Sum’ below ‘S1’, ‘S2’, ‘S3’, and ‘S4’ of
Table 7 to execute the performance comparison of volatility forecasting for four categories
of model. As shown by the numbers at column ‘Sum’ below S1 of Table 7, I found that the
numbers for all eight composed volatility forecasting models are far greater than those for
all eight corresponding parametric volatility forecasting models. For example, the number
for the GARCH-N-NN model (44) is far greater than that for the GARCH-N model (12).
These results indicate that the performance for the composed volatility forecasting models
is significantly superior to that for the parametric volatility forecasting models. In other
words, the neural network approach can significantly improve the performance of volatility
forecasting. As reported by the numbers in column ‘Sum’ below S2 of Table 7, I found
that, regarding the parametric volatility forecasting approach, the numbers for all four
GJR-based models are far greater than those for all four corresponding GARCH-based
models, as shown in panel A of this table. For instance, the number for the GJR-GARCH-N
model (38) is far greater than that for the GARCH-N model (18). I also found that, regarding
the composed volatility forecasting approach, the numbers for all four GJR-based models
are far greater than those for all four corresponding GARCH-based models, as shown in
panel B of this table. These results imply that irrespective of the parametric forecasting
approach or composed forecasting approach, the performance for the GJR-based models
is significantly superior to that of the GARCH-based models. That is to say, the setting of
the leverage effect can significantly encourage the performance of volatility forecasting
(as shown in Section 2, the GJR-based model can seize the leverage effect appearing at the
financial assets whereas the GARCH-based model cannot.) As illustrated by the numbers in
column ‘Sum’ below S3 of Table 7, I found that the numbers for the models with non-normal
distribution are not greater than those for the models with normal distribution based on the
same volatility forecasting approach and volatility specification. For example, the number
for the GARCH-N model (35) is far greater than those for the GARCH-T (1), GARCH-ST (5)
and GARCH-SGT (15) models. Moreover, the number for the GJR-GARCH-N model (45) is
far greater than those for the GJR-GARCH-T (2), GJR-GARCH-ST (3) and GJR-GARCH-SGT
(6) models. Furthermore, the number for the GARCH-N-NN model (37) is far greater than
those for the GARCH-T-NN (13), GARCH-ST-NN (4) and GARCH-SGT-NN (2) models.
In addition, the number for the GJR-GARCH-N-NN model (32) is far greater than those
for the GJR-GARCH-T-NN (12), GJR-GARCH-ST-NN (3) and GJR-GARCH-SGT-NN (10)
models. The above results indicate that irrespective of volatility forecasting approach or
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volatility specification, the performance of the models with the non-normal distribution
is not superior to that of the models with the normal distribution. In other words, the
setting of the non-normal return distribution cannot promote the performance of volatility
forecasting. As listed by the 16 numbers in column ‘Sum’ below S4 of Table 7, I found
the number for the GJR-GARCH-N-NN model (15) is the greatest. On the contrary, the
numbers for the GJR-GARCH-N, GJR-GARCH-T-NN and GJR-GARCH-SGT-NN are all
equal to 9, the second greatest among the 16 numbers. The above result indicates that,
among the 16 models in this study, the performance of the GJR-GARCH-N-NN models is
the best followed by GJR-GARCH-N, GJR-GARCH-T-NN and GJR-GARCH-SGT-NN. In
other words, the GJR-GARCH model combined with both the normal distribution and a
neural networks approach has the best performance of volatility forecasting among the
sixteen models in this study.

In addition, this study also investigates which model is the most suitable for each of
the fourteen stock indices. That is, regarding each stock index, which model has the best
performance of volatility forecasting in order to find the most suitable model for each stock
index. In order to easily explore this issue, I summarized the most superior model for each
stock index based on two types of volatility forecasts (in-sample and out-of-sample) and
two types of loss function (MAE and RMSE). Taking an example of ‘DJ’ stock index, among
the 16 models, the GJR-GARCH-SGT-NN model has the best performance for in-sample
volatility forecast based on MAE (respectively, RMSE) as shown in the column ‘DJ’ of
Table 3 (respectively, Table 4). These results are recorded in column ‘DJ’ and rows ‘MAE’
and ‘RMSE’ of ‘In-sample’ in Table 8. Conversely, among the 16 models, the GJR-GARCH-
N-NN model has the best performance for out-of-sample volatility forecast based on MAE
(respectively, RMSE) as shown in the column ‘DJ’ of Table 5 (respectively, Table 6). These
results are recorded in column ‘DJ’ and rows ‘MAE’ and ‘RMSE’ of ‘Out-of-sample’ in
Table 8. Hence, Table 8 summarizes the results of the most suitable mode for alternative
stock indices. In other words, the results listed in row ‘MAE’ (respectively, ‘RMSE’) of
‘In-Sample’ in Table 8 are summarized from the results of the performance comparison
for the fourth category of model in Table 3 (respectively, Table 4). On the other hand,
the results listed in row ‘MAE’ (respectively, ‘RMSE’) of ‘Out-of-Sample’ in Table 8 are
summarized from the results of the performance comparison for the fourth category of
model in Table 5 (respectively, Table 6). From Table 8, I found that both GJR-GARCH-N-NN
and GJR-GARCH-SGT-NN are the most suitable models for the DJ stock index because
both the GJR-GARCH-N-NN and GJR-GARCH-SGT-NN appear twice among four cases in
column ‘DJ’ in Table 8 (the four cases in Table 8 are composed of two types of volatility
forecasts (in-sample and out-of-sample) and two types of loss function (MAE and RMSE)
when the volatility forecasting of a specific stock index is executed). These results are
recorded in row ‘Best model’, corresponding to column ‘DJ’ in Table 8. On the contrary,
GJR-GARCH-N is the most suitable model for the TSX stock index because GJR-GARCH-N
is the most relevant for the four cases. These results are recorded in row ‘Best model’,
corresponding to column ‘TSX’ in Table 8. In the same inference process, I found the most
suitable models for the others stock indices, and I recorded them in row ‘Best model’ and
the column corresponding to the specific stock index in Table 8. From the results listed in
the row ‘Best model’ of Table 8, I obtained the following conclusion. First, GJR-GARCH-N
is the most suitable model for the TSX, BVSP and MXX. Second, GARCH-N-NN is the most
suitable model only for the RTSI. Third, GJR-GARCH-N-NN is the most suitable model
for the DJ, FTSE, MIB and SSE. Fourth, GJR-GARCH-T-NN is the most suitable model for
the DAX, JKSE and XU100. Fifth, the GJR-GARCH-SGT-NN is the most suitable model
for the DJ, N225 and BSE. To sum up, the most suitable models for the 14 stock indices
are distributed at the GJR-GARCH-N, GARCH-N-NN, GJR-GARCH-N-NN, GJR-GARCH-
T-NN and GJR-GARCH-SGT-NN models. These results indicate that the most suitable
models are not necessarily the same for each of the 14 stock indices. Regarding the most
suitable models above, they possess the setting of leverage effect and further combine
with a neural networks approach. As to the setting of distribution, they are randomly
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distributed at the normal, Student’s t and SGT. Hence, the above conclusions are the same
as those obtained from the analysis of previous issues. That is, a neural network approach
and the setting of leverage effect can significantly promote the performance of volatility
forecasting but the setting of non-normal distribution cannot.

Table 8. The summary results of the best volatility forecasting model for alternative stock indices.

DJ TSX FTSE CAC40 DAX MIB N225

In-Sample
MAE GJR-sgt-NN GJR-n GJR-n-NN GJR-st-NN GJR-t-NN GJR-n-NN GJR-sgt-NN

RMSE GJR-sgt-NN GJR-n-NN GJR-sgt-NN GJR-n-NN GJR-t-NN GJR-n-NN GJR-sgt-NN

Out-of-
Sample

MAE GJR-n-NN GJR-n G-n-NN G-n-NN GJR-n-NN G-n-NN GJR-t-NN

RMSE GJR-n-NN GJR-n GJR-n-NN GJR-sgt-NN GJR-sgt-NN GJR-n-NN GJR-st-NN

Best
model

GJR-n-NN;
GJR-sgt-NN GJR-n GJR-n-NN ? GJR-t-NN GJR-n-NN GJR-sgt-NN

BVSP RTSI BSE SSE MXX JKSE XU100

In-Sample
MAE GJR-n G-t-NN GJR-t-NN;

GJR-sgt-NN GJR-n-NN GJR-t-NN GJR-t-NN GJR-t-NN

RMSE GJR-n-NN G-n-NN GJR-sgt-NN GJR-n-NN GJR-n-NN GJR-t-NN GJR-t-NN

Out-of-
Sample

MAE GJR-n G-n-NN G-n-NN G-st-NN GJR-n GJR-n-NN G-n-NN

RMSE GJR-n G-n GJR-t G-sgt-NN GJR-n GJR-sgt GJR-n

Best
model GJR-n G-n-NN GJR-sgt-NN GJR-n-NN GJR-n GJR-t-NN GJR-t-NN

Note: 1. This table summarizes the results of the best volatility forecasting model for alternative stock indices in Tables 3–6. In other
words, the results listed in row ‘MAE’ (respectively, ‘RMSE’) of ‘In-Sample’ in Table 8 are summarized from the results of the performance
comparison for the fourth category of model in Table 3 (respectively, Table 4). On the other hand, the results listed in row ‘MAE’ (respectively,
‘RMSE’) of ‘Out-of-Sample’ in Table 8 are summarized from the results of the performance comparison for the fourth category of model
in Table 5 (respectively, Table 6). 2. GJR-n represents the GJR-GARCH-N model. On the contrary, G-n-NN, GJR-n-NN, GJR-t-NN and
GJR-sgt-NN denote the GARCH-N, GJR-GARCH-N, GJR-GARCH-T and GJR-GARCH-SGT models with a neural networks approach. 3.
The models listed in row ‘Best model’ and the column corresponding to a specific stock index denote the suitable models for this specific
stock index. 4. The symbol ‘?’ in the row ‘Best model’ denotes I could not obtain a suitable model because there is no model that can
simultaneously appear twice or more. 5. The bold font in rows ‘MAE’ and ‘RMSE’ of ‘In-sample’ (or ‘Out-of-sample’) denote the suitable
models for a specific stock index because for the above four cases this model can simultaneously appear twice or more.

5. Conclusions

This study uses the stock indices in the developed and emerging markets as the
sample and then utilizes eight parametric volatility forecasting models and eight composed
volatility forecasting models to explore whether the neural networks approach can promote
the performance of volatility forecasting, whether the settings of leverage effect and non-
normal return distribution can encourage the performance of volatility forecasting and
which one of the 16 models posseses the best volatility forecasting performance. In addition,
this study also investigates which model is the most suitable for each of 14 stock indices.
The stock indices in the G7 and E7 are used to represent the stock markets in the developed
and emerging markets, respectively. The eight parametric volatility forecasts models are
composed of the GJR-GARCH or GARCH models with the normal, Student’s t, skewed
Student’s t and generalized skewed Student’s t distributions. The eight composed volatility
forecasting models are the eight parametric volatility forecasting models combined with a
neural network approach. Notably, the neural network model has the same concepts as the
network topology.

The empirical findings can be summarized as follows. From the descriptive statistics
of data and estimation results of the GJR-GARCH-SGT model, I obtained the following
conclusions. First, the stock indices in the E7 have higher return and higher risk than those
in the G7. Second, all the stock indices in the G7 and E7 for the forecasting period have
higher risk than those for the overall period because of COVID-19 spreading throughout the
world in the last year. Third, the leverage effect exists significantly in the stock indices in the
G7 and E7, especially for the G7. Fourth, the distribution of returns is left-skewed and has



Entropy 2021, 23, 1151 25 of 26

a larger and thicker tail than the normal distribution. From the performance comparison
for the four categories of model, I drew the following conclusions, irrespective of in-
sample or out-of-sample volatility forecasting. First, the performance for the composed
volatility forecasting models is significantly superior to that of the parametric volatility
forecasting models, indicating that the neural network approach can significantly improve
the performance of volatility forecasting. Second, irrespective of parametric forecasting
approach or composed forecasting approach, the performance for the GJR-based models is
significantly superior to that of the GARCH-based models, implying that the setting of the
leverage effect can significantly encourage the performance of volatility forecasting. Third,
irrespective of volatility forecasting approach or volatility specification, the performance
of the models with non-normal distribution are not superior to that of the models with
the normal distribution, indicating that the setting of the non-normal return distribution
cannot promote the performance of volatility forecasting. Fourth, among the 16 models
in this study, the performance of the GJR-GARCH-N-NN models is the best followed
by GJR-GARCH-N, GJR-GARCH-T-NN and GJR-GARCH-SGT-NN, inferring that the
GJR-GARCH model combined with both the normal distribution and a neural network
approach has the better performance of volatility forecasting. Finally, for each of the
14 stock indices, the most suitable models are not necessarily the same but they possess
the setting of leverage effect and further combine with a neural network approach, and
thus these results are the same a those obtained from the analysis of previous issues.

Based on the above empirical results, I propose the following important policy impli-
cations for investors and fund managers. First, the investors should use the asymmetric
GARCH model to precisely forecast the volatility of stock indices because the asymmet-
ric GARCH model such as the GJR-based model can seize the leverage effect existing
in the stock indices and the setting of the leverage effect can significantly encourage the
performance of volatility forecasting. Second, the investors should utilize the composed
volatility forecasting models to accurately forecast the volatility of stock indices because the
neural networks approach can handle the complex, non-linear univariate and multivariate
relationships that would be difficult to fit using other techniques, and therefore it can
significantly promote the performance of volatility forecasting. Hence, the two policy im-
plications above can enable investors and fund managers to precisely execute subsequent
investment processes such as the asset allocation, option pricing, risk management and
hedge strategy in the stock market.
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