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Abstract
The advent of single-cell multi-omics sequencing technology makes it possible for researchers
to leverage multiple modalities for individual cells and explore cell heterogeneity. However,
the high dimensional, discrete, and sparse nature of the data make the downstream anal-
ysis particularly challenging. Most of the existing computational methods for single-cell
data analysis are either limited to single modality or lack flexibility and interpretability. In
this study, we propose an interpretable deep learning method called multi-omic embed-
ded topic model (moETM) to effectively perform integrative analysis of high-dimensional
single-cell multimodal data. moETM integrates multiple omics data via a product-of-experts
in the encoder for efficient variational inference and then employs multiple linear decoders
to learn the multi-omic signatures of the gene regulatory programs. Through comprehen-
sive experiments on public single-cell transcriptome and chromatin accessibility data (i.e.,
scRNA+scATAC), as well as scRNA and proteomic data (i.e., CITE-seq), moETM demon-
strates superior performance compared with six state-of-the-art single-cell data analysis
methods on seven publicly available datasets. By applying moETM to the scRNA+scATAC
data in human peripheral blood mononuclear cells (PBMCs), we identified sequence motifs
corresponding to the transcription factors that regulate immune gene signatures. Applying
moETM analysis to CITE-seq data from the COVID-19 patients revealed not only known
immune cell-type-specific signatures but also composite multi-omic biomarkers of critical
conditions due to COVID-19, thus providing insights from both biological and clinical per-
spectives.
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1 Introduction

Multi-omic single-cell high-throughput sequencing technologies opens up new opportunities to
interrogate cell-type-specific gene regulatory programs. Single-cell RNA sequencing combined
with Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) [1] simulta-
neously measure the transcriptome and chromatin accessibility in the same cell. CITE-seq [2]
measures surface protein and transcriptome data using oligonucleotide-labeled antibodies. By
integrating the information from these multiple omics, we can expand our understanding of the
genome regulation from multiple perspectives.

However, extracting meaningful biological patterns from the fast-growing multi-omic single-
cell data remains a challenge due to several factors [3,4]. Firstly, multi-omic single-cell technolo-
gies are still in the early stages. The cell yield is lower compared to the single-omic technolo-
gies such as scRNA-seq. On the other hand, the combined feature dimension is much higher
(e.g., genes and peaks). This requires a more deliberate model design that can flexibly distill
meaningful cell-type signatures from the multi-modal data while not overfitting the data. Sec-
ondly, multi-omic single-cell data are noisier compared with bulk-level or single-cell single-omic
data. This calls for a probabilistic model that can infer latent cell types while properly account-
ing for the statistical uncertainty. Thirdly, the batch effects make it challenging to distinguish
biological signals from study-specific confounders. Lastly, multi-omic single-cell are more costly
compared to scRNA-seq or scATAC-seq alone. It is therefore highly cost-effective if we can
profile single-omic data (e.g., transcriptome) and then predict the unobserved omic (e.g., chro-
matin accessibility or proteome). Nonetheless, the prediction from one modality to another is a
challenging task, particularly from low dimension to high dimension.

Recently, several computational methods were developed to tackle the above multi-modality
data integration challenges encountered in multi-omic single-cell data analysis. For instance,
SMILE [5] integrates multi-omic data by minimizing the mutual information of the latent repre-
sentations among the modalities and batches. The totalVI [6] and multiVI [7] integrate CITE-
seq data and scRNA+scATAC data via variational autoencoder (VAE) frameworks, respectively.
Cobolt [8] is a hierarchical Bayesian generative model to integrate cell modalities. scMM [9] is
a mixture-of-experts (MoE) model developed to impute one missing modality conditioned on
the other. Multigrate [9] adopted a product-of-experts (PoE) framework to integrate multi-omic
data. MOFA+ [10] uses mean-field variational Bayes and coordinate ascent to fit a Bayesian
Group Factor Analysis model to integrate the multi-omic data. Seurat V4 [11] integrated multi-
modal single-cell data through the weighted nearest neighbor algorithm. While many of these
methods conferred promising performances in some of the tasks such as cell clustering or
modality imputation, they often need to compromise scalability, interpretability, and/or flexibility.
In particular, when a neural network is used to encode the high-dimensional multi-omic data,
interpretability is traded for flexibility; when a linear model or independent feature assumption is
made, flexibility is traded for interpretability and scalability. However, all three are important to
reveal cell-type-specific multi-omic signatures that are indicative of gene regulatory programs
from large-scale data. Furthermore, most of these methods are entirely data-driven and there-
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fore incapable of fully utilizing the existing biological information such as gene annotations or
pathway information.

In this study, we present Multi-Omics Embedded Topic Model (moETM) to integrate multi-
ple molecular modalities at the single-cell level. As one of the main technical contributions,
moETM uses product-of-experts to infer latent topics underlying the single-cell multi-omic
data and a set of linear decoders to learn shared embedding of topics and multi-omic fea-
tures (e.g., genes, chromatin accessibility, and/or protein) that can accurately reconstruct the
high-dimensional multi-omic data from their low-dimensional latent topic space (Fig. 1a). Us-
ing stochastic amortized variational inference, moETM is highly scalable to large multi-omic
datasets containing over 40,000 cells from scRNA+scATAC-seq and over 200,000 cells from
CITE-seq data. Through effectively integrating multiple modalities from multi-omic single-cell
sequencing data, moETM seeks to achieve 3 tasks: (1) clustering cells into biologically mean-
ingful clusters to identify sub-celltype indicative of phenotype of interests (Fig. 1b); (2) imputing
one omic (e.g., single-cell transcriptome or surface proteome) using the other omic (e.g., chro-
matin accessibility or single-cell transcriptome) (Fig. 1c); (3) identifying cell-type signatures,
which serve as biomarkers for a target phenotype (Fig. 1d). Through comprehensive experi-
ments on seven single-cell multi-omic datasets, we demonstrate moETM’s ability comparatively
with six state-of-the-art (SOTA) computational methods. We further showcase how moETM fa-
cilitates the analysis of the COVID-19 single-cell CITE-seq dataset. Quantitatively, we observe
that moETM learns the joint embeddings from multiple modalities with better or comparable
bio-conservation, batch-effect correction, and cross-modality imputation compared with the ex-
isting methods [5–11]. Furthermore, the topic embedding learned by moETM enables gaining
biological insights into the cell-type-specific mutli-omic regulatory elements.

2 Results

2.1 moETM model overview

As an overview, moETM integrates multiomics data across different experiments or studies
with interpretable latent embeddings (Fig. 1). It is built upon the widely used variational autoen-
coder (VAE) [12] to model multi-modal data (Fig. 1a). However, to tailor the VAE framework for
the single-cell multi-omic data, we made two main contributions on both the encoder and the
decoder of the VAE.

The encoder in moETM is a two-layer fully-connected neural network, which infers topic pro-
portion from multi-omic normalized count vectors for a cell. We assume the latent representa-
tion of each omic follows a K-dimensional independent logistic Normal distribution. Our goal is
to effectively combine these distributions into a joint distribution of the multi-omic data. To this
end, we take the product of the K-dimensional Gaussians (Product-of-Gaussians). Because
the Product-of-Gaussians (PoG) is also a Gaussian density function, we can represent the
joint latent distribution in closed-form. In principle, this results in a tighter ELBO and therefore
more efficient variational inference compared to the mixture of experts (MoE) approaches [13]
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as adopted in MultiVI/TotalVI [6, 7] and scMM [9]. In particular, these MoE approaches sam-
ple K-dimensional Gaussian variables for each omic and then take their average. In contrast,
our PoG formalism requires sampling only once from the joint Gaussian. Therefore, moETM
may confer more robust estimates thanks to the decreased variance in the stochastic varia-
tional inference. To obtain interpretable cell embedding, we perform a softmax transformation
on the joint Gaussian density. The resulting logistic Normal distribution can be considered as
a topic mixture membership for the cell. These topics can be directly mapped to known cell
types based on their top gene signatures detected from our linear-decoder (as described be-
low). Because the topic distribution must sum to 1 over the K topics, the inferred topic mixture
membership of a cell express statistical uncertainty in the cell embedding.

On the decoder side, inherited from our earlier work [14], moETM employs a linear matrix
factorization to reconstruct the normalized count vectors from the cell embedding. Specifically,
moETM factorized cell-by-feature matrices into a shared cell-by-topic matrix Θ, a shared topic-
embedding matrix α, and M separate feature-embedding matrices ρ(m), where m ∈ {1, . . . ,M}
indexes the omics. Since different omics share the same cell-by-topics matrix but had their own
feature-embedding matrices, we can explore the relations among cells, topics, and features
in a highly interpretable way. This departs from the existing VAE models such as scMM [9],
BABEL [15], and Multigrate [16] that used a neural network as the decoder. Another confound
in single-cell data are batch effects, which are sources of technical variation. To account for
those, we introduced the omic-specific batch-removal factors λ(m) ∈ RV (m)×S for each omic m

(Fig. 1a), which acts as a linear-additive batch-specific bias in reconstructing each modality. By
regressing out the batch effects via λ(·), moETM can learn biologically meaningful representa-
tion in terms of the cell topic mixture or embedding. As detailed in Methods, all the parameters
in moETM are learned end-to-end by maximizing a common objective function defined as the
evidence lower bound (ELBO) of the marginal data likelihood under the framework of amortized
variational inference.

2.2 Multiomics integration

We performed quantitative evaluations of moETM on the integrated low-dimensional represen-
tation comparing with six state-of-the-art multiomics integration methods (SMILE [5], scMM [9],
Cobolt [8], MultiVI/TotalVI [6,7], MOFA+ [10], Seurat V4 [11]) on seven published datasets. Four
out of the seven datasets are single-cell transcriptome and chromatin accessibility (gene+peak)
datasets and the other 3 are single-cell transcriptome and surface protein expression (gene+protein)
datasets measured by Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-
seq).

The performance of the multiomics integrative task were based on both biological conserva-
tion metrics and batch removal metrics (Methods). For the biological conservation score, we
adopted the common metrics Adjusted Rand Index (ARI) [17] and Normalized Mutual Informa-
tion (NMI [18]). For evaluating batch-effect removal, we used k-nearest-neighbor batch-effect
test (kBET) [19] with graph connectivity (GC).
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To make a comprehensive comparison, we used three experimental settings: i) 60/40 ran-
dom split for training and testing with 500 repeats (Table 1 and 2, Supplementary Table S1
and S2); ii) training and testing both on the whole dataset (Supplementary Table S3); iii)
training and testing across different batches (Supplementary Table S4 and S5). The num-
ber of topics was set to 100 during training based on the robust performance (Supplementary
Fig. S1). Overall, we obtained consistent results across all 3 settings and therefore chose to
focus on describing the results based on the first setting.

We observed that moETM achieved the best overall performance when averaging over all
datasets’ performance scores among 3 out of 4 evaluation metrics. Similarly, when averag-
ing across gene+protein datasets only, moETM achieved the best overall performance among
3 out of 4 evaluation metrics (Fig. 2 middle panel). In particular, moETM conferred the high-
est averaged ARI, NMI, and GC when either averaging over all datasets or averaging over
gene+protein datasets specifically, and the second highest averaged kBET only marginally
behind multiVI/totalVI, which might have over-corrected the batch effect at the expense of bio-
logical conservation. When averaging over gene+peak datasets, moETM can still achieve the
best among 2 out of 4 evaluation metrics. Specifically, moETM ranked the second highest on
ARI and NMI and slightly behind Seurat V4, which has a larger standard deviation compared
with moETM.

For individual datasets, moETM is either the best or the second best method on 6 out of 7
datasets (except MBC) for different experimental settings in terms of the ARI (Fig. 2a,Table 1
and 2). One possible reason could be that the sample size of MBC (3293 cells) from which
moETM learns high-dimensional peak embeddings is small compared with the other 6 datasets.
To assess the benefits of the added features in moETM, we compared moETM with its ablated
versions: moETM_rna, moETM_atac, and moETM_protein, where moETM was trained on
a single modality. As expected, the performance of moETM on single modality decreased,
indicating that moETM could improve its performance by leveraging multiple modalities (Fig. 2
right panel).

Similar qualitative conclusions can be drawn based on NMI (Fig. 2b, Supplementary Ta-
ble S1, and Supplementary Table S2). For kBET (Fig. 2c), moETM is the best for the BMMC1
dataset and the second best on BMMC2, HWBC, and HBIC datasets – slightly behind Mul-
tiVI/TotalVI. Therefore, while moETM conferred higher biological conservation scores in terms
of ARI and NMI, it still maintains a comparable kBET scores on all four datasets compared to
MultiVI/TotalVI. Indeed, we observed an excellent balance between the biological conservation
and batch effect removal because moETM achieved notably higher GC compared to all meth-
ods (Fig. 2d). This is because GC is the only metric that is based on both the cell types and
batch labels by measuring the similarity among cells of the same type from different batches
based on the embedding learned by each method [20].

We postulated that the main reason for the moETM’s superior integration performance is
it’s the Product of Gaussians (PoG) formulation. To that end, we constructed moETM_avg,
which replaced PoG with averaging of sampled variables from individual Gaussian distributions
similar to the existing VAE models like scMM [9]. As expected, the performance of moETM_avg
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was worse than moETM in all datasets in terms of both bio-conservation and batch removal
evaluation metrics (Fig. 2 right panel). Furthermore, since scMM also adopted the average of
Gaussian in the encoder, the fact that moETM_avg outperformed scMM indicates the benefits
of using the linear decoder, which further improves the multi-omic integration while correcting
batch effects across all cells.

We further verified the clustering performance by visualizing cell embeddings using Uniform
Manifold Approximation and Projection (UMAP) [21] (Fig. 3). Indeed, not only did moETM re-
move batch effects but also revealed a better representation of cell type clusters. For example,
“Plasmablast IGKC-" cells were grouped closely by moETM but were clustered into multiple
small parts by SMILE (Fig. 3a). Moreover, plasmablast cells from different batches were also
mixed better by moETM compared with SMILE, which indicated a better batch-effects correc-
tion. “CD4+ T activated" and “CD4+ naive" cells were closer within the same cluster but clearly
distinguishable between themselves. In contrast, these two cell types were mixed together
by SMILE and scMM. In modeling the BMMC1 dataset (gene+peak), “B1 B" cells and “naive
CD20+ B" cells (Fig. 3b) were mixed by other methods while better separated by moETM.
Taken together, these results show that moETM is able to distinguish similar cell types by cap-
turing biological information in its encoding space while removing batch effects.

2.3 Cross-omic imputation

In the case of gene+protein, moETM accurately imputes surface protein expression from gene
expression, achieving average Pearson (Spearman) correlation of 0.95, 0.92, and 0.88 (0.94,
0.90, and 0.85) on random split, leave-one-batch, and leave-one-cell-type imputation exper-
iments, respectively (Supplementary Table S6). We visualized the reconstructed protein
expression against the observed values using the BMMC2 (gene+protein) dataset (Fig. 4a).
The imputed protein expression is highly linearly correlated with the observed one (Fig. 4b),
which is what we expected given the high Pearson correlation of 0.95. The runner up methods -
namely, scMM and BABEL - also performed well on this task, both achieving a correlation score
of 0.94.

Compared to the surface protein imputation task, imputing gene expression from the open
chromatin regions is a more challenging task because of the sparser input scATAC-seq signals
and the dynamic and often asynchronous interplay between the chromatin states and the tran-
scriptome [22–24]. Nonetheless, moETM achieved a relatively high Pearson (and Spearman)
correlation scores of 0.69, 0.65, and 0.58 (and 0.37, 0.35, and 0.32) on random split, leave-one-
batch, and leave-one-cell-type experiments. These are notably higher than the corresponding
correlation obtained by BABEL (Pearson: 0.65, 0.60, 0.55; Spearman: 0.34, 0.33, 0.30) and
scMM (Pearson: 0.63, 0.61, 0.54; Spearman: 0.33, 0.33, 0.28) (Supplementary Table S7).
Qualitatively, the imputed and the observed gene expression profiles also exhibit similar pattern
and linear relationship (Fig. 4c, d).

In the previous two imputation applications, modalities were generated from high dimension
to low dimension. The imputation from the low dimension to the high dimension is more diffi-
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cult but nonetheless feasible. Specifically, on the 3 same experimental designs, the Pearson
(and Spearman) correlations between the observed and the imputed open chromatin regions
from gene expression are 0.58, 0.55, and 0.51 (and 0.33, 0.30, and 0.28) (Supplementary
Table S8); the Pearson (and Spearman) correlation are between the observed and imputed
gene expression from protein expression are 0.65, 0.63, and 0.60 (and 0.41, 0.39, and 0.37)
(Supplementary Table S9). In contrast, the runner-up method scMM achieved Pearson (and
Spearman) correlations of 0.40, 0.29, and 0.37 (and 0.29, 0.25, and 0.21). for imputing chro-
matin accessibility from gene expression. For imputing gene expression from surface protein,
scMM and BABEL also fell behind moETM in terms of both Pearson and Spearman correla-
tions (Supplementary Table S9). Qualitatively, the imputed and the observed peaks and gene
expression exhibit consistent patterns (Supplementary Fig. S2a, c) and strong linear trends
and similar patterns (Supplementary Fig. S2b, d).

2.4 Correlating topic scores of the RNA transcripts and surface proteins
for the same genes

As a proof-of-concept, we sought to assess whether the top surface proteins can be mapped to
the top genes under the same topic (i.e., following the central dogma). To this end, we trained
a 100-topic moETM on the BMMC2 (gene+protein) dataset, which was taken from CITE-seq
and consists of over 90,000 cells. For each topic, we calculated the Spearman correlation of
topic scores between the 134 pairs of gene and the corresponding translated surface protein
(Fig. 5a). The correlations ranged from -0.096 to 0.751 with an average of 0.29. Moreover, 96
of the 100 topics have positive correlations, and among those 13 topics have correlations larger
than 0.5. In particular, the correlation in topic 40 was 0.576, and the correlation in topic 44 was
0.628.

2.5 Immune cell-type signatures revealed by multi-omic topics learned
from CITE-seq data

To identify cell-type signatures, we associated each topic with the specific cell type that exhibit
the highest average topic score across cells. Notably, not all topics were uniquely associated
with one single cell type and some topics might be enriched for a combination of multiple cell
types. Therefore, only the most distinct topics that were enriched for one cell type were chosen
as examples for the downstream cell-type markers analysis. For instances, topic 44 was associ-
ated with monocytes, which consists of CD14+ and CD16+ Mono; topic 40 was associated with
B cells, which consists of primarily Naive CD20+ B IGKC+ and Naive CD20+ B IGKC- cells;
topic 83 was associated with natural killer cells. These are visually easy to detect from the topic
mixture probabilities among the individual cells (Fig. 5b).

Under each topic, many top genes and top proteins are the known cell-type markers (Fig. 5c).
For example, under topic 40 (i.e., a B-cell topic), the top genes CR2, SSPN, and ADAM28 are
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known marker genes for B cell; the top proteins CD21, CD20, and CD40 are also marker pro-
teins for B cells according to the CellMarker database [25]. For topic 7, one of top proteins
CD11c is a marker protein for dendritic-cell [25]. For topic 83, protein CD16, marker for natural
killer cells, is among its top proteins [25].

For topic 44, the top gene S100A9’s coding protein is a chemotactic factor for monocytes [26]
and is highly expressed during inflammatory processes [27]; among the top proteins for topic
44, CD36 [28], CD33, and CD11c [29] are also markers for monocyte sub-cell-types.

Similarly, monocyte is also enriched in topic 23, which shares the top marker protein CD16
with topic 44 but also contains unique top genes such as CDKN1C and FCGR3A. While CDKN1C
is a known marker gene for monocyte [30], FCGR3A is up-regulated in CD16+ monocytes as
supported by the existing literature [31].

Instead of choosing the top genes or protein from each topic, we performed Gene Set Enrich-
ment Analysis (GSEA) [32,33] using the topic scores for all of the genes and proteins. Since the
BMMC2 dataset is about bone marrow mononuclear cells, we queried the C7 ImmuneSigDB
from MSigDb, which is a collection of 5219 gene sets related to immune pathways [34–36].
Across all 100 topics, we identified 2569 enriched gene sets with q-value < 0.05 using gene
topic scores and 22 enriched gene sets using protein topic scores (Fig. 5a). For example, in
topic 40, using the gene topic scores, we found a gene set that consists of down-regulated
genes in healthy CD4 T cells with respect to healthy B cells [37] (Fig. 5d left panel); using the
protein topic scores, we found a gene set that consists of up-regulated genes in B cells com-
pared to plasmacytoid dendritic cells (PDC) (Fig. 5d right panel) [38].

Furthermore, we projected the topic embeddings and feature embeddings onto a common
2D space using UMAP (Fig. 5e). We observed that the top marker genes and the top marker
proteins for the cell type clustered together around the corresponding topics. Together, the
topics inferred by moETM from the CITE-seq data help link biological relations between genes
and proteins via the cell-type-specific topics.

2.6 Multi-omic topics of joint genes and chromatin accessibility identi-
fied cell-type-specific pathways and regulatory motifs

The topic embedding learned from the scRNA+scATAC data enables us to investigate the re-
lationship between top genes and top peaks (i.e., top open chromatin regions) in the cell-type-
specific topics. Given that many top genes are cell-type known markers (Fig. 6a), we postu-
lated that the top peaks could be associated with the top genes via in-cis or in-trans regulatory
elements. Different from the previous gene+protein case, one challenge in interpreting the
gene+peak multiomic topics is that peaks cannot be matched directly with genes. We proposed
two approaches to solve this issue. One is to link peaks to their nearby genes to obtain the
peak-neighboring-genes (Methods). The other approach is to identify enriched motifs among
the top peaks and explore the relationship between genes and motifs via the corresponding
transcription factors (TFs) and their target genes.

For the first approach, the top genes and top peak-neighboring-genes in the select topics
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served as markers for the cell-type-specific gene regulatory programs (Fig. 6a).
For example, topic 32 is associated with CD8+ T cell (Fig. 6a, b). We zoomed in the topic

by examining its top genes and top peaks. Three of the top 5 genes (TNFRSF9, ASTL, GZMK ,
DUSP2, DGKH) were related to T cell. In particular, GZMK is a marker gene for T cells based
on the CellMarker; TNFRSF9 codes for a signaling protein that promotes expression of cy-
tokines in CD8+ T cells [39]; DUSP2 encodes an inducible nuclear protein and is highly ex-
pressed in T cells [40]. Among the top 5 peak-neighboring-genes (APBA2, PRDX2, KLRC4,
OBSCN, XCL2), APBA2 is a marker genes for cytotoxic CD8+ T lymphocyte [41]; XCL2 ex-
pression levels substantially increased in CD8+ T cells during T cell activation [42].

As another example, topic 3 is associated with CD4+ T naive cells. Three out of the top 5
genes (CCR4, ADAM12, PTPN13, MB21D2, IL4I1) and two out of the top 5 peak-neighboring-
genes (INPP4B, CCR4, PRDX2, RORA, HIST1H2BD) are related to T cells. Indeed, CCR4
is shown to be specifically expressed among naive CD4+ T cells [43]; ADAM12 is expressed
in T cells in the inflamed brain and is a potential target for the treatment of Th1-mediated dis-
eases [44]; IL4I1 increases the threshold of T-cell activation and partially modulates CD4 T-cell
differentiation [45]. For top peak-neighboring-genes, RORA is up-regulated among the acti-
vated CD4+ T cells [46].

To gain further mechanistic understanding of the inferred topics, we performed GSEA on the
topic scores for the genes from the transcriptome modality and the topic scores for the peak-
neighboring-genes from the chromatin-accessibility modality. Many enriched gene sets are
related to the topic-associated cell types. For topic 3, for instance, one of the enriched gene
sets based on the gene topic scores is up-regulated in healthy CD4 T cells with respect to
healthy myeloid cells [37] (Fig. 6c). This is consistent to an enriched gene set from the peak-
neighboring-gene analysis of topic 3, where the gene set consists of a set of genes that were
down-regulated in peripheral mononuclear blood cells (PBMC) relative to the memory T cells
[47]. Indeed, during T cell immune response, naiv̈e T cells might differentiate into memory
cells [48]. Therefore, GSEA further confirmed the cell-type-specific functions of the top genes
and peak-neighboring-genes identified via moETM’s topics. Interestingly, the top genes and
the top peak-neighbouring-genes are often not the same genes. This implies that the peaks
and genes provide complementary information to (sometimes the same) cell-type-specific
regulatory programs. Therefore, by effectively integrating the scRNA-seq and scATAC-seq data,
the inferred multi-omic topics can reveal functional convergence at the pathway level.

Besides using peak-neighboring-genes, as the second approach, we also performed motif
enrichment analysis on the top 100 peaks per topic (Methods). We then constructed a puta-
tive regulatory network by linking the top genes and the enriched motifs via their associated
topics (Fig. 6d). Interestingly, some of the top genes harbor those enriched motifs, implying
that these genes are the putative target genes of the cognate TF. In topic3, for example, one of
the enriched motifs corresponds to a TF named FLI1 (p-value = 0.00117), and the top genes
IL4l1 and PTPN13 are target genes of FLI1 based on the ENCODE Transcription Factor Tar-
gets [49, 50]. As another example, one of the enriched motifs for topic 32 correspond to TF
MEF2A (p-value = 5.21e-5), whose target genes include the top genes RGS1, EGR1, GZMK,
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ASTL, and DUSP2 [49,50]. Therefore, our multi-omic topic analysis suggests that some of the
cell-type-specific regulatory programs are implicated with the sequence motifs. Further investi-
gation is needed to establish the hierarchical relation between the TF and the cell lineage.

2.7 Prior pathway-informed enrichment

The single-cell multi-omic data are high-dimensional, sparse, and noisy. This is especially
the case for the scRNA+scATAC-seq data because of the large number of genes and open
chromatin regions. One way to further improve the interpretability of the topics derived from
these data is by incorporating prior knowledge such as gene sets or pathway information. In
the context of our moETM, this was done by fixing the embeddings-by-genes parameters to
the observed pathways-by-genes matrix (Methods). Using the 7000 Gene Ontology Biological
Process (GO-BP) terms as the pathways-by-genes matrix, we trained the pathway-informed
moETM (p-moETM) on the BMMC1 gene+peak dataset.

Quantitatively, p-moETM can achieve comparable cell-clustering performance with ARI 0.72,
which is only slightly lower than the default moETM that learned the gene embedding directly
from the data (Table 1). We also identified several cell-types-specific topics along with their top
genes and peaks (Supplementary Fig. S3a-c). Notably, the learned topics-by-embeddings ma-
trix α from p-moETM are essentially the topics-by-pathways matrix. This allows us to directly
identify the top pathways for each topic without performing post-hoc GSEA. For instance, topic
25 is associated with B1 B cell (Supplementary Fig. S3a). One of its top pathways is related
to B cell activation (Supplementary Fig. S3d). As another example, topic 8 was enriched for
the CD4+ T activated cell, and one of its top pathways was connected to the T cell apoptotic
process.

For some topics, their top genes are both the members of the pathway and the cell-type
biomarkers. For instance, topic 27 is enriched in the CD4+ T naive cell. One of its top gene
CCR7 is involved in the elimination process of immature T cells. Additionally, topic 41 is en-
riched for the Transitional B cell. Its top pathways include B cell activation and adaptive immune
process. Among its top genes, TNFAIP3 is in the B cell activation-related pathway. One of
its top peaks in chr14: 100207793 - 100208735 is upstream of the promoter of YY1 (chr14:
100238298 - 100282788), which is a member gene in the B cell activation-related pathway [51].

Furthermore, we experimented a more specific gene set namely the immune signature
gene set collections from MSigDB to investigate immune-related pathways implicated in the
BMMC1 dataset (Supplementary Fig. S4). We identified several cell-type-specific topics
that exhibit high scores for meaningful immune pathways. For instance, topic 23 is enriched
in naive CD20+ B cells. Two of its top 10 pathways are associated with naive B cells. One of its
top genes namely HLA-DPB1 is up-regulated in naive B cells relative to the plasma cells [52].
One of the top peaks (chr12: 8886393 - 8887019) is upstream from PHC1 (chr12:8913896 -
8941467), which is also involved in the pathway that genes are up-regulated in naive B cells
relative to the plasma cells [52].
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2.8 Multi-omic topics reveal the molecular basis of COVID-19 severity

As the CITE-seq technology interrogates the expression of surface proteins along with the full
transcriptome, it is a promising platform to investigate the immune responses among patients
infected by the SARS-CoV-2 virus (COVID-19). Using moETM, we sought to identify clinically
relevant molecular signatures from a COVID-19 CITE-seq dataset (HBIC) [53]. The data con-
sist of 781,123 cells from 130 COVID-19 patients with varying degrees of severity due to the
viral infection. To establish model confidence, we first performed a quantitative analysis as
above. The results showed that moETM could achieve either the highest or the second highest
evaluation metrics both in bio-conservation and batch-removal cases (Table 2, Supplemen-
tary Table S2). In particular, moETM ranked first with an ARI value of 0.752 and TotalVI scored
second with an ARI value of 0.733. Similarly, moETM and TotalVI attained the highest NMI
scores of 0.779 and 0.762, respectively. Both methods also maintained their top performance
in terms of batch-correction with TotalVI achieving the highest kBET of 0.197 while moETM
coming in second with 0.153. Consistent to the above evaluation (Table S2), moETM obtained
the best GC score of 0.950 whereas TotalVI achieved the second best of 0.934. Therefore,
these quantitative results on the COVID-19 data further suggest that moETM strikes a good
balance between biological conservation and batch effect correction in delivering competitive
performance among all the SOTA methods.

Qualitatively, we investigated the top features and identified enriched cell types under each
topic (Supplementary Fig. S5a, b). In particular, topic 42 is enriched for B cells. Among its
top 5 genes (SLC38A11, TCL1B, IL6, TCL1A, SYN3), IL6 and TCL1A are the known maker
genes. Also, 3 out of its top 5 proteins (CD19, CR1, CD22, FCGR2A, BAFFR) are marker pro-
teins for B cells. Topic 31 is associated with platelet. Two out of its top 5 genes (LYVE1, RADIL,
VWF [54], TRHDE, PPBP) are marker genes, and one of its top 5 proteins (ITGA2B, KIR3DL1,
ITGAX, SELP, FCGR2A) is a marker protein for platelet. Additionally, a previous study has sug-
gested that SELP redistributes to the plasma membrane during platelet activation [55]. The
enriched pathways based on GSEA are consistent to the cell-type specificity of those topics
(Supplementary Fig. S5c). Taking topic 42 as an example, the enriched pathway is the gene
set that is down-regulated in CD4 T cells compared with B cells [37]. Because of the shared
embedding space, we also observed localization of the top genes and the top proteins for the
selected topics via UMAP (Supplementary Fig. S5d).

We then leveraged the phenotype severity information among the patients to explore gene
and protein signatures related to the COVID-19 phenotypes. Specifically, we utilized COVID
metadata information to test whether a topic is significantly over-represented for the severity
conditions. Here we considered each topic as a “meta-gene" and associated their up-regulation
or down-regulation with the disease phenotypes (Fig. 7a, b). We observed that topic 42 is
not only enriched for B-cell but also up-regulated among patients with critical COVID status
whereas topic 80 is significantly associated with the severe status. Moreover, topic 42 is asso-
ciated with other demographic features such as age and mainly enriched in the senior group
between 70 and 79 years of age (Fig. 7a).
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Given its disease relevance, we further investigated topic 42 to see whether it elucidates
more granular cell types and to some extent whether their top gene/protein signatures can
serve as putative biomarkers for COVID critical conditions. First of all, the moETM-inferred cell
topic embeddings did not only cluster cells into their primary cell types but also sub-divided
B cells into six sub-clusters of known sub-cell-types (Fig. 7c and zoom-in view). Intriguingly,
aligning the COVID phenotypes with the B cell sub-types revealed that the critical COVID con-
dition corresponded to B malignant cells (Fig. 7c, d). B-cell lymphomas start to develop when
B lymphocytes, which are in charge of humoral immunity, start to proliferate beyond control.
This proliferation turns B cells into malignant cells [56]. The previous study [57] suggested that
individuals with certain cancers, such as lymphoma, may be more susceptible to getting severe
illness from COVID-19. Furthermore, the top gene IL6 in topic 42 was consistently expressed
at a high level among B cells, including B malignant cells (Fig. 7e). Indeed, IL-6 levels were
commonly reported in severely ill patients due to COVID-19 [58,59]. As another example, topic
21 is also enriched in B malignant cells (Fig. 7b). One of its top proteins CD5 (Supplementary
Fig. S5b) was shown to be highly expressed on malignant cells [60]. Moreover, the previous
study [61] suggested that the proportion of CD5+ B cells was significantly reduced in COVID
patients. Taken together, our results suggest that IL-6 or CD5 may be a potential therapeutic
target.

3 Discussion

Gene regulatory programs involve multi-faceted regulation and can not be understood via only
any of the facets alone. Single-cell multi-omic technologies open up venues to interrogate
several omics simultaneously in the same cells. As these technologies continue to evolve, com-
putational methods are needed to account for the challenges in modeling the sparse, noisy, and
heterogeneous nature of data that are being generated at a rapid pace [3]. In this study, we
developed a unified interpretable deep learning model called moETM to integrate single-cell
multi-omic data including transcriptome and chromatin accessibility or surface protein, which
are the most common types of single-cell multi-omic data to date [4].

Our technical contributions are three-folds. First, via the product-of-experts, moETM effec-
tively integrates multiple omics by projecting them onto a common topic mixture representation.
Second, the linear decoder enables the extraction of multi-omic signatures as the top features
under each latent topic, which directly reveal marker genes and phenotype markers under top-
ics that are aligned with cell types or phenotype conditions. Third, by efficiently correcting batch
effects via a dedicated linear intercept matrix in the decoder, we can integrate multi-omic data
from multiple studies, subjects, or technologies, which allows us to exploit the vast amount of
multi-omic data in order to obtain biologically diverse and coherent multi-omic topics. Notably,
while the last two contributions are inherited from our earlier single-cell transcriptome model
namely scETM [14], we consider the success of incorporating them into the multi-omic model-
ing problem as a substantial departure from the existing method.
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To demonstrate the utility of moETM, we benchmarked it with 6 existing state-of-the-art com-
putational methods on 7 published datasets including 4 gene+peak datasets and 3 gene+protein
datasets (Table 1, 2). Across all datasets, moETM achieved competitive performance in terms
of 4 common metrics including the bio-conservation evaluation metrics (i.e., ARI and NMI) and
batch-removal evaluation metrics (i.e., kBET and GC). We also confirmed the advantage of
using multiple modalities compared with single modality in terms of cell clustering (Table 1, 2,
Supplementary Table S1, S2).

As the vast majority of the single-cell data are still single-omic (e.g., scRNA-seq, scATAC-
seq, etc), there are tremendous benefits of imputing one omic from another omic. Because of
its joint modeling capabilities, the trained moETM can accomplish this cross-omic imputation
task. The imputation can go from a high-dimensional omic to a low-dimensional omic and vice
versa. The latter imputation direction is more demanding on the decoder because it needs to
“remember" the high-dimensional manifold in its parameter space when decoding the lower-
dimensional feature space. In our applications, this involves imputing gene expression (20K)
from ATAC peaks (∼100K) and imputing surface protein abundance (∼140) from gene expres-
sion (∼20K) and vice versa. In both imputation directions, moETM achieved a higher correla-
tion than scMM and BABEL. Although more challenging, moETM also achieved a reasonable
performance when imputing high-dimension from low-dimension.

We also explored the moETM-learned cell-type-specific topics in terms of their top omic
features and enriched pathways in light of the supporting evidence from the literature.

For example, in the BMMC2 (gene+protein) dataset, CR2 is a top gene signature identi-
fied by high topic scores in a B-cell-specific-topic topic 40, a marker gene for B cell in the Cell-
Marker database (Fig. 5b, c), and a member of an enriched pathway (genes that are down-
regulated in CD4 T cells compared with B cells [37]) for the topic. By binding to C3d, CR2 can
lower the threshold for B cell activation in an adaptive immune response [62].

Similarly, in the BMMC2 (gene+protein) dataset, protein CD19 is included in the topic en-
riched pathway (genes that are down-regulated in CD4 T cells compared with B cells [37]). It is
ranked sixth in the B-cell-specific topic 40 and is crucial in determining intrinsic B cell signaling
thresholds. Along with other molecules, CD19 functions as the dominant signaling element of a
multimolecular complex on the surface of mature B cells [63].

In the BMMC1 (gene+peak) dataset, a top gene feature IL4I1 in a T-cell-specific topic 3 is
a target gene of the enriched motif FLI1 (Fig. 6d), which is determined by the top 100 peaks
under that topic. IL4I1 could inhibit human CD4+ and CD8+ T lymphocyte proliferation in-vitro
[64]. Furthermore, T cells have a high-level expression of FLI1 and the expression decreases
after T cell activation [65].

In a more focused study, we analyzed the COVID-19 CITE-seq dataset (gene+protein) and
linked moETM-learned immune-specific topics with patient severity conditions due to the in-
fection. Our topic analysis revealed not only immune marker genes but also cell types that are
associated with COVID phenotype conditions. In particular, we found that the patients with criti-
cal status exhibited high topic probabilities for the B malignant cells. Furthermore, one of the B
malignant cell marker genes IL6 is differentially expressed among these patients compared to
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patients with mild and no symptoms ( [58,59]).
There are several challenges that are not addressed in moETM [4]. For instance, moETM

has the capacity to integrate across multiple batches and modalities but it requires the training
data to have all omics measured in the same cells. Given that the transcriptome is shared be-
tween the gene+peak and gene+protein data, it is possible to integrate all 3 omics in a mosaic
data integration regime while taking into account the data heterogeneity. A more challenging
task is to integrate multimodal data without anchored features or cells, which is commonly
known as the diagonal integration [4]. Some recent approaches made use of graph representa-
tion learning to integrate multi-omic single-cell data at the expense of computational complexity
and interpretability [66–68]. Furthermore, given the motif enrichments in our analysis, another
natural extension of moETM is to model the sequence information at the upstream of the model
training using language models such as the Bidirectional encoder representations from trans-
former (BERT) model [69]. Indeed, at the decreasing computational cost, we started to see
interesting applications of BERT in the related fields including single-cell data modeling [70],
genome language understanding [71], and sequence-based gene expression prediction [72].

4 Methods

4.1 moETM data generative process

The molecular activities in each cell n can be measured with M omics, such as gene expres-
sion from transcriptome, surface protein expression, and the open chromatin regions mani-
fested as peaks. For the ease of the following descriptions, we define the entities of genes,
proteins and peaks as “features". Profiling those omics in the cell leads to M count vectors
{x(m)

n }Mm=1, each of which has a dimension V (m) as the number of unique features in omic m.
Adapting the text-mining analogy, we consider each cell as a “document" written in M lan-
guages or modalities (i.e., transcriptome, proteome, chromatin accessibility); each feature
from the mth omic is considered as a “word" from the mth vocabulary; each sequencing read
is a “token" in the document; the abundance of the reads mapped to the same feature is the
“word count" in the document.

The multi-modal document of a cell n can be summarized into a mixture of K latent topics
θn, which are presumably implicated in each modality (Fig. 1a). Inference of these topic mix-
tures for each cell is accomplished by modeling the distribution of the multi-omic count data
{x(m)

n }Mm=1 from the topic mixture for the cell and the global topic embedding over the M modali-
ties. The latter are shared among all cells and expressed as M matrices {Φ(m) ∈ RK×V (m)}Mm=1,
where a column vector ϕ(m)

k ∈ RV (m) denotes the k-th topic from the m-th modality.
To increase information sharing across the omics and the model expressiveness, we further

decompose each omic-specific topic embedding matrix Φ(m) into the topic embedding α ∈
RK×L and feature embedding ρ(m) ∈ RL×V (m), where L denotes the size of the embedding
space. The expected values for the count data for each omic is proportional to the dot product
of the cell embedding, topic embedding matrix, and feature embedding matrix: x(m)

n ∝ θnαρ
(m).
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Formally, we formulate the data generative process as follows. For each cell indexed by
n ∈ {1, . . . , N}, draw a 1×K topic proportion θn from logistic normal distribution θn ∼ LN (0, I):

δn ∼ N (0, I), θn = softmax(δn) =
exp (δn,k)∑K
k=1 exp (δn,k)

. (1)

For each read i(m) ∈ {1, . . . , D(m)
n } from the mth modality w

(m)

n,i(m), draw a feature index v(m) (e.g.,
the particular transcript or open chromatin region the read was sequenced) from a categorical
distribution Cat(r(m)

n,. ):

w
(m)

n,i(m) ∼
V (m)∏

v(m)=1

[r(m)
n,v ]

[w
(m)

n,i(m)
=v(m)]

, x(m)
n,v =

D
(m)
n∑
i=1

[w
(m)
n,i = v]. (2)

where D
(m)
n and x

(m)
n,v denote the total number of reads and the read count for feature v(m) for

cell n in the mth modality, respectively. The expected rate r
(m)

n,v(m) of observing feature v(m) in cell
n is parameterized as:

r
(m)

n,v(m) =
exp (r̂

(m)

n,v(m))∑V (m)

v(m)=1 exp (r̂
(m)

n,v(m))
, r̂

(m)

n,v(m) = θnαρ
(m)

.,v(m) + λ
(m)

s(n),v(m) . (3)

where ρ
(m)

.,v(m) ∈ RL×1 denotes embedding of feature v(m), λ(m)

s(n),v(m) is the batch-dependent and
feature-specific scalar effect, where s(n) indicates the batch index for the nth cell. Notably, the
softmax function normalizes the expected observation rates over all features separately with-in
each modality to account for different modality size (e.g., there are more peaks than genes,
and more transcripts than surface proteins). Another reason for the normalization is to capture
feature sparsity (i.e., only a small fraction of features from each modality is non-zero). This
is analogous to text mining, where a small fraction of the vocabulary from any language is
observed in any given document.

4.2 moETM model inference

For the ease of inference, we consider the cell topic embedding δn (before softmax normaliza-
tion) for cells n ∈ {1, . . . N} as the latent variables and all the cells are independent. The rest
of the parameters including topic embedding α, feature embedding {ρ(m)}Mm=1, and batch-effect
parameter {λ(m)}Mm=1 are treated as point estimates and learned by the model. Let’s denote
Θ̂ = {δn,α, {ρ(m)}Mm=1, {λ

(m)}Mm=1)}. A principled way to learn those parameters is to maximize
the marginal log likelihood:

Θ∗ ← argmax
Θ

∑
n

∫
log p({x(m)

n }Mm=1 | Θ∗)dδn ≡ argmax
Θ

∑
n

Ln
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However, this integral is not tractable. Instead, we took a variational inference approach to
optimize the model parameters by maximizing an evidence lower bound (ELBO) of the marginal
log likelihood with a proposed variational posterior q(δn) as a surrogate to the true posterior of
the cell topic embedding p(δn | {x(m)

n }Mm=1):

Ln ≥ Eq(δn)

[
log p({x(m)

n }Mm=1 | δn,Θ
∗) + log p(δn)− log q(δn)

]
≡ Eq(δn)

[
log p({x(m)

n }Mm=1 | δn,Θ
∗)
]
−KL[q(δn)||p(δn)] ≡ ELBOn (4)

where KL denotes the Kullback-Leibler (KL) divergence between the proposed distribution and
the prior (i.e., standard Gaussian with zero mean and identity variance), acting as a regulariza-
tion when maximizing the data likelihood.

We defined the proposed distribution q(δn) as a product of Gaussians (PoG):

q(δn) = N (δn;µ
∗,σ∗2), (5)

The mean µ and standard deviation σ of the joint Gaussian is computed as:

µ∗ =

∑M
m=1 µmσ

2
m

1 +
∑M

m=1 σ
2
m

, σ∗2 =

∏M
m=1 σ

2
m

1 +
∑M

m=1 σ
2
m

(6)

where µm and σ2
m are the mean and variance of the Gaussian latent embedding for the individ-

ual modalities, respectively. Those are output from the encoder neural network (NNET):

[µ(m)
n ; logσ(m)

n ] = NNET(x̃(m)
n ;W) (7)

where x̃
(m)
n is the normalized counts for each feature as the raw count of the feature divided by

the total counts of mth modality in cell n, and W is the parameters for a two-layer feed-forward
neural network.

Following stochastic variational inference (SVI) approach, we approximate the above ELBO
in Eq (4) by sampling from the proposed joint Gaussian distribution using the reparameteriza-
tion trick [12]:

δ̃n ∼ N (µ∗,diag(σ∗)) = µ∗ + diag(σ∗)N (0, I)

ELBOn ≈ log p({x(m)
n }Mm=1 | δ̃n,Θ)−KL[q(δ̃n)||p(δ̃n)]

Together, the model parameters including the encoder weights are optimized by maximizing the
following ELBO via backpropagation:

Θ∗,W∗ ← argmax
Θ,W

N∑
n=1

log p({x(m)
n }Mm=1 | δ̃n,Θ

∗)−KL[q(δ̃n)||p(δ̃n)] (8)
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4.3 Single-cell multi-omic datasets and preprocessing

There were 7 public datasets included in this study for performance evaluation and model com-
parison. All 7 datasets are from publicly available repositories. Among them, 4 datasets pro-
vide joint profiling of gene expression and open chromatin regions (denoted as “gene+peak"
data): the Multiome bone marrow mononuclear cells (BMMC1) dataset from the 2021 NeurIPS
challenge consisting of 42,492 cells with 22 cell types from 10 donors across 4 sites [73], the
SHARE-seq mouse skin late anagen (MSLAC) dataset containing 34,774 cells with 1 batch
and 23 cell types [24], the sci-CAR mouse kidney cells (MKC) dataset from cell samples with
1 batch and 14 cell types [74], and the SHARE-seq mouse brain cells (MBC) dataset contain-
ing 3,293 cells with 1 batch and 19 cell types [24]. For the BMMC1 dataset, we take into ac-
count two different batch types: one treats a subject (eg. site1 + donor1 as a subject s1d1,
site1 + donor2 as a subject s1d2, etc) as a batch (s1d1, s1d2, s1d3, s2d1, s2d4, s2d5, s3d3,
s3d6, s3d7, s3d10, s4d1, s4d8, s4d9, 13 batches in total), while the other treats a site (site1 as
batch1, site2 as batch2) as a batch (4 batches in total).

For the CITE-seq data measuring transcriptome and surface protein in the same cell, 3
datasets were used in this study: the bone marrow mononuclear cells (BMMC2) dataset from
the 2021 NeurIPS challenge from 9 donors and 4 sites [73], the Human White Blood Cell
(HWBC) dataset containing 211,000 human peripheral blood mononuclear cells [11], and the
Human Blood Immune Cell (HBIC) dataset [53] measuring 647366 peripheral blood mononu-
clear cells from both COVID patients and healthy patients. Similarly, for the BMMC2 dataset,
we consider two different batch types: one treats a subject containing one donor and one site
as a batch (12 batches in total), while the other treats a site as a batch (4 batches in total).

All datasets were processed into the format of samples-by-features matrices. For gene+peak
datasets, the read count for each gene and peak were first normalized per cell by total counts
within the same omic using scanpy.pp.normalize_total function in the scanpy [75], then log1p
transformation was applied. After that, scanpy.pp.highly_variable_genes was used to select
highly variable genes or peaks.

For the joint profiling of transcriptome and surface protein data (denoted as gene+protein),
we used all surface proteins measured by the scADT-seq assay since the number of proteins
is much smaller compared with the number of genes or peaks and all of them are highly in-
formative of immune cell functions. The same normalization as in the gene+peak data was
performed on the gene+protein data.

4.4 Cross-omic imputation

The trained moETM can impute one omic from another omic. Suppose we have two omics
namely omic A and omic B. For the training data where both omics are observed, moETM
learns a shared topic embedding α and omic-specific feature embedding ρ(A) and ρ(B). For the
testing data, suppose without loss of generality that only omic B is observed. To impute omic
A, moETM uses the encoder for modality B to generate the topic mixture, which is then input to
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the decoder for omic A to complete the imputation (Fig. 1c).
We evaluated the imputation accuracy using the BMMC1 (gene+peak) and BMMC2 (gene+protein)

datasets based on (1) 60/40 random split of training and testing data with 500 repeats to get
standard deviation estimate; (2) training on all batches except for one batch and testing on
the held-out batch (leave-one-batch); (3) training on all cell types except for one cell type and
testing on the held-out cells of that cell type (leave-one-cell-type).

4.5 Evaluation metrics

The batch effects correction and biological variance conservation categories were used to as-
sess the efficacy of the integration across multiple modalities. To quantify bio-conservation, we
used the Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI), and to measure
batch effect removal, we used k-nearest-neighbor batch-effect test (kBET) and Graph Connec-
tivity (GC). Specifically, ARI calculates the degree of similarity between two clusterings and
adjusts for the possibility that objects can randomly form the same clusters. NMI normalizes the
mutual information to a scale of 0 to 1. While NMI excels in unbalanced clustering or small clus-
ters, ARI is better suited to clusters of similar size [76]. kBET performs hypothesis testing on
whether batch labels are distributed differently across cells based on Pearson’s χ2 test [19]. GC
measures whether cells of the same type from different batches are close to one another by
computing a K nearest-neighbour graph based on the distance between cells in the embedding
space [20].

4.6 Linking genes to open chromatin regions

We sought to investigate the relation between the top peaks and top genes under the same
moETM topic (i.e., ϕ(m)

k = αkρ
(m) for topic k and m ∈ {gene, peak}). To assess the in-cis rela-

tion, we measured the genomic distances between genes and peaks and designated genes
that were near peaks as peak-neighboring-genes if they are within 150K base pairs (bp) dis-
tance.

Specifically, we first obtained a genes-by-topics matrix ϕ(gene) = αρ(gene) and a peaks-by-
topics matrix ϕ(peak) = αρ(peak).

To transform ϕ(peak) into a peak_to_genes-by-topics matrix ϕ(peaks_to_genes), we first derived
a binary peaks-to-genes mapping matrix H with the entries hp,g = 1 if the corresponding pair
of peak p and gene g are within 150K bp genomic distance and are positively correlated and 0
otherwise.

In detail, we computed the Pearson correlation between gene g and peak p in terms of their
topic scores:

rp,g =
(ϕ(gene)

g − ϕ̄(gene)
g )⊤(ϕ(peak)

p − ϕ̄(peak)
p )

||ϕ(gene)
g − ϕ̄(gene)

g ||2||ϕ(peak)
p − ϕ̄(peak)

p )||2
The genome distance between peaks and genes was based on the latest genome build (i.e.,
hg38 for human) and obtained via the GenomicRanges [77] package in R.
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4.7 Pathway enrichment analysis

For each moETM topic, we performed Gene Set Enrichment Analysis (GSEA) [32] to associate
the topic with known pathways or gene sets. In particular, we used each topic to query two
gene sets from Molecular signatures database (MSigDB), which are the 5219 Immunologic sig-
nature gene sets (C7) and the 7763 Gene Ontology Biological Processes (BP) (C5-BP) terms.
For each topic, we ran GSEAPreranked on a ranked list of genes based on their corresponding
topic scores against every gene set from C7 or C5-BP, and calculated the enrichment score
(ES) for over- or under-representation. The statistical significance of the ES was computed
based on 1000 permutation test. The gene sets with Benjamini–Hochberg (BH) corrected p-
values lower than 0.05 were deemed significant. Similarly, for the scATAC-seq data, the peaks-
by-topics matrix was first converted into a peaks_to_genes-by-topics matrix and then provide
as input to GSEA pipeline.

4.8 Motif enrichment analysis of top peaks from moETM-learned topics

To detect sequence-based regulatory elements for the cell-type-specific topics, we performed
motif enrichment analysis using the top 100 peaks that exhibit the highest topic scores under
each topic. The 100 sequences corresponding to those top 100 peaks under each topic were
extracted from Ensembl database and provided as input to the Simple Enrichment Analysis
(SEA) pipeline [78] from the MEME suite [79]. SEA utilizes the STREME motif discovery algo-
rithm [80] to identify known motifs that are enriched in input sequences. For our purpose, we
used the HOmo sapiens COmprehensive MOdel COllection (HOCOMOCO) Human (v11) and
HOCOMOCO Mouse (v11) motif database [81]. Motifs with Fisher’s exact test p-values lower
than 0.05 were selected as the enriched motifs.

4.9 Differential analysis to detect condition-specific topics

We sought to detect moETM-topics that exhibit significantly higher scores for the conditions
of interest such as cell types or phenotypes. Notably, while the cell types were at the single-
cell level, the phenotypes were at the subject level (e.g., COVID-19 severity state). The latter
means that the cells from the same subject were assigned the same phenotype label. For each
dataset, we first split the cells into positive and negative groups, corresponding to the presence
and absence of the target condition, respectively. For each topic, we assessed the statistical
significance of the topic score increase for the positive group relative to the negative group
based on one-sided student t-test. The topics with a Bonferroni-adjusted p-value smaller than
0.001 were considered significant with the label.

4.10 Incorporating pathway-informed gene embeddings

In the linear decoder, we reconstruct the cells-by-features matrix by the dot product of the 3
matrices, namely cells-by-topics, topics-by-embedding, and embedding-by-features. By default,
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the last feature embedding matrix consist of learnable parameters. However, we can instill prior
pathway information during the training of moETM by fixing the features embedding to a known
gene set. As a result, the topics-by-embedding and embedding-by-features matrices change to
topics-by-gene_sets and gene_sets-by-features with only the topics-by-gene_sets as the learn-
able parameters. This allows us to directly map each topic to each gene set, which may further
improve the model interpretability especially if the chosen gene sets were highly relevant to the
data. Given that several single-cell multi-omic datasets used in this study were derived from
the blood, we utilized the Immunologic signature gene sets collection (C7) from the MSigDB
database. Gene sets with fewer than five or more than 1000 genes were filtered out. We then
converted the gene set information into a binary gene_sets-by-genes matrix with 0 and 1 indi-
cating the absence and presence of the genes (columns) in the corresponding gene set (rows),
respectively. We focused on the gene+peak case by fixing the gene embedding to the gene
set while learning the peak embedding as in the default setting. We did not experiment this
approach on the gene+protein case, for which the topics learned by the default moETM are
sufficiently easy to interpret.

Code Availability

The moETM code is available at https://github.com/manqizhou/moETM.
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Figure 1: moETM model overview. a. Modeling single-cell multi-omics data across batches. In a nut-
shell, moETM integrates M omics via the product-of-experts (PoE), each of which is a pair of encoder
and decoder. For a given cell n from batch s, each expert encoder takes one omic m as input x(m)

n,s and
produces the mean µ

(m)
n,s and log variance log((σ

(m)
n,s )2) for the omic-specific Gaussian distributed latent

embedding variable. The product of these Gaussian densities over the M omics is also a Gaussian,
from which we sample a joint logistic Gaussian latent embedding θn,s ∼ softmax(µn,s + σn,sN (0, I)) to
represent the cell. Each linear mth decoder expert then takes the same topic proportion θn,s as input
and reconstruct the original omic m for the cell with the aid of the global topic embedding α and the
omic-specific feature embedding ρ(m). The end-to-end learning of the encoder network parameters and
the decoder topic and feature embeddings is accomplished by maximizing the evidence lower bound
of the categorical likelihood for the multi-omic count data via backpropagation. b. Evaluating moETM
through cell clustering. The trained PoE encoders is used to infer the topic proportion of either training
θtrain or test data θtest from their multi-omic data. The integration performance of moETM is evaluated
by clustering cells based on their topic proportion and qualitatively evaluated by UMAP visualization. c.
Cross-omic imputation. To impute the missing omic B (e.g., protein) for a test cell, the trained moETM
feeds the observed omic input vector x(A) to the corresponding encoder expert A. The joint Gaussian
embedding is then fed to the expert decoder B, which takes the inner product of the cell embeddings
with its learned topic embedding and feature embedding for omic B. d. Downstream topic analysis. The
learned topics-by-{cells, genes, proteins, peaks} matrices enable identifying cell-type-specific topics,
gene signatures, surface protein signatures, and regulatory network motifs, respectively.
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Figure 2: Methods comparison based on cell clustering. The left column illustrates the
individual performance of each method on each dataset. The 7 datasets are indicated on the
x-axis with gene+peak datasets colored in blue and gene+protein datasets colored in black.
The evaluation scores for each are shown on y-axis. Ten colors were used to represent 10
different methods including six existing state-of-the-art methods, the proposed moETM model,
and 3 of its ablated versions. Within each dataset, the highest value was labeled on the top
of the corresponding bar. The middle column is the comparison of averaging values across
datasets for each method. The right column is the comparison between moETM and its three
ablated versions. Each row represents an evaluation metric. a. Adjusted Rand Index (ARI).
b. Normalized Mutual Information (NMI). c. k-nearest neighbour batch effect test (kBET). d.
Graph connectivity (GC).
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Figure 3: UMAP visualization of cell clustering. a. UMAP visualization of moETM, SMILE,
and scMM on single-cell CITE-seq from BMMC2 dataset. Each point on the two-dimensional
UMAP plots represents a cell. In the upper panel, different colors indicate different batches. In
the lower panel, different colors indicate different cell types. b. UMAP visualization of moETM,
SMILE, and scMM on the gene+peak multiome data from the BMMC1 dataset. Similarly to
panel a, the upper and lower panel labelled with batch indices and cell types, respectively. The
highlighted clusters and cell types in the legend were described in the main text.
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Figure 4: Cross-omic imputation. a. Heatmap of original protein and imputed protein values from
gene expression using the BMMC2 CITE-seq dataset. We trained moETM on 60% of the cells with
observed protein+gene omics and used the trained moETM to impute the protein expression based
on the gene expression for the remaining 40% of the test cells. The two heatmaps correspond to the
original and imputed protein expression, respectively. The columns are the randomly sampled 5000
test cells, and the rows are the surface proteins. For visual comparison, the column and row orders are
the same for the two heatmaps. The color intensities are proportional to original or imputed protein ex-
pression over the cells. b. Scatter plot of original and imputed surface protein expression. The same
values shown in panel a were displayed as scatter plot in this panel. The x-axis and y-axis represent the
original and imputed protein expression values of the test cells, respectively. The diagonal line is in blue
color. The more similar the reconstructed value is with the original value, the closer it is with the blue
line, c & d. Heatmap and scatterplot of the original and imputed gene expression from chromatin acces-
sibility on the BMMC1 dataset. The imputation results were shown in the same way as in panel a and c.
We trained moETM on 60% of the cells with observed gene+peak omics. We then applied the trained
moETM to the 40% test cells by imputing their gene expression based on their open chromatin regions
(i.e., peaks). The original and imputed gene expression of the test cells were compared qualitatively in
the heatmap and scatterplot. We also illustrated the imputation results from the low dimensional omic to
the high dimensional omic in Supplementary Fig. S2.
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Figure 5: Topic analysis of gene+protein CITE-seq data. a. Protein-RNA correlations and pathway enrich-
ments for the 100 topics learned from the CITE-seq BMMC2 data. In each plot, the x-axis is the 100 topics and
the y-axis is either the protein-RNA correlation or the pathway enrichment scores in terms of -ln q-value. The top
panel is the Spearman correlation between the RNA and protein expression for the same genes under each topic.
Correlations above 0 are labeled blue and correlations below 0 are labeled red. The middle and the bottom panels
are the corresponding GSEA enrichments of gene and protein topic scores, respectively. The dots correspond
to the tested immunologic signature gene sets from MSigDB. Different colors represent different gene sets. b.
Topics embedding of 10,000 sub-sampled cells from the BMMC2 dataset. Only the topics (rows) with the sum of
absolute values greater than the third quartile across all sampled cells (columns) were shown. The two color bars
display two tiers of annotations for the 9 broad cell types (cellType1) and 45 fine-grained cell types (cellType2).
The topics that were labelled with arrows were described in the main text. c. Genes and proteins signatures of the
select topics. The left and right panel display the topics-by-genes and topics-by-proteins heatmap, respectively.
The top genes and proteins that are known cell-type markers based on CellMarker or literature search are high-
lighted in blue. For visualization purposes, we divided the topic values by the maximum absolute value within the
same topic such that the topic scores range between -1 and 1. d. GSEA leading-edge analysis of Topic 40. The
left panel is the GSEA result of gene topic scores on a significantly enriched gene set (q-value < 0.001), which
contains down-regulated genes in CD4 T cells relative to the CD19 B cells. Similarly, the right panel displays an
enriched gene set (q-value < 0.001), based on the protein topic scores for the same topic. The gene set contains
up-regulated genes in B cells relative to plasmacytoid dendritic cells (pDC). e. UMAP visualization of the genes,
proteins, and topics via their shared embedding space. Genes, proteins, and topics were labeled by star, circle
and cross shapes on the top panel, respectively. Topics 40, 44, 55, 83 were colored in blue, red, green, and purple,
respectively. The bottom panel displays the corresponding topic indices and gene symbols highlighted on the top
panel.
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Figure 6: Topic analysis of single-cell gene+peak data from the BMMC1 dataset. a. Top genes
and top peak-neighbour-genes of the select topics. The heatmap displays the top features (columns) for
7 out of 100 topics, which were selected based on their cell-type enrichments. The top signatures that
are related to the enriched cell types based on CellMarker or literature search are highlighted in blue.
For visualization purposes, we divided the topic values by the maximum absolute value within the same
topic such that the topic scores range between -1 and 1. b. Topic embedding of cells from the BMMC1
dataset. The heatmap displays the embedding profiles of topics (rows) for 10,000 randomly sampled
cells (columns) from the BMMC1 dataset. Only the topics with the sum of absolute values larger than
the third quartile over the 10K cells are shown. The color bar on the top of the heatmap indicate the
cell types with the text annotations shown in the legend. The columns and rows were ordered based
on agglomerative hierarchical clustering with Euclidean distance and complete linkage c. GSEA lead-
ing edge analysis of Topic 3. The left panel is the GSEA result using gene topic scores and the right
panel is the GSEA result using peak-neighboring-gene topic scores. The barcode in the middle are
the genes that belong to the corresponding gene sets, namely the up-regulated genes in CD4 T cell
relative to the Myeloid cells and the down-regulated genes in PBMC relative to the memory CD4 T cell
for the gene and peak modalities of the same topic, respectively. d. Topic-directed regulatory networks
based on motif enrichment analysis. The blue ellipses represent genes and the green rectangles repre-
sent enriched motifs. The bottom left and right motif logos correspond to the transcription factors (TFs)
FLI1 and MEF2A, respectively. The yellow edges between motifs and genes indicate known TF-target
associations based on ENCODE TF Targets dataset.
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Figure 7: Topic association with the COVID-19 severity status. a. Differential analysis of severity states,
sex, smoking history, and age. The color intensity values correspond to the differences of average topic scores
between the positive cells and negative cells for each attribute (i.e., columns) and each topic (i.e., rows). Asterisks
indicate Bonferroni-adjusted p-value < 0.001 based on one-sided t-test of up-regulated topics for each label. The
results on the highlighted topic 21 and 42 were described in the main text. b. Differential analysis of topics across
cell types. The heatmap on the left displays the topic associations with each of the 18 cell types, and the one on
the right associates the same topics with 6 fine-grained B-cell subtypes. Similarly, asterisks indicate adjusted
p-value < 0.001 for the t-test of up-regulated topics in each label. c. UMAP visualization of cell clustering. Colors
indicate 18 cell types. The right panel shows a zoom-in version of the B-cell clustering with color indicating the
6 B-cell subypes. d. UMAP visualization with cells colored by source subjects’ severity states due to COVID-19
infection. e. Normalized gene expression of IL6 among the cells on the same UMAP.
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6 Tables

Table 1: Adjusted Rand Index (ARI) scores of cell clustering based on the embedding learned
by 10 different models from four gene+peak datasets (i.e., columns). For each dataset, we split
the cells into 60% training and 40% test cells. The experiments were evaluated based on 500
random splits to record the mean and standard deviation of the performances of each method.
When comparing between moETM and six SOTA methods for each dataset, the highest ARI
scores is in bold and the second highest is in blue. The 10 models (i.e., rows) include six SOTA
methods, our proposed moETM using PoE, moETM using MoE, and two single-omic ETM
models trained on only RNA and ATAC, respectively.

Metrics Methods Genes + Peaks
BMMC MSLAC MKC MBC

ARI

SMILE 0.719 (0.014) 0.410 (0.012) 0.409 (0.025) 0.263 (0.025)
scMM 0.693 (0.024) 0.396 (0.014) 0.392 (0.026) 0.311 (0.019)
Cobolt 0.678 (0.043) 0.378 (0.014) 0.373 (0.035) 0.237 (0.048)
MultiVI 0.703 (0.029) 0.405 (0.020) 0.382 (0.030) 0.500 (0.031)
MOFA+ 0.710 (0.012) 0.421 (0.020) 0.407 (0.041) 0.244 (0.028)
Seurat V4 0.712 (0.008) 0.504 (0.096) 0.398 (0.025) 0.507 (0.021)
moETM 0.727 (0.007) 0.469 (0.022) 0.443 (0.025) 0.423 (0.035)
moETM-average 0.720 (0.004) 0.460 (0.047) 0.439 (0.047) 0.410 (0.043)
moETM-rna 0.720 (0.008) 0.455 (0.053) 0.433 (0.062) 0.407 (0.054)
moETM-atac 0.626 (0.009) 0.252 (0.021) 0.135 (0.008) 0.188 (0.011)

Table 2: Adjusted Rand Index (ARI) scores of cell clustering of 3 CITE-seq gene+protein
datasets. Same as in Table 1, we split the cells into 60% training and 40% testing and eval-
uated each method based on how well their learned embedding cluster cells into known cell
types.

Metrics Methods Genes + Proteins
BMMC HWBC HBIC

ARI

SMILE 0.632 (0.020) 0.397 (0.014) 0.652 (0.030)
scMM 0.655 (0.048) 0.602 (0.039) 0.670 (0.057)
Cobolt 0.703 (0.036) 0.572 (0.034) 0.708 (0.043)
TotalVI 0.744 (0.027) 0.638 (0.051) 0.733 (0.049)
MOFA+ 0.713 (0.030) 0.552 (0.038) 0.687 (0.044)
Seurat V4 0.670 (0.009) 0.553 (0.014) 0.703 (0.025)
moETM 0.760 (0.019) 0.648 (0.023) 0.752 (0.036)
moETM-average 0.748 (0.023) 0.626 (0.031) 0.737 (0.049)
moETM-rna 0.736 (0.030) 0.617 (0.039) 0.730 (0.040)
moETM-protein 0.593 (0.015) 0.523 (0.025) 0.604 (0.042)
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S1 Supplementary Tables

Table S1: Evaluation of cell clustering by NMI, kBET, and GC on 4 genes+peaks single-cell
multi-omic datasets. The experiments were the same as described in Table 1. Only the BMMC
data have multiple batches (13 batches) and therefore evaluated by the kBET and GC scores.
The other 3 datasets were evaluated by NMI and ARI only based on their cell-type labels
(Table 1).

Metrics Methods Genes + Peaks
BMMC MSLAC MKC MBC

NMI

moETM 0.787 (0.005) 0.612 (0.013) 0.513 (0.022) 0.590 (0.025)
SMILE 0.780 (0.006) 0.562 (0.008) 0.460 (0.008) 0.420 (0.019)
scMM 0.754 (0.010) 0.550 (0.016) 0.471 (0.017) 0.501 (0.016)
Cobolt 0.744 (0.005) 0.526 (0.020) 0.452 (0.029) 0.398 (0.053)
MultiVI 0.763 (0.010) 0.572 (0.007) 0.461 (0.024) 0.653 (0.018)
MOFA+ 0.777 (0.013) 0.570 (0.013) 0.480 (0.018) 0.401 (0.023)

Seurat V4 0.782 (0.006) 0.673 (0.009) 0.463 (0.032) 0.651 (0.035)
moETM-average 0.777 (0.011) 0.605 (0.018) 0.503 (0.030) 0.569 (0.033)

moETM-rna 0.773 (0.005) 0.599 (0.045) 0.498 (0.055) 0.562 (0.032)
moETM-atac 0.705 (0.009) 0.482 (0.006) 0.172 (0.009) 0.123 (0.015)

kBET

moETM 0.223 (0.012) - - -
SMILE 0.137 (0.018) - - -
scMM 0.184 (0.016) - - -
Cobolt 0.115 (0.010) - - -
MultiVI 0.092 (0.013) - - -
MOFA+ 0.193 (0.025) - - -

Seurat V4 0.190 (0.009) - - -
moETM-average 0.207 (0.015) - - -

moETM-rna 0.198 (0.019) - - -
moETM-atac 0.205 (0.021) - - -

GC

moETM 0.978 (0.003) - - -
SMILE 0.953 (0.003) - - -
scMM 0.964 (0.002) - - -
Cobolt 0.962 (0.004) - - -
MultiVI 0.960 (0.005) - - -
MOFA+ 0.954 (0.011) - - -

Seurat V4 0.959 (0.003) - - -
moETM-average 0.966 (0.005) - - -

moETM-rna 0.950 (0.004) - - -
moETM-atac 0.962 (0.007) - - -
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Table S2: Evaluation of cell clustering of 3 CITE-seq gene+protein datasets based on NMI,
kBET, and GC. The experiments were the same as described in Table 2.

Metrics Methods Genes + Proteins
BMMC HWBC HBIC

NMI

moETM 0.786 (0.006) 0.791 (0.013) 0.779 (0.023)
SMILE 0.712 (0.007) 0.732 (0.005) 0.702 (0.017)
scMM 0.708 (0.012) 0.742 (0.018) 0.712 (0.034)
Cobolt 0.731 (0.011) 0.730 (0.027) 0.739 (0.030)
TotalVI 0.770 (0.005) 0.784 (0.010) 0.762 (0.019)
MOFA+ 0.750 (0.024) 0.701 (0.027) 0.715 (0.029)

Seurat V4 0.714 (0.006) 0.714 (0.040) 0.726 (0.012)
moETM-average 0.770 (0.011) 0.769 (0.018) 0.753 (0.029)

moETM-rna 0.755 (0.004) 0.759 (0.010) 0.748 (0.019)
moETM-protein 0.625 (0.013) 0.620 (0.019) 0.608 (0.027)

kBET

moETM 0.105 (0.002) 0.304 (0.012) 0.153 (0.020)
SMILE 0.058 (0.001) 0.032 (0.007) 0.073 (0.017)
scMM 0.080 (0.004) 0.110 (0.007) 0.092 (0.011)
Cobolt 0.036 (0.002) 0.095 (0.005) 0.038 (0.019)
TotalVI 0.156 (0.009) 0.349 (0.002) 0.197 (0.004)
MOFA+ 0.078 (0.013) 0.213 (0.010) 0.063 (0.014)

Seurat V4 0.062 (0.003) 0.133 (0.010) 0.107 (0.015)
moETM-average 0.094 (0.005) 0.290 (0.016) 0.140 (0.023)

moETM-rna 0.082 (0.002) 0.266 (0.010) 0.130 (0.015)
moETM-protein 0.090 (0.006) 0.280 (0.015) 0.135 (0.023)

GC

moETM 0.936 (0.007) 0.968 (0.004) 0.950 (0.005)
SMILE 0.901 (0.011) 0.912 (0.016) 0.907 (0.006)
scMM 0.897 (0.009) 0.937 (0.016) 0.906 (0.008)
Cobolt 0.880 (0.011) 0.930 (0.019) 0.890 (0.010)
TotalVI 0.918 (0.005) 0.951 (0.006) 0.934 (0.007)
MOFA+ 0.906 (0.022) 0.940 (0.022) 0.895 (0.015)

Seurat V4 0.911 (0.004) 0.930 (0.002) 0.923 (0.003)
moETM-average 0.920 (0.009) 0.949 (0.006) 0.936 (0.008)

moETM-rna 0.911 (0.010) 0.932 (0.007) 0.928 (0.009)
moETM-atac 0.916 (0.011) 0.939 (0.007) 0.930 (0.015)

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2023. ; https://doi.org/10.1101/2023.01.31.526312doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.31.526312
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S3: Evaluation of embedding-based cell clustering of the 4 gene+peak datasets. Differ-
ent from the one listed in Table 1 and Supplementary Table S1, we trained and tested each
model on all of the cells from each dataset. Because the cell type labels were not used in train-
ing any of the model, this is still an unbiased evaluation.

Metrics Methods Genes + Peaks
BMMC MSLAC MKC MBC

ARI

moETM 0.735 (0.006) 0.515 (0.008) 0.584 (0.019) 0.468 (0.019)
SMILE 0.723 (0.009) 0.477 (0.009) 0.439 (0.024) 0.301 (0.018)
scMM 0.693 (0.007) 0.412 (0.005) 0.420 (0.017) 0.333 (0.026)
Cobolt 0.664 (0.009) 0.400 (0.010) 0.394 (0.024) 0.303 (0.039)
MultiVI 0.697 (0.007) 0.413 (0.013) 0.403 (0.014) 0.502 (0.025)
MOFA+ 0.709 (0.007) 0.489 (0.010) 0.424 (0.017) 0.403 (0.026)

Seurat V4 0.706 (0.008) 0.547 (0.001) 0.403 (0.001) 0.538 (0.0001)

NMI

moETM 0.798 (0.005) 0.662 (0.008) 0.643 (0.020) 0.601 (0.022)
SMILE 0.784 (0.009) 0.617 (0.011) 0.47 (0.028) 0.445 (0.036)
scMM 0.744 (0.006) 0.583 (0.014) 0.488 (0.025) 0.524 (0.031)
Cobolt 0.738 (0.009) 0.568 (0.015) 0.464 (0.020) 0.428 (0.066)
MultiVI 0.755 (0.008) 0.580 (0.020) 0.470 (0.026) 0.669 (0.013)
MOFA+ 0.769 (0.006) 0.631 (0.026) 0.496 (0.021) 0.574 (0.028)

Seurat V4 0.782 (0.008) 0.702 (0.001) 0.488 (0.001) 0.694 (0.0001)

kBET

moETM 0.234 (0.008) - - -
SMILE 0.115 (0.005) - - -
scMM 0.133 (0.007) - - -
Cobolt 0.102 (0.011) - - -
MultiVI 0.068 (0.011) - - -
MOFA+ 0.163 (0.011) - - -

Seurat V4 0.153 (0.002) - - -

GC

moETM 0.974 (0.003) - - -
SMILE 0.965 (0.007) - - -
scMM 0.970 (0.008) - - -
Cobolt 0.961 (0.010) - - -
MultiVI 0.957 (0.004) - - -
MOFA+ 0.964 (0.008) - - -

Seurat V4 0.952 (0.004) - - -

38

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2023. ; https://doi.org/10.1101/2023.01.31.526312doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.31.526312
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S4: Evaluation of embedding-based clustering by leaving-one-subject-out (Section 4.3).
Each method was trained on B − 1 subjects and tested on the held-out subject. The highest and
second highest score per dataset were highlighted in bold and blue, respectively.

Metrics Methods Genes + Peaks Genes + Proteins
BMMC BMMC

ARI

moETM 0.779 (0.071) 0.776 (0.071)
SMILE 0.766 (0.082) 0.703 (0.099)
scMM 0.743 (0.120) 0.737 (0.084)
Cobolt 0.732 (0.105) 0.726 (0.013)

MultiVI/TotalVI 0.739 (0.095) 0.740 (0.107)
MOFA+ 0.759 (0.098) 0.713 (0.034)

Seurat V4 0.730 (0.095) 0.686 (0.120)

NMI

moETM 0.819 (0.037) 0.823 (0.029)
SMILE 0.808 (0.036) 0.803 (0.030)
scMM 0.780 (0.056) 0.804 (0.026)
Cobolt 0.750 (0.150) 0.799 (0.034)

MultiVI/TotalVI 0.774 (0.043) 0.810 (0.038)
MOFA+ 0.783 (0.042) 0.758 (0.027)

Seurat V4 0.782 (0.050) 0.744 (0.023)

Table S5: Evaluation of embedding-based clustering by leaving-one-site-out (Section 4.3).
Each method was trained on B − 1 sites and tested on the held-out site. The highest and second
highest score per dataset were highlighted in bold and blue, respectively.

Metrics Methods Genes + Peaks Genes + Proteins
BMMC BMMC

ARI

moETM 0.735 (0.084) 0.772 (0.053)
SMILE 0.714 (0.095) 0.686 (0.075)
scMM 0.700 (0.106) 0.665 (0.066)
Cobolt 0.693 (0.068) 0.653 (0.057)

MultiVI/TotalVI 0.704 (0.086) 0.694 (0.085)
MOFA+ 0.716 (0.078) 0.668 (0.073)

Seurat V4 0.693 (0.097) 0.666 (0.149)

NMI

moETM 0.796 (0.036) 0.810 (0.033)
SMILE 0.780 (0.041) 0.798 (0.040)
scMM 0.760 (0.033) 0.771 (0.022)
Cobolt 0.768 (0.062) 0.759 (0.043)

MultiVI/TotalVI 0.762 (0.038) 0.787 (0.050)
MOFA+ 0.780 (0.042) 0.768 (0.041)

Seurat V4 0.756 (0.038) 0.737 (0.010)

39

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2023. ; https://doi.org/10.1101/2023.01.31.526312doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.31.526312
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S6: Imputing surface protein expression from gene expression. The best score per evalu-
ation metric is in bold.

Methods random split leave-one-batch leave-one-cell-type
Pearson Spearman Pearson Spearman Pearson Spearman

moETM 0.95 (0.02) 0.94 (0.02) 0.92 (0.02) 0.90 (0.03) 0.88 (0.04) 0.85 (0.03)
BABEL 0.94 (0.03) 0.92 (0.03) 0.90 (0.02) 0.87 (0.03) 0.85 (0.03) 0.81 (0.03)
scMM 0.94 (0.03) 0.91 (0.04) 0.91 (0.03) 0.89 (0.03) 0.83 (0.04) 0.78 (0.05)

Table S7: Imputing gene expression from chromatin accessibility. The best score per evaluation
metric is in bold.

Methods random split leave-one-batch leave-one-cell-type
Pearson Spearman Pearson Spearman Pearson Spearman

moETM 0.69 (0.02) 0.37 (0.03) 0.65 (0.04) 0.35 (0.04) 0.58 (0.05) 0.32 (0.03)
BABEL 0.65 (0.03) 0.34 (0.03) 0.6 (0.03) 0.33 (0.03) 0.55 (0.05) 0.30(0.02)
scMM 0.63 (0.03) 0.33 (0.04) 0.61 (0.04) 0.33 (0.03) 0.54 (0.05) 0.28 (0.04)

Table S8: Imputing chromatin accessibility from gene expression. The best score per evalua-
tion metric is in bold.

Methods random split leave-one-batch leave-one-cell-type
Pearson Spearman Pearson Spearman Pearson Spearman

moETM 0.58 (0.03) 0.33 (0.02) 0.55 (0.04) 0.30 (0.03) 0.51 (0.03) 0.28 (0.04)
BABEL 0.38 (0.02) 0.27 (0.03) 0.34 (0.03) 0.23 (0.02) 0.31 (0.03) 0.18 (0.03)
scMM 0.40 (0.03) 0.29 (0.03) 0.37 (0.04) 0.25 (0.03) 0.33 (0.03) 0.21 (0.03)

Table S9: Imputing gene expression from surface protein expression. The best score per evalu-
ation metric is in bold.

Methods random split leave-one-batch leave-one-cell-type
Pearson Spearman Pearson Spearman Pearson Spearman

moETM 0.65 (0.03) 0.41 (0.03) 0.63 (0.02) 0.39 (0.03) 0.60 (0.03) 0.37 (0.02)
BABEL 0.62 (0.03) 0.39 (0.03) 0.60 (0.04) 0.37 (0.03) 0.57 (0.02) 0.33 (0.03)
scMM 0.61 (0.02) 0.37 (0.03) 0.60 (0.03) 0.36 (0.04) 0.54 (0.04) 0.30 (0.03)
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S2 Supplementary Figures

Figure S1: Evaluation metric values as a function of the numbers of latent dimensions on
the BMMC1 dataset.
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Figure S2: Cross-omic imputation from low dimension to high dimension. a. Heatmap of
original and imputed gene expression from protein values using the BMMC2 CITE-seq dataset.
In each heatmap, the columns are the randomly sampled 5000 cells, and the rows are genes.
The order of cells and genes are the same in the two heatmaps. b. Scatter plot of original and
imputed gene expression values. The x-axis is the original expression and the y-axis repre-
sents the imputed values. The diagonal line is in blue. c. Heatmap of the original and imputed
peak values from gene expression on the BMMC1 dataset. Rows are peaks and columns are
randomly sampled 5000 cells. d. Scatter plot of the original and imputed peak values.
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Figure S3: GO-informed cell and features embedding learned by our moETM on the
BMMC1 dataset. The gene embedding matrix of moETM was fixed to the gene sets of Gene
Ontology Biological Processes from MSigDB during the training on the BMMC1 gene+peak
data. a. Cell topic-embedding. Columns are cells and rows are topics. The top bar indicate the
cell types. Color intensities are proportional to the topic embedding of the cells. b. Top genes
for the select topics. Rows are the select topics and columns are the top 5 genes per topic.
Marker genes were colored in blue. Cell-type-specific topics were labeled by the arrows. c. Top
peaks for the same set of topics as in panel b. d. The top 5 pathways for each of the selected
topics. Cell-type-associated pathways were colored in blue. The color intensities are the topic
embedding values for the pathways.
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Figure S4: GO-informed cell and features embedding learned by our moETM on the
BMMC1 dataset. a. The top 5 pathways for each of the selected topics. Cell-type-associated
pathways were colored in blue. The color intensities are the topic embedding values for the
pathways. b. Cell topic-embedding. Columns are cells and rows are topics. The top bar indi-
cate the cell types. Color intensities are proportional to the topic embedding of the cells. The
highlighted topic 23 was discussed in the main text. c. Top genes for the select topics. Rows
are the select topics and columns are the top 5 genes per topic. Marker genes were colored in
blue. Cell-type-specific topics were labeled by the arrows. d. The top 5 pathways for each of
the selected topics. Cell-type-associated pathways were colored in blue. The color intensities
are the topic embedding values for the pathways.
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Figure S5: Topic analysis of single-cell COVID-19 CITE-seq dataset. a. Topics intensity of
cells sub-sampled (n=10000). Only the topics with the sum of absolute values larger than the
third quartile across all sampled cells were shown. The three color bars show cell types, dis-
ease severity, and disease status. b. Top proteins and top genes per select topic. The marker
genes and proteins based on CellMarker or literature search are colored in blue. For visual-
ization purposes, we divided the topic values by the maximum absolute value within the same
topic. c. GSEA lead-edge analysis of topic 42. The enriched gene set contains genes that
were down-regulated in CD4 T cells relative to B cells. The barcode in the middle are the genes
that belong to the corresponding gene set. d. UMAP visualization of the genes, proteins, and
topics via their shared embedding space. Genes, proteins, and topics were labeled by star, cir-
cle and cross shapes on the top panel, respectively. Topics 42, 74, 86, and 91 were colored in
blue, red, green, and purple, respectively. The bottom panel displays the corresponding topic
indices and gene symbols highlighted on the top panel.
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