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The study of the brain criticality hypothesis has been going on for about 20 years, various

models and methods have been developed for probing this field, together with large

amounts of controversial experimental findings. However, no standardized protocol of

analysis has been established so far. Therefore, hoping to make some contributions to

standardization of such analysis, we review several available tools used for estimating

the criticality of the brain in this paper.
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1. INTRODUCTION

There are quite a few excellent reviews regarding the subject of brain criticality by now (see e.g.,
Wilting et al., 2018; Wilting and Priesemann, 2019a; Plenz et al., 2021; Zeraati et al., 2021). But the
field is full of controversies and clearly lacks a standardization. In order to make all the results more
unified, a standardization of the tools used for analyzing may be of priority. Here, we review several
existing tools for estimating the brain’s criticality as a small part of such an attempt.

The subject of brain criticality is closely related to neuronal avalanches. However, the definition
of experimental avalanches varies among research due to different recording techniques. A detailed
illustration can be found in Girardi-Schappo (2021). Nevertheless, when dealing with discrete time
series, a suitable bin size (see Levina and Priesemann, 2017)may be used to extract all the avalanches
as long as there exists a clear separation of time scales, namely the time of quiescence between
avalanches is much longer compared to the duration of any single avalanche. Theoretical models
often bear an intrinsic separation of time scales, thus defining their avalanches is relatively easy
and should be standardized. Real experimental data are, however, much more complicated. For
example, in reality, the sample size is always very large, and in such a regime, a clear separation of
time scales is always not available, since at each time bin, the probability that at least one among all
recorded neurons is active can be extremely high, leading to one single avalanche that may never
terminate. Yet in fact, in most studies, avalanches are defined as consecutive time bins with at least
one active site. Thus, much more work should be devoted to making the definition of avalanches
standardized and applicable to different cases. Until then, drawing any conclusion may never be
fully convincing.

Besides the definition of avalanches, the analysis process of avalanches is of equal importance,
so efforts should be taken to make this process as rigorous and standardized as possible. By far,
many methods have been developed for such analysis, and we do not intend to exhaust them all.
In the following sections, we review several important tools commonly used to testify the criticality
hypothesis in the brain, including the power-law fitting, crackling noise scaling relation, shape
collapsing, and branching ratio, hoping to make some contributions to the standardization of
avalanche analysis. Of course, a suitable definition of avalanches is presumed.
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2. POWER-LAW FITTING

Power-law fitting is essential in most works searching for
evidence of brain criticality, but many did not apply rigorous
tests to the fitting results. The commonly used way of fitting
is by using the maximum likelihood estimation (MLE) method
which has many desirable properties (see e.g., Casella and
Berger, 2002). But, simply fitting power-law distributions by
plain MLE has several drawbacks (see e.g., Goldstein et al.,
2004; Bauke, 2007; White et al., 2008; Clauset et al., 2009).
Clauset et al. (2009) developed a more rigorous method of
fitting untruncated power-law distribution by combining MLE
and the Kolmogorov–Smirnov (KS) goodness-of-fit test, allowing
statistical evaluation of the fitting results. Approximately, they
first derived a distribution of KS values by using synthetic power-
law surrogates, which were then compared to the KS value of the
empirical data, and the proportion of sample distributions with
KS values larger than the KS value between the empirical data and
the model distribution gives the p-value of rejecting the power-
law fit hypothesis. Later Deluca and Corral extended Clauset
et al.’s work, making the fitting available for doubly truncated
(continuous) power-law distributions (Deluca and Corral, 2013,
see Corral and González, 2019 for illustration).

Marshall et al. (2016) developed the Matlab Neural
Complexity and Criticality (NCC) Toolbox for doing neuronal
avalanche analysis, which included an automated MLE fitting
routine based on the method developed by Deluca and Corral,
where the fitting range (i.e., from a minimum cutoff to a
maximum cutoff) was found automatically instead of being
manually determined, detailed illustrations can be found in
their paper. They extended previously used MLE techniques to
doubly truncated discrete power-law distributions that are more
appropriate for describing empirical data which have maximum
cutoffs typically caused by finite size effects.

But as pointed out by Corral and González (2019), their
method has two important drawbacks, i.e., lacking the estimation
of the uncertainty of the minimum and maximum cutoffs
and underestimating the uncertainty in the obtained power-law
exponent. They provided a solution to tackle these problems,
i.e., taking bootstrap resamplings of the original data (Good,
2006) and repeating the fitting procedure with them to obtain
distributions for cutoffs and the power-law exponent from which
the uncertainty may be estimated. In the meantime, studying the
dependence of the fitted power-law exponent on both cutoffs
should be a good complementation (Baró and Vives, 2012).
Thanks to Serra-Peralta et al. (2022), a Python version of this
fitting method is available, and the source codes can be found on
Github.

Another available tool is provided by Destexhe and Touboul
(2021a), who used a similarMLE-basedmethod for fitting power-
laws truncated to a minimum cutoff. The fit was validated by the
Akaike information criterion (AIC, see Akaike, 1974), which uses
the maximum likelihood value L̂ of models

AIC = 2k− 2 log(L̂)+
2k2 + 2k

N − k− 1
,

and the model with smaller AIC value is a relatively better
fit for a given data set. However, when using this method
for doubly truncated data, a maximum needs to be specified
manually. Nevertheless, utilizing the AIC principlemay be a good
complement to the methods discussed above.

Actually, very similar to the AIC principle, Alstott et al. (2014)
tested whether the power-law distribution is the best descriptor
of the data compared to alternative heavy-tailed distributions,
e.g., the exponential or log-normal distribution, by calculating
the log-likelihood ratio (LLR). The underlying reason for doing
LLR tests are that real world systems have all kinds of noises, and
so few empirical phenomena could be expected to follow a power-
law with the perfection of a theoretical distribution, especially in
the large sample size regime where even small deviations from a
perfect power-law would lead to the rejection of the power-law
hypothesis by using the fitting methods discussed above. There
is an existing toolbox for doing LLR tests: the power-law Python
package, whose descriptions and sources can be found in Alstott
et al. (2014).

Additionally, before all fitting procedures, enough number
of avalanches should be generated to make the results
more accurate, since small samples may cause strong biases.
Meanwhile, before fitting the data, a preview of it would
be helpful in order to choose a proper fitting procedure.
For example, while the NCC toolbox provided a method to
automatically find the exponent and the fitting range, it may take
an unexpectedly long time to find the range and when it is finally
done, it may happen that just a very small part of the data is
fitted. Such circumstances may be avoided if the data were plotted
first to see how it departs from a pure power-law distribution.
However, if the results fitted by these tools are not satisfying,
though may be subjective, manually setting the fitting range is
always an option, which is just the way used in Carvalho et al.
(2021) and many others.

We highly recommend that future research make the best use
of these freely available advanced tools for power-law fitting of
both empirical data and simulation results, hoping for a much
more statistically rigorous and unified results in the future.

3. CRACKLING NOISE SCALING RELATION

Recent research (see e.g., Ponce-Alvarez et al., 2018; Fontenele
et al., 2019; Carvalho et al., 2021; Fosque et al., 2021) have applied
the crackling noise scaling relation (Muñoz et al., 1999; Sethna
et al., 2001) to estimate the criticality of neural systems, though
for which criticisms exist (see Destexhe and Touboul, 2021b).
Nevertheless, the scaling relations observed in the spiking activity
of mammalian primary visual cortex in both anesthetized (rats
and monkey) and freely moving animals (mice) showed striking
consistency in a specific activity regime (Fontenele et al., 2019),
and the work of Ponce-Alvarez et al. (2018) showed consistent
crackling noise scaling relations in whole-brain neuronal activity
of zebrafish larvae, making the scaling relation itself interesting
enough for further investigation. When using the crackling noise
scaling relation, many research often refer to Muñoz et al. (1999)
and Sethna et al. (2001), where methods for derivation were
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proposed, but the relation was not explicitly written out or
derived rigorously. There is a simple derivation proposed in
Girardi-Schappo (2021), but it seems that the author presumed
relation between the size and duration of avalanches, which
may lack explanation. Here, we illustrate the derivation of the
crackling noise scaling relation briefly based on the work of
Sethna et al. (2005). The probability function of having an
avalanche of size S, duration T, long axis L, short axis W, at
disorder R, and external field H in Sethna et al. (2005) has the
following scaling form (see Equation 1 in Sethna et al., 2005, for
reference to scaling functions see e.g., Henkel et al., 2008):

D(S,T, L,W,R,H) = DsS
−(τ+συz)

D(
S

Ss
r1/σ ,

T

Ts
rzυ ,

L

W
,
h

rβδ
), (1)

where τ , σ , υ ,β , δ, and z are critical exponents, r = R−Rc
Rs

,

h = H−Hc
Hs

, and Ds is a normalization factor. Throwing out non-
universal factors, and setting the external field to its critical value,
we can write in a more simplified asymptotic scaling form (close
to the critical point):

D(S,T, r) ∼ S−(τ+συz)
D(Sr1/σ ,Trzυ ). (2)

From (2), we can get the scaling forms for the avalanche sizes

D(S, r) ∼

∫
D(S,T, r)dT

∼

∫
S−(τ+συz)

D(Sr1/σ ,Trzυ )dT

∼

∫
S−τ (Sr1/σ )−σ zυ

D(Sr1/σ ,Trzυ )d[Trzυ ]

∼ S−τ
DS(Sr1/σ ),

(3)

and durations as well

D(T, r) ∼

∫
D(S,T, r)dS

∼

∫
S−(τ+συz)

D(Sr1/σ ,Trzυ )dS

∼

∫
r
−1+τ+σ zυ

σ (Sr1/σ )−τ−σ zυ
D(Sr1/σ ,Trzυ )d[Sr1/σ ]

∼ T−−1+τ+σ zυ
σ zυ

∫
(Trzυ )

−1+τ+σ zυ
σ zυ

(Sr1/σ )−τ−σ zυ
D(Sr1/σ ,Trzυ )d[Sr1/σ ]

∼ T−τtDT(Trzυ ),
(4)

where τt = −1+τ+σ zυ
σ zυ , DS and DT are some scaling functions.

Meanwhile, given avalanche duration T, we have the following
average avalanche size

〈S〉 (T, r) ∼

∫
SD(S|T, r)dS

∼

∫
S
D(S,T, r)

D(T, r)
dS

∼

∫
S1−(τ+συz)

D(Sr1/σ ,Trzυ )

T−−1+τ+συz
σ zυ DT(Trzυ )

dS

∼

∫
T

1
συz (Trzυ )

−2+τ+συz
συz (Sr1/σ )1−(τ+συz)

D(Sr1/σ ,Trzυ )
DT (Trzυ )

d[Sr1/σ ]

∼ Ta
D

′(Trzυ ),

(5)

where again D′ is some scaling function, and a = 1
συz .

Combining (3)− (5), we get the crackling scaling relation:

τt − 1

τ − 1
= a.

Whether the above equation holds or not may be tested by
using the two-sample t-test (see e.g., Ponce-Alvarez et al., 2018;
Destexhe and Touboul, 2021b), a statistical method for testing
whether the unknown population means of two groups are equal
or not. Obviously, such a test relies on the estimation of power-
law fitting exponents, thus care must be taken when drawing
conclusions from the results.

Note also that the exponents can be obtained using different
methods, and they should be consistent across all reliable
methods. Taking the above exponent 1

συz as an example,
Ponce-Alvarez et al. (2018) showed that the power spectral
density (PSD) of the time courses of neuronal avalanches
decays also with exponent 1

συz , thus one can estimate it
from the relation (5), through the decay of the avalanche
PSD, and through other possible ways like the scaling shape
collapse discussed in the next section. The estimated 1

συz
should be consistent across these different ways of estimating
the exponent, and the same should apply to estimating other
exponents.

Another point is that the scaling relation is one way to
reveal some spatiotemporal statistics of the data, and for
neuronal avalanche analysis uncovering the true spatiotemporal
statistics of the system, results should be compared to surrogate
datasets to avoid false conclusions. For instance, one can use
randomized surrogates that destroy the correlations or time-
shuffled surrogates that destroy the temporal organization of the
data while preserving the spatial correlations (see e.g., Ponce-
Alvarez et al., 2018).

4. SCALING SHAPE COLLAPSE

Apart from power-law distributions and scaling relations, the
existence of universal scaling functions which capture the
dynamics of systems at different scales can be used as a further
signature of criticality.

Universal scaling functions are one of the most important
predictions of universality (see Sethna et al., 2001). The
time history of the average size over all avalanches of
fixed duration T, denoted as 〈V〉 (T, t), is one example of
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universal scaling functions and has the following scaling
form

〈V〉 (T, t) = TbV(t/T),

where b is some scaling exponent. If we plot T−b 〈V〉 (T, t)
vs. scaled time t/T, then we are supposed to observe what
is called scaling shape collapse, a simple way to check the
scaling hypothesis and measure the universal scaling function.
However, quantifying the quality of shape collapses is difficult
and can be very subjective by just looking at the plotted results.
Included in their NCC toolbox, Marshall et al. (2016) developed
a shape collapse algorithm that did not intend to determine if
a particular data set exhibits shape collapse, but automatically
found the scaling parameter that produced the best possible
collapse instead. Specifically, it used linear interpolation to each
avalanche at a number of points along the scaled duration t/T
and then calculated the variance among all the avalanche profiles
at the interpolated points. The final fitted scaling exponent is
the one that minimized the shape collapse error among a range
of possible exponent values, and this whole analysis can be
quantitated, for details seeMarshall et al. (2016). Compared to the
former shape collapse analysis method (see e.g., Friedman et al.,
2012), such shape collapse method takes much more avalanches
into account and is automated and quantitative, though not able
to determine whether a given data set exhibits shape collapses.

Attempts have been made to directly quantify the quality
of shape collapses by Shaukat and Thivierge (2016), where
a complicated method based on functional data analysis was
proposed. Their method first smoothed avalanches with a Fourier
basis, followed by rescaling using a time-warping function,
and finally employed an F-test combined with a bootstrap
permutation to determine if avalanches collapse together in a
statistically reliable way. Although seemingly more statistically
rigorous, this method also seemed not able to measure the
scaling parameter or the universal scaling function. Therefore,
the analysis of scaling shape collapse obviously requires more
future research, and for now, these existing well-established
methods should be used when analyzing scaling shape collapse
to avoid being subjective.

5. BRANCHING RATIO

Apart from studying distribution functions of avalanches,
analyzing the branching ratio of events which describes activity
propagation is a complementary approach to test if a system
is critical or not, where the branching ratio is defined as the
average number of descendants per ancestor (de Carvalho and
Prado, 2000, for reference to the branching process see Harris
et al., 1963). A branching ratio being smaller than, equal to or
larger than 1 would imply a subcritical, critical or supercritical
system, respectively. The fundamental work established by Beggs
and Plenz (2003) showed that the branching ratio of their
experimental data, defined as the ratio of the average number
of electrodes activated in two consecutive time bins, was close

to 1, indicating a critical branching process as the mechanism
behind the power-law distributions in cortical networks. Such
a fascinating scenario inspired a great amount of work in the
field, and many research studies also applied the branching ratio
as one way of defining the criticality of neural systems (see e.g.,
Haldeman and Beggs, 2005; Beggs, 2008; Williams-Garcia et al.,
2014; Timme et al., 2016).

However, the conventional estimator of the branching ratio
using linear regression can be strongly biased under subsampling
(Wilting and Priesemann, 2018), which unfortunately happens to
be the case in real experiments. Luckily, Wilting and Priesemann
(2018) derived a novel estimator (called MR estimator) based
on multistep regression, which was analytically proved to be
consistent under subsampling. They showed that the branching
ratio was close to but slightly smaller than 1 and proposed that
the cortex may be operating in a reverberating regime. Short
after that Wilting et al. (2018) proposed that operating in a
reverberating regime may enable the cortex to rapidly tune itself
according to various task requirements. Such an opinion is very
interesting and bears its own reasoning and makes the estimation
of the branching ratio worth more considering in future research.

Now there is a python toolbox developed by Spitzner et al.
(2021), and future research estimating the branching ratio should
utilize these novel tools as much as possible.

6. DISCUSSION

The current opinions regarding the subject of brain criticality
vary among researchers, it remains unclear whether or not
the brain possesses self-organized criticality, quasicriticality,
supercriticality, or subcriticality, or rather it operates in a
reverberating regime, or it may have many critical states, or
perhaps, it is so complicated that its dynamics could not be well
explained by any existing theory (for reviews see e.g., Priesemann,
2014;Williams-Garcia et al., 2014; Costa et al., 2017;Wilting et al.,
2018; Wilting and Priesemann, 2019b; Fosque et al., 2021; Gross,
2021; Plenz et al., 2021; Zeraati et al., 2021). Nevertheless, probing
underlying mechanisms of the complex brain dynamics is rather
intriguing and needless to say, important. Several tools as part of
such an attempt have been reviewed in this article. But as pointed
out by Destexhe and Touboul (2021b), there is currently no clear
evidence that the crackling noise scaling relation is a sufficient or
necessary condition for the criticality of the brain, and the same
happens to other methods used for determining brain’s criticality
as well. Future research should try to utilize the available
statistically reliable tools for analyzing both experimental and
theoretical results so as to make them less controversial and more
rigorous. Meanwhile, though full of challenges, developing new
more advanced reliable tools is of essence to eventually reaching
unified and convincing conclusions.
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