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Coenzyme Q10 is an essential lipid in the mitochondrial electron
transport system and an important antioxidant. It declines with
age and in various diseases, there is a need for a method to
compensate for the decrease in coenzyme Q10. Resveratrol, a
well-known anti-aging compound, has been shown to undergo
metabolism to coenzyme Q10’s benzene ring moiety in cells.
However, administration of resveratrol did not alter or only
slightly increased total intracellular coenzyme Q10 levels in many
cell types. Synthesis of coenzyme Q10 requires not only the
benzene ring moiety but also the side chain moiety. Biosynthesis
of the side chain portion of coenzyme Q10 is mediated by the
mevalonic acid pathway. Here, we explore the impact of
resveratrol on coenzyme Q10 levels in HepG2 cells, which possess
a robust mevalonic acid pathway. As a results, intracellular
coenzyme Q10 levels were increased by resveratrol admin‐
istration. Analysis using 13C6-resveratrol revealed that the benzene
ring portion of resveratrol was converted to coenzyme Q10.
Inhibition of the mevalonic acid pathway prevented the increase
in coenzyme Q10 levels induced by resveratrol administration.
These results indicate that resveratrol may be beneficial as a
coenzyme Q10-enhancing reagent in cells with a well-developed
mevalonic acid pathway.
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Coenzyme Q10 (CoQ10) plays a vital role as a lipid compo‐
nent in the mitochondrial electron transport chain, while

also serving as an important lipid-soluble antioxidant.(1,2) Its
levels within cells and organs have been reported to decline with
aging and in various diseases, such as post-myocardial infarction
and fibromyalgia.(3–6) Consequently, CoQ10 is often recom‐
mended as a supplement. However, studies have indicated that
oral administration of CoQ10 may not effectively elevate cellular
CoQ10 levels in certain organs, such as the brain, due to poor
lipid uptake.(7,8) Hence, there is a pressing need to explore inno‐
vative methods for augmenting cellular CoQ10 levels beyond
oral supplementation.
Resveratrol (RSV), found in a wide range of plants, has gar‐

nered attention as an anti-aging compound.(9) It has been associ‐
ated with a variety of health-promoting effects and has demon‐
strated the potential to mitigate various diseases, including
diabetes, neurodegeneration, and aging.(10–12) While the precise
mechanisms underlying these functions are still debated, they
may be attributed in part to their antioxidant properties and its
ability to modulate mitochondrial functions.(13,14)

The biosynthesis of CoQ10 involves the formation of both the
benzene ring and the isoprenyl side chain.(15) However, several

questions still surround the mechanisms of CoQ10 biosynthesis,
particularly regarding the production of hydroxybenzoic acid,
considered a precursor to the benzene ring portion of CoQ10.(16)

Notably, Xie et al.(17) previously reported that RSV can serve as a
precursor for the aromatic ring in coenzyme Q biosynthesis.
Their research employed aromatic 13C6-ring-labeled compounds,
specifically 13C6-resveratrol, to investigate RSV’s role as an
aromatic ring precursor in CoQ10 biosynthesis in various organ‐
isms, including Escherichia coli, Saccharomyces cerevisiae
(S. cerevisiae), and human and mouse cells. Their findings indi‐
cated that these organisms, when cultured with 13C6-RSV, could
synthesize 13C6-CoQ10, implying that RSV can be converted to
CoQ10 in human and mouse cells. Nevertheless, it should be
noted that although 13C6-CoQ10 was detected in S. cerevisiae,
U251 cells, 3T3 cells, and 293T cells, total CoQ10 levels did not
increase with RSV treatment in these cases.

In light of the fact that CoQ10 biosynthesis involves both the
benzene ring and the isoprenyl side chain, and RSV serves as an
aromatic ring precursor of CoQ10, we propose that augmenting
intracellular CoQ10 content may be achievable by administering
RSV to cells with a robust isoprenyl side chain biosynthesis rate
and an ample supply of the side chain.(18) Importantly, the iso‐
prenyl side chain moiety is synthesized from acetyl CoA via the
mevalonate pathway, a pathway predominantly active in the liver.
Therefore, this study aims to elucidate the effects of RSV admin‐
istration on HepG2 cells that mevalonate pathway is activated.

Materials and Methods

Cell culture and treatment. The cultivation of HepG2
cells followed the method previously reported.(19) In brief, HepG2
cells were cultured in DMEM (High Glucose) supplemented with
10% fetal bovine serum (FBS) and 1% Penicillin-Streptomycin,
at 37°C under 5% CO2 saturation. RSV was dissolved in ethanol
to achieve concentrations of 10, 25, and 50 μM, and administered
to the cells. Simvastatin was dissolved in DMSO to achieve a
concentration of 10 μM and added to the cells. As previously
reported, 4-nitrobenzoate (4-NB) was dissolved in DMSO to
achieve a concentration of 5 mM and administered to the cells.(19)

4-hydroxybenzoate (4-HB) was also dissolved in DMSO to
achieve a concentration of 25 μM. Each control group received
an equivalent amount of ethanol and/or DMSO. Following
administration, the cells were cultured for 48 h before measure‐
ment, if not stated otherwise.
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Isolation of mitochondria. Mitochondrial isolation was
performed according to Wallace’s method with minor modifica‐
tion.(20) In brief, cells were collected in isolation buffer [210 mM
mannitol, 70 mM sucrose, 0.1 mM EDTA, 0.5% BSA (fatty acid-
free), 5 mM HEPES, pH 7.2]. Subsequently, the cell suspension
was homogenized using a glass homogenizer and centrifuged at
1,000 × g for 10 min. The supernatant was collected and further
centrifuged at 8,500 × g for 15 min at 4°C to pellet the mitochon‐
drial fraction.

CoQ10 and free cholesterol (FC) analysis. CoQ10 and FC
were analyzed by using HPLC, following a previously reported
method with slight adjustments.(19) In brief, cells collected in 2-
propanol (IPA), or the mitochondrial fraction dissolved in IPA,
were centrifuged, and the resulting supernatant was injected into
the HPLC system. Two separation columns (Ascentis® C8, 5 μm,
250 mm × 4.6 mm i.d. and SupelcosilTM LC-18, 3 μm, 5 cm ×
4.6 mm i.d.; Supelco Japan, Tokyo, Japan) along with a reduction
column (RC-10, 15 mm × 4 mm i.d.; IRICA, Kyoto, Japan) were
utilized. The mobile phase for the separation columns consisted
of 50 mM sodium NaClO4 in methanol/IPA (85/15, v/v) and
was delivered at a flow rate of 0.8 ml/min. The columns were
maintained at 25°C. The measured amounts of CoQ10 and FC
were normalized for total protein mass measured by using the
BCA method.(21)

HPLC equipped with an optimized time-of-flight mass
spectrometry (LC/TOF-MS) analysis. HepG2 cells were
seeded at a density of 6.25 × 104 cells/ml with treated for 10 μM
Resveratrol-(4-hydroxyphenyl-13C6) (#711004; Sigma-Aldrich
Japan, Tokyo, Japan)-containing medium (dissolved in 99.5%
EtOH). The cells were treated with RSV-containing medium for
an additional 48-h incubation period. After washing the cells
twice with PBS, cells were centrifuged at 3,000 rpm for 10 min
at 4°C, and the supernatant was removed. The pelleted samples
were then suspended in 5 ml of hexane and 2 ml of methanol
and vigorously agitated, followed by centrifugation at 3,500 rpm
for 10 min at 4°C. The upper hexane layer was collected after
centrifugation. The collected hexane was evaporated to dryness,
and the residue was suspended in 450 μl of IPA for measurement.
To obtain mass-to-charge ratio (m/z) value of CoQ10, an LC/
TOF-MS (JMS-T100LC; JEOL Ltd., Tokyo, Japan) was used.
Methanol as a mobile phase was delivered at 1.0 ml/min. Separa‐
tion was performed with a C8 column (5 μm, 4.6 mm × 250 mm,
Supelco; Sigma-Aldrich Japan K.K., Tokyo, Japan). Positive
ionization was carried out at an ionization potential 2,500 V.
Applied voltage to the ring lens, outer orifice, inner orifice, and
ion guide were 10 V, 100 V, 10 V, and 1,500 V, respectively.

RNA isolation and reverse transcription-quantitative PCR
(RT-qPCR). The mRNA expression levels in HepG2 cells were
assessed through reverse transcription PCR, following a previ‐
ously described protocol.(19) In brief, total RNA was extracted
using TRizol reagent (Thermo Fisher Scientific, Waltham, MA).
RNA quality and concentration were evaluated using an Ultro‐
spec 2100 pro spectrophotometer (Biochrom, Cambridge, UK).
Reverse transcription was carried out to synthesize cDNA using
the QuantiTect Reverse Transcription Kit (QIAGEN, Venlo, The
Netherlands). The expression levels of genes were quantified by
qPCR, with detected gene and primer sequences listed in Table 1
and previously reported.(22) Housekeeping genes were selected
ACTB. The qPCR was performed using a QuantStudio® instru‐
ment (Thermo Fisher Scientific), with cycling conditions of 95°C
for 15 min, followed by 40 cycles of 95°C for 15 s and 72°C for
30 s, and a final extension step at 60°C for 30 s. Changes in gene
expression were determined using the 2−ΔΔCt method.(23)

Mitochondrial DNA (mtDNA) isolation and quantification
by quantitative PCR (qPCR). The quantification of mtDNA
was conducted based on previously reported methods.(22)

mtDNA isolation from HepG2 cells was performed using the
NucleoSpin® Tissue kit (Takara Bio Inc., Shiga, Japan). For

quantification, two nuclear DNA (nDNA) genes serpin family A
member 1 (SERPINA1) and solute carrier organic anion trans‐
porter family member 2B1 (SLCO2B1) and two mtDNA genes
mitochondrially encoded NADH dehydrogenase 1 (ND-1) and
mitochondrially encoded NADH dehydrogenase 5 (ND-5) were
utilized. The primer sequences used for qPCR are reported previ‐
ously.(22) The qPCR procedure utilized PowerTrackTM SYBR
Green Master Mix for qPCR on the QuantStudio® platform
following the recommended protocol (Thermo Fisher Scientific).
The change in mtDNA levels was determined using the
mtDNA_Copy_Number_Calculation method (#7246, Human
Mitochondrial DNA Monitoring Primer Set; Takara Bio Inc.).

Statistical analysis. Statistical analysis was conducted using
Student’s t test and one-way analysis of variances (ANOVA).
BellCurve for Excel (Social Survey Research Information Co.,
Ltd., Tokyo, Japan) was utilized for statistical analysis. Group
differences were considered statistically significant at the fol‐
lowing levels: *p≤0.05, **p≤0.01, and ***p≤0.001.

Results

Effect of RSV treatment on cellular levels of CoQ10 in
HepG2 cell. As shown in Fig. 1A, the administration of 10 μM
RSV to HepG2 cells did not significantly impact the protein
levels in the culture dish. This suggests that the cell growth rate
and cell viability were not significantly affected by the 10 μM
RSV administration. However, the administration of 25 μM
RSV slightly reduced the protein content in the culture dish,
while 50 μM RSV administration substantially decreased protein
content in the well, indicating that 50 μM RSV exhibited toxicity
to HepG2 cells.
Figure 1B demonstrates that RSV administration led to a dose-

dependent increase in cellular CoQ10 level. Notably, the admin‐
istration of RSV significantly elevated cellular CoQ10 levels by
approximately twofold. Administration of RSV elevated both
reduced and oxidized forms of CoQ10. Given that cholesterol is
also synthesized from acetyl CoA via the mevalonate pathway,
similar to CoQ10, we assessed the impact of RSV on cellular
cholesterol level. As shown in Fig. 1C, cellular cholesterol levels
standardized by protein content remained unchanged following
RSV administration.

Table 1. List of forward (F) and reverse (R) primer sequences used in
qPCR assays

PDSS1 F 5'-TCTGTTCTAGGATGTCCCGA-3'

R 5'-CAAACAGGACAGGACCAGTG-3'

PDSS2 F 5'-CCCACTGGAATCAGGTAGTG-3'

R 5'-TCCAGCTGTCATGTACAAGC-3'

Coq2 F 5'-CGTTACTTGGATGGTCTGCT-3'

R 5'-CCAGCATTGCAACACTGAAG-3'

Coq3 F 5'-TACTTCCCAAACCACTGTCG-3'

R 5'-CACAGCCAACGTCAAGAATC-3'

Coq4 F 5'-CGTGAAACCGAAAGTCTGTC-3'

R 5'-GCATTTACTATGTGCCAGGC-3'

Coq5 F 5'-TGAAGAAGATTCCTTGGGCG-3'

R 5'-TGACATTCCGGATCCCAAAG-3'

Coq6 F 5'-GAGATTTCTTCCCTCTGGGC-3'

R 5'-GCACTTGGAAACTCTCAAGC-3'

Coq7 F 5'-TTGTGACCTCCATCCCAAAG-3'

R 5'-GTTTGCTCCATATTCGCCTG-3'

Coq8 F 5'-CGCTGGTCTGTAGAACTCTC-3'

R 5'-GCCTCTAGCATCTCAGGAAC-3'

Coq9 F 5'-TACCACTTCGTGTCCCAAAG-3'

R 5'-GCCACTGAAACAGAAACTGG-3'
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We then examined the time course of cellular CoQ10 levels
following the administration of 25 μM RSV. In light of the con‐
siderable perturbation observed with the administration of 50 μM
RSV, subsequent experiments employed 25 μM RSV. Figure 1D
illustrates that cellular CoQ10 levels increased significantly after
48 and 72 h post-RSV administration. Figure 1E shows cellular
FC level after administration of RSV. FC level did not change.

Since CoQ10 is an important lipid in mitochondrial electron
transport chain, we next assess the effect of administration of
RSV on mitochondrial CoQ10 level. As shown in Fig. 1F, level
of CoQ10 in mitochondria also increased by the administration of
RSV.

Effect of RSV administration on cellular CoQ10 synthesis
genes expressions. Figure 2A illustrates the scheme how
CoQ10 is synthesized in vivo. We first elucidate the level of
mRNA expressions profiles of various CoQ10 synthesis genes
(Fig. 2B). mRNA expression levels of PDSS2, coq5, and coq7
were increased at 12 h after RSV treatment and those of coq3,
coq6, coq8, and coq9 were decreased at 24 h and 48 h and there‐
after. However, these changes were not particularly substantial.
These data suggest that the elevation of CoQ10 levels due to
RSV treatment may not be primarily attributed to the upregula‐
tion or enhancement of CoQ10 synthesis genes.
We previously reported that prosaposin (PSAP) is a CoQ10

binding-protein.(24,25) We also reported that upregulation of PSAP
increased and downregulation of PSAP decreased cellular CoQ10
level in HepG2 cells.(26,27) Therefore, we next measured the
mRNA expression level of PSAP. As shown in Fig. 3A, mRNA
expression level of PSAP did not change.

Effect of RSV on the expressions of mitochondria-related
genes. As the final step of CoQ10 biosynthesis occurs within
the mitochondria, we evaluated the expression levels of various
mitochondria-related genes with and without RSV treatment. We
examined the levels of SIRT1, PGC-1alpha, NRF1, and NRF2
(Fig. 3). SIRT1, PGC-1alpha, and NRF1 exhibited decrease was
modest. In contrast, NRF2 expression showed a slight increase.
Additionally, we analyzed mitochondrial DNA copy number
(mtDNAcn) following RSV administration, as shown in Fig. 3B,
and found no significant differences. Therefore, the mechanism
by which administered RSV increase intercellular CoQ10 is pre‐
sumably not due to upregulation of various CoQ10 synthesis
genes nor changes in mitochondrial mass itself, but because they
are substrate for the benzene ring portion of CoQ10.

Effect of 13C6-RSV treatment on cellular levels of 13C6-
CoQ10 in HepG2 cell. Previously, Xie et al.(17) reported that
RSV serves as a ring precursor for coenzyme Q biosynthesis. In
our present study, we observed an increase in intracellular CoQ10
in HepG2 cells following RSV administration. We aimed to
investigate whether RSV was incorporated into CoQ10 as part of
this increase, utilizing RSV labeled with 13C6 in benzene rings for
analysis. As shown in Fig. 4, CoQ10 generated in response to
this treatment was analyzed via LC-MS, confirming the presence
of a peak at position +6. This indicates that the administered
RSV was taken up by the cells and utilized as a component of
CoQ10.

Effect of simvastatin on the CoQ10 level increase by
RSV administration. These results shown above suggest that
administered RSV integrate into the benzene ring part of CoQ10.
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Thus, we next elucidate whether the administration of simvas‐
tatin, an inhibitor of mevalonate pathway, would alter the effect
of RSV administration.(28) As shown in Fig. 5A, simvastatin
administration inhibited the increase in CoQ10 induced by RSV.

Additionally, administration of simvastatin slightly reduced
cellular FC level, while, consistent with previous experiments,
RSV administration had no effect on cholesterol levels (Fig. 5B).
Subsequently, we investigated the effect of administering 4-HB
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alongside RSV. As shown in Fig. 5C, although administration of
4-HB or RSV individually increased intracellular CoQ10 levels,
their simultaneous administration did not produce an additive
effect (Fig. 5C). Furthermore, Fig. 5E demonstrates the effect
of 4-NB on RSV administration. 4-NB acts as a competitive
inhibitor, suppressing CoQ10 biosynthesis by inhibiting the reac‐
tion catalyzed by coq2.(29,30) In the presence of 4-NB, the effect
of RSV administration was diminished. In these experiments,
FC levels were not altered (Fig. 5D and F).
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Discussion

In HepG2 cells, RSV treatment increased intracellular CoQ10
levels. Addition of an inhibitor of the mevalonate pathway
(simvastatin) suppressed this increase in CoQ10. These results
suggest that sufficient activity of the mevalonic acid pathway is
required for RSV administration to increase the amount of
CoQ10 in the cells. Although 4-HB and RSV increased CoQ10
levels, there was no additive effect when they were administered
simultaneously. 4-HB is bound to the isoprenoid side chain by
the enzyme COQ2 to form the ring portion of CoQ10, and the
lack of additive effects between 4-HB and RSV administration
suggests that RSV may be a similar substrate to 4-HB. Adminis‐
tration of 4-NB, a competitive inhibitor of COQ2, a protein that
condenses the benzene ring and side chains of CoQ10 synthase,
reduced the effect of RSV on increasing CoQ10 levels. Consid‐
ering these results, it is likely that RSV binds to the side chain of
CoQ10, which is synthesized through the mevalonic acid
pathway, as the benzene ring moiety of CoQ10, resulting in an
increase in the amount of CoQ10.

Indeed, mass spectral analysis of cells treated with labeled
RSV (13C6-resveratrol) showed an increase in the amount of
labeled CoQ10 (13C6-CoQ10) in the cells. The benzene ring of the
administered RSV was directly converted to the benzene ring of
CoQ10. This is consistent with a previous report by Xie et al.(17)

It is unclear how RSV is converted to 4-HB or other CoQ10 pre‐
cursor substances.
RSV is known to have anti-aging effects, while the precise

mechanisms underlying these functions are still under debate.
The activation of the SIRT gene has attracted much attention as
one of the effects of RSV.(31) In addition, RSV is known to have
antioxidant activity and mitochondrial protection.(32) It is possible
that some of these effects of RSV may be related to the conver‐
sion of RSV to CoQ10, which in turn may have antioxidant and
mitochondrial function-enhancing effects as CoQ10.
There have been many searches for substances that can serve

as ring precursors for CoQ10. Not only 4-HB, which is a known
substrate, but also Kaempferol and Vanillic acid have been
reported to be ring precursors for CoQ10.(33) Fernández-del-Río
et al.(33) reported that the effect of Kaempferol on the biosyn‐
thesis of CoQ10 was more pronounced in kidney cells. It is
possible that the type of effective ring precursors may vary
depending on the cell type. It would be interesting to further
investigate the type of ring precursor and its mechanism of action
for each organ in which CoQ10 should be increased.

It will be interesting to see if CoQ10 actually increases at the
individual level when RSV is taken. There have been reports in
previous studies that RSV modulates COQ genes in metabolic
syndrome model mice.(34) Nevertheless, Levels of CoQ9 and
CoQ10 in liver from the RSV treated animal did not change.
Future studies are expected to examine whether CoQ10 levels
increase when the concentration of RSV or the duration of
administration is varied.
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