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Abstract: Edible seeds play a significant role in contributing essential nutritional needs and impart
several health benefits to improve the quality of human life. Previous literature evidence has con-
firmed that edible seed proteins, their enzymatic hydrolysates, and bioactive peptides (BAPs) have
proven and potential attributes to ameliorate numerous chronic disorders through the modulation of
activities of several molecular markers. Edible seed-derived proteins and peptides have gained much
interest from researchers worldwide as ingredients to formulate therapeutic functional foods and nu-
traceuticals. In this review, four main methods are discussed (enzymatic hydrolysis, gastrointestinal
digestion, fermentation, and genetic engineering) that are used for the production of BAPs, including
their purification and characterization. This article’s main aim is to provide current knowledge
regarding several health-promoting properties of edible seed BAPs in terms of antihypertensive,
anti-cancer, antioxidative, anti-inflammatory, and hypoglycemic activities.

Keywords: bioactive peptides; protein hydrolysates; health attributes; edible seeds; antihypertensive;
anti-cancer

1. Introduction

Edible seeds such as cereals and pulses form a significant part of the human diet.
As suggested by the Food and Agricultural Organization (FAO), only a few quantities
(approx. a few hundred) of plant species are consumed as main food sources, out of
approx. 50,000 edible plant species [1]. Moreover, edible seeds contain a diverse range of
phytochemicals with numerous important biological activities [2]. Currently, consumers
want healthy, functional foods (such as vegetables, fruits, seeds, and nuts) as part of their
dietary necessity to sustain a healthy human lifestyle. This is due to the increased incidence
of several non-communicable disorders (NCDs) such as cancer, cognitive impairment,
metabolic syndrome, high blood pressure, diabetes, and cardiovascular disease (CVD),
which could be prevented or ameliorated through changes in dietary lifestyles [3]. NCDs
such as diabetes, chronic respiratory disease, cancer, and CVDs have contributed to ap-
proximately 41 million deaths, i.e., 71% of total global deaths [4]. Usually, NCDs are
associated with various root causes and are characterized by slow but progressive body
degeneration, which significantly reduces the quality of life (development of infirmities)
and eventually can be fatal [5]. Bioactive peptides (BAPs) are proteins that positively
influence human health via certain cellular metabolic processes and hence are designated
as bioactive components [6]. BAPs are generally comprised of 2 to 20 amino acid (AA)
residues, which could be produced through microbial fermentation and protein hydrolysis
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by endogenous or exogenous proteases [7]. Protein precursors of BAPs can be classified
according to plant, marine, and animal origins. Several works have examined the thera-
peutic attributes of BAPs that are derived from marine sources (seahorse, oyster, salmon,
and fish) and other animal sources such as meat, muscle, egg, and milk [8]. However,
recent processing technologies and human nutrition have focused on plant proteins as a
significant source of food-derived bioactive compounds [9]. Among these bioactive com-
pounds, food-derived BAPs are potentially active components that can be used to develop
nutraceuticals and functional foods based on their presumed numerous health benefits
and safety [10,11]. BAPs are inactive when present as an integral part of the parent protein
and need to be released through peptide bond hydrolysis to impart health benefits [12,13].
BAPs are recognized as the components that can interact with and regulate the biological
functions of specific cellular receptors and biomolecules [9,14]. Several potential properties
of BAPs have been reported, with confirmation in animal, cell culture, and in vitro studies,
including anti-adhesive, anti-cancer, anti-diabetic, lipid-lowering, immunomodulatory,
anti-inflammatory, antioxidative, and antihypertensive properties [7,15,16]. Moreover,
these attributes are mainly dependent on the peptide size and molecular weight in addition
to AA sequence and type [17–19]. Additionally, the antioxidative characteristics of peptides
are based on their hydrophobic nature, structural conformation, and AA composition. For
example, valine, threonine, phenylalanine, isoleucine, leucine, glycine, lysine, cysteine,
methionine, histidine, tyrosine, glutamic acid, and proline contribute positively to the
antioxidant activity of peptides [20–22]. Structural characteristics of antimicrobial BAPs
can be considered as amphipathic, basic (arginine or lysine-rich), and small (≤20 to 46 AAs)
peptides [23,24]. With respect to the mode of action, the anti-carcinogenic properties of
BAPs could be attributed to the inhibition of cancer cells’ intracellular signaling, immune
response modulation, topoisomerases inhibition, cell adhesion, and cell membrane struc-
ture disruption [25]. Peptides that inhibit angiotensin-converting enzyme (ACE) activity
have vital physiological functions in maintaining normal body fluid, salt balance, and
blood pressure [19]. The immunomodulatory property of BAPs is mainly dependent on
cytokine regulation and control in addition to the stimulation of antibody production and
immune system development [8]. Therefore, various food-derived BAPs and proteins
could enhance human health by preventing several ailments and mitigating chronic dis-
eases [26]. BAPs can be produced using enzymatic hydrolysis of food proteins to liberate
peptide sequences, which can be subsequently subjected to post-hydrolysis processing to
separate inactive from active peptides [8]. These peptides are embedded as AA (inactive)
sequences in the primary structure of animal and plant proteins and could be liberated
during gastrointestinal digestion, in vitro enzyme-catalyzed proteolysis, and fermenta-
tion [8,27]. Although the mass production of BAPs is feasible through in vitro enzymatic
hydrolysis of proteins, recombinant DNA technology is also being explored [28,29], particu-
larly to produce proteins and long-chain peptides [30,31]. In the following sections, specific
health-promoting potentials of peptides that are derived from edible plant seeds, as well as
their possible mechanisms of action, are discussed. In addition, information is provided
on the production, identification, and characterization methods used to discover these
BAPs. The main aim of this review is to provide sufficient knowledge of beneficial health
attributes of BAPs (i.e., antioxidant and anti-inflammatory activities, antihypertensive
activity, hypoglycemic activity, anti-cancer activity, and mineral-binding peptides) that
are derived from edible seeds. This information could be useful for researchers who are
working in the nutraceutical and functional foods research area.

2. Research Methods

For this article, research and review papers were collected using Scopus electronic
databases, Google Scholar, and PubMed until June 2021. The particular keywords used
for searches were: “edible seeds bioactive peptides”; “bioactive peptides health benefits”;
“production methods of bioactive peptides”; “antihypertensive activity”; “anti-cancer
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activity”; among others. All the references that are included were manually selected and
reviewed for appropriate content.

3. Production of Bioactive Peptides

BAPs can be produced by several processes, such as gastrointestinal digestion, fermen-
tation, and enzymatic hydrolysis [25]. Furthermore, it is also possible to produce peptides
through chemical synthesis or through genetic recombination using microorganisms if the
peptide sequence is already identified [32]. In addition, BAPs can be purified, isolated for
AA sequencing and synthesis, and subsequently used to prepare nutraceuticals [14]. This
section provides an overview of the major processes used for the sustainable production of
BAPs from edible seed proteins.

3.1. Enzymatic Hydrolysis

BAPs can be produced from edible seeds through enzymatic hydrolysis of the protein
using proteinases such as thermolysin, savinase, flavourzyme, elastase, trypsin, pepsin,
chymotrypsin, alcalase, and pancreatin alone or in various combinations [33–37]. Hy-
drolysates of food proteins are frequently achieved via digestion (enzymatic) followed by
subsequent separation of the peptides (soluble phase) from undigested proteins (insolu-
ble phase) [38]. Protein hydrolysis is commonly regulated by the release of H+ (proton)
that builds up and reduces the pH of the mixture as the enzymatic reaction progresses
with time. However, excessive pH reduction must be avoided because it can negatively
affect the optimal rate of hydrolysis by causing the inactivation of proteases. Therefore,
to maintain the optimum pH level, a suitable base such as NaOH can be added during
protein hydrolysis to neutralize the released protons [39]. Upon the completion of enzy-
matic hydrolysis, the reaction mixture is centrifuged to obtain a supernatant, which can be
subjected to peptide fractionation or dried to obtain the protein hydrolysate. For example,
sesame peptides were prepared by hydrolyzing sesame seed protein using papain. The
degree of hydrolysis was 14.98% when the optimum conditions were pH 9.0, 1500 U/g
enzyme activity, 4% (w/v) substrate concentration, 60 ◦C temperature, and a reaction time
of 3 h [40]. A study by Olagunju et al. [41] assessed the potential antioxidant properties of
pigeon pea protein after hydrolysis with alcalase, pancreatin, and pepsin + pancreatin. The
results showed that the fraction with <1 kDa molecular weight had the highest peptide
yield of 36.97% for pepsin + pancreatin hydrolysates. Another study on flaxseed peptides
obtained at two concentrations (2.5 and 3.0%, w/w) of thermoase protease reported that
the highest antioxidative attributes were for the fractions obtained with 2.5% [42]. These
studies demonstrate a need to optimize downstream processing, including the type of
enzyme, reaction conditions, and post-hydrolysis processing methods, to obtain the highest
yield of protein hydrolysates and peptides with strong bioactivities.

3.2. Gastrointestinal Digestion

During hydrolysis, several enzymes that are derived from various sources, such as
microorganisms, can be used to produce BAPs. However, for simulated gastrointestinal
tract (GIT) digestion, only enzymes native to the human digestive tract are used under
similar conditions (temperature, pH, etc.) that prevail in the GIT. During GIT hydrolysis,
BAPs can be liberated from food proteins via the action of digestive enzymes such as
amino- and carboxypeptidases, chymotrypsin, trypsin, and pepsin [33,43]. The acidic
conditions in the stomach can denature food proteins and enhance subsequent proteolysis.
To simulate GIT digestion, the most used enzymes are pepsin and pancreatin for sequential
protein hydrolysis. In general, the protein solution is initially adjusted to pH 2.0 and 37 ◦C,
and subsequently, pepsin is added to digest the sample for 1–3 h, which simulates the
stomach phase of digestion. After pepsin digestion, the whole reaction mixture is adjusted
to pH 7.0–7.5, and pancreatin digestion is conducted for 3–4 h to simulate the intestinal
phase [44,45]. Capriotti et al. [46] reported that many peptides were formed after in vitro
gastrointestinal digestion of soybean proteins.
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Moreover, Wang et al. [47] isolated peptides from sesame seed protein by means of
in vitro GIT digestion with α-chymotrypsin, trypsin, and pepsin. Furthermore, 23 peptides
were generated from hemp seed proteins by in vitro GIT digestion [48]. Despite the
prospects of this method, it is worth noting that the peptide profiles and bioactivity may
not necessarily be replicated during in vivo digestion by humans due to the complex nature
of the GIT when compared to isolated in vitro digestion models.

3.3. Fermentation

Fermentation is a method that uses the proteolytic systems of microorganisms for BAP
production [10]. Microorganisms used in fermentation can secrete a range of proteases,
which hydrolyze proteins into simple peptides [49]. For example, during fermentation,
bacteria/microbes hydrolyze the proteins into peptides and AAs to produce nitrogen
sources required for their development [50]. The process can be controlled to avoid
complete digestion. The resulting peptides can be collected by centrifugation [51], separated
via molecular sieve or ultrafiltration, and purified through chromatographic techniques for
sequencing and bioactivity evaluation [52,53]. A recent study by Ayyash et al. [54] reported
on the fermentation of quinoa seed flour by Lactobacillus spp. For 72 h, protein hydrolysis
increased by 11.5–30.0%, which enhanced the contents of AAs and small peptides. Likewise,
the solid-state fermentation of five common pulses (chickpea, faba bean, kidney bean,
green lentil, and yellow pea) with L. plantarum resulted in a significant increase in their
simulated GIT digestion, as reflected by the high degree of hydrolysis [55]. These effects
were more pronounced in flours than intact seeds due to the increased surface area and
contact between the microbial proteases and legume flour matrix proteins. Previous
evidence by Rizzello et al. [56] confirmed that during lactic acid fermentation of amaranth
flour, lunasin, a cancer-preventive peptide with 43 AA residues, was generated. In the
study, amaranth flour was inoculated with each of the five strains of lactic acid bacteria
(L. plantarum 3DM, L. pentosus 12H6, L. brevis AM7, L. rossiae CD76, and L. curvatus SAL33)
that contain peptidase activities for 16 h at 30 ◦C at a cell density of 8.0 log colony forming
units (CFU)/g. Furthermore, a study reported that the solid-state fermentation of red beans
with Cordyceps militaris for seven days at 25 ◦C increased proteins, small peptides, essential
AAs, and in vitro protein digestibility by 6.54% when compared to the non-fermented
beans [57]. These effects are thought to be due to the activities of proteases formed by
microorganisms. However, there is limited information on the specificities of microbial
proteases released during fermentation, making it challenging to predict and design the
cleavage patterns and release of BAPs from edible seed proteins.

3.4. Genetic Engineering

Recombinant DNA technology is being explored for the large-scale production of
BAPs, particularly for long-chain peptides [32]. Over the years, microbial production
has made it possible to adapt small peptides after natural isolation to laboratory research
by engineering the biosynthetic pathway using cutting-edge emerging approaches and
synthetic biology. This process includes the synthesis of peptides’ coding region and
consequent cloning through prokaryotic or eukaryotic expression vectors using E. coli
or yeast as host cells. This cloning approach permits the construction and expression
of more than one peptide concurrently [58]. For example, a recent work reported the
successful simultaneous cloning and expression of ten ACE-inhibitory peptides (DKIHPF,
YQQPVL, IPP, VPP, LKPNM, RPLKPW, KVLPVPE, SKVYPFPGPI, YLAHKALPMHIR,
and FFVAPFPEVFGK) in rice grain [59]. Likewise, three soy-derived peptides, YPLDLF,
LPYPR, and RPLKPW, which possessed memory-enhancing, hypocholesterolemic, and
hypotensive activities, respectively, were expressed in transgenic plants [60]. Furthermore,
transgenic rice was used to produce RPLKPW with the rice storage protein glutelin as a
fusion protein, and, under the promoter regulation of endosperm-specific glutelin, the
engineered peptide was expressed in the seeds. The authors reported that the transgenic
rice seeds and RPLKPW-glutelin fraction significantly reduced the systolic blood pressure
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(SBP) of spontaneously hypertensive rats after oral administration [61]. This indicates
that the proteolytic machinery of the GIT may be capable of in vivo digestion and release
of the bioactive peptide(s) cloned into the protein sequence. Although this method of
producing BAPs appears promising, the ongoing global debate and consumer concern
about genetically modified foods may delay its application in the functional foods industry
compared to bioprocessing (enzymatic and fermentation) methods.

4. Purification and Characterization of Bioactive Peptides

BAPs derived from plant seeds have shown various biological activities ranging from
antimicrobial to human physiological effects. These BAPs exist in a compounded mix-
ture containing various biomolecules, which make their isolation and characterization a
difficult task. The techniques primarily involved in BAP production usually lead to the
generation of crude products that contain hydrolyzed peptides mixed with raw material
residues [62]. Therefore, the crude hydrolysates require further purification processes to re-
move unwanted compounds and obtain fractions enriched with target peptides. To achieve
the desired purification/separation purpose, the crude protein hydrolysate is commonly
subjected to single or multiple chromatography, ultrafiltration, and ultracentrifugation
methods [63]. In the first step of purification, crude hydrolysates are subjected to high-
speed centrifugation, which may be followed by ultrafiltration with membranes of desired
molecular weight cut-off [35,36,51]. Subsequently, the fractionated peptides are subjected
to different modes of chromatographic methods such as ion exchange, size exclusion (SEC),
and hydrophobic interaction chromatography. Commonly used instrumental methods that
have been found to have strong potential in the separation/purification of peptides include
capillary electrophoresis, fast protein liquid chromatography (FPLC), and reverse-phase
high-performance liquid chromatography (RP-HPLC) [64]. González-García et al. [65] eval-
uated the isolation of BAPs from plum (Prunus Domestica L.) seed hydrolysate and were
able to identify these peptides using RP-HPLC-MS/MS. Similarly, Hong et al. [66] purified
a BAP from Chinese leek seeds using successive chromatographic techniques such as SEC
and HPLC to obtain a BAP fraction (CLP-2). After fractionation, the purity of the bioactive
peptides is routinely determined using mass spectrometry (MS) techniques. Electrospray
ionization mass spectrometry (ESI-MS) is used for the analysis of polar compounds such
as proteins. In contrast, matrix-assisted laser desorption ionization mass spectrometry
(MALDI-MS) is highly effective in characterizing complex protein mixtures extracted from
different sources, including edible plant seeds [35,62]. In addition, sequencing is performed
using tandem MS (MS/MS) or database search to identify and determine the molecular
weight of the peptides [66–68]. Sandoval et al. [68] conducted their study on chia (Salvia
hispanica L.) seed protein. After fractionating chia seed protein via HPLC, fractions were
subjected to tandem mass spectrometry (LC/ESI-MS/MS) for identification. Recently, the
shotgun peptidomics method has shown promise for comprehensively identifying hun-
dreds or thousands of peptides in crude protein hydrolysates without further downstream
processing [69]. Figure 1 shows a schematic representation of the production, purification,
and characterization of BAPs from edible plant seeds.
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abundance of seed storage proteins makes them attractive for research as a rich source of 
BAPs with different health benefits. The AA sequences of bioactive peptides play a key 
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(ROS) within cells. During normal cellular metabolism, ROS are generated to play some 
physiological roles such as signal transduction between cells [71]. However, certain types 
of molecules, pathological conditions, or environmental conditions, such as exposure to 
ionizing radiation or ultraviolet radiation, can increase ROS production within the human 
body. This increased level of ROS could lead to severe neurological disorders such as Alz-
heimer’s disease [72] or cause cancer through lethal damage to the DNA. Therefore, anti-
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Figure 1. Schematic representation of the production, purification, and characterization of bioactive peptides from plant
seeds. RP-HPLC—reversed-phase high-performance liquid chromatography, FPLC—fast protein liquid chromatography,
SEC—size exclusion chromatography, AC—affinity chromatography, CE—capillary electrophoresis, IEC—ion-exchange
chromatography, FAB-MS—fast atom bombardment mass spectrometry, ESI-MS—electrospray ionization mass spectrometry,
MALDI-TOF—matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

5. Bioactive Peptides from Edible Seeds and Their Roles in Human Health
and Disease

Recent scientific evidence suggests that the role of proteins derived from food is not
only to work as ordinary nutrients, but they also play crucial roles to modulate physio-
logical functions. The discovery of biologically active compounds from dietary sources is
becoming an exciting field of research with enormous potential. The growing consumer
awareness regarding the impact of food on health is being reflected in the increasing de-
mand for natural products, such as polyphenols, probiotics, minerals, and proteins. Edible
seeds are an essential part of the human diet due to their high nutrient density. The seeds
are rich sources of proteins, lipids, carbohydrates, minerals, and other micronutrients. The
abundance of seed storage proteins makes them attractive for research as a rich source
of BAPs with different health benefits. The AA sequences of bioactive peptides play a
key role in their ability to modulate physiological functions of the body [70]. A growing
tendency and research interest are to use the food protein-derived peptides as a tool for
disease prevention and to maintain general well-being and health.

5.1. Antioxidant and Anti-Inflammatory Activities

It is a well-established fact that oxidative stress is a leading cause of many different
diseases, including cancer, diabetes, obesity, and heart disease. The reason behind oxida-
tive stress is imbalanced production and inadequate removal of reactive oxygen species
(ROS) within cells. During normal cellular metabolism, ROS are generated to play some
physiological roles such as signal transduction between cells [71]. However, certain types
of molecules, pathological conditions, or environmental conditions, such as exposure to
ionizing radiation or ultraviolet radiation, can increase ROS production within the human
body. This increased level of ROS could lead to severe neurological disorders such as
Alzheimer’s disease [72] or cause cancer through lethal damage to the DNA. Therefore,
antioxidant compounds play an important role in preventing unwanted consequences of
ROS or free radicals in the body. Efforts have been made in recent years to understand the
role of proteins derived from various edible seeds as sources of peptides with the ability to
reduce oxidative stress. An extensive number of antioxidant peptides have been identified
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from animals, plant, and insect sources, but the emphasis here will be on plant sources,
especially edible seeds.

Antioxidant peptides are generally low molecular weight oligopeptides made up of
2–20 AA residues. It has been reported that peptides with more hydrophobic and aromatic
AAs have strong antioxidant activity, though additional scientific evidence is needed for
clarification. Antioxidative properties of the peptides were reported to be more related
to their structure, composition, and other factors. Histidine, cysteine, lysine, methion-
ine, tryptophan, and tyrosine are examples of AAs instrumental for strong antioxidant
activity, while AAs having aromatic residues can donate electrons to electron-deficient
radicals [21,22]. A recent study reported the sequence of BAPs that were present in mung
bean meal protein hydrolysate (MMPH), and their antioxidative properties were confirmed.
In the study, twelve peptides were identified with antioxidative capacity, i.e., QFAW, FLQL,
EYW, ERF, QFAAD, MMGW, CSGD, LAF, CTN, LAN, CGN, and HC. The results confirmed
that CSGD, CGN, HC, and CTN showed the most DPPH (2,2-diphenyl-1-picrylhydrazyl)
radical scavenging activity with 0.30, 0.28, 0.29, and 0.30 mg/mL of EC50 values, respec-
tively. EC50 is the half-maximal effective concentration, which means concentrations at
which the substance/sample/drug is expected to produce 50% of the effect. Moreover, the
findings also showed that CSGD, CGN, HC, and CTN had the most potent superoxide
and hydroxyl radical scavenging activities [73]. The protein hydrolysate from defatted
peanut kernel protein was also reported to show antioxidative properties. The results
found that the pea protein hydrolysate obtained after treatment with esperase showed the
highest antioxidative capacity with regard to linolenic acid peroxidation when compared
to other proteases such as protease N, protease A, pepsin, and neutrase [74]. Alcalase and
thermolysin-treated cherry seed protein hydrolysates/peptides showed the most potent
ACE-inhibitory activity with antioxidant activity compared to the sample produced with
Flavourzyme [75]. The results demonstrate the potential of food-derived peptides in miti-
gating oxidative reaction-induced damages in biological and food matrices. A recent study
by Idowu et al. [76] assessed the sesame seed protein hydrolysate produced using pepsin
and pancreatin enzymes for their effective antioxidant potential. The results confirmed that
sesame seed protein hydrolysate had the highest hydroxyl radical scavenging and metal
chelation activity compared to the unhydrolyzed protein. Recent in vitro and in vivo stud-
ies have shown that several BAPs derived from different sources have anti-inflammatory
activity. However, the mechanisms by which these peptides work are still emerging. Tumor
necrosis factor alpha (TNF-α) is an inflammatory cytokine liable for different signaling
actions within the cells. When talking about interleukins (ILs), these are groups of proteins
that mediate cell communications and arouse the immune response. Furthermore, IkB ki-
nase is an enzyme complex that takes part in cellular reaction to inflammation. In addition,
JNK (c-Jun N-terminal kinase) also works as an important signaling pathway to control
various cellular processes. Another peptide, G-glutamyl-cysteine, isolated from various
food sources, including edible beans, inhibited the phosphorylation of IkB and JNK, unlike
the mode of action by another peptide, VPY, which inhibited the secretion of IL-8 and
TNF-α [77]. Another recent study found that the peptide fraction from globulin 7S derived
from millet grains heated at 65 ◦C had potent inhibitory activities against cyclooxygenase-1
(COX-1, IC50 = 0.08 mg/mL) and cyclooxygenase-2 (COX-2, IC50 = 0.12 mg/mL) [78]. The
latest study by Gao et al. [79] evaluated lupin peptide anti-inflammatory properties. This
study produced lupin peptides from lupin proteins through gastroduodenal digestion
and further identified them using ultraperformance liquid chromatography–tandem mass
spectrometry. IQDKEGIPPDQQR, a lupin-derived peptide, was assessed by macrophage
inflammatory cytokine production assay. The results showed that the lupin peptide in-
hibited monocyte chemoattractant protein-1, IL-1β, IL-6, and TNF-α production by 40.43,
44.70, 38.52, and 51.20%, respectively. Moreover, RNA-sequencing results also confirmed
anti-inflammatory potentials of the lupin peptide. Previous research has reported the
properties of amaranth-derived anti-inflammatory peptides. Peptides were obtained using
simulated gastrointestinal digestion of germinated amaranth, and then collected after
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90 min of incubation with pancreatin. Moreover, peptides were separated into <3 kDa,
3–10 kDa, and >10 kDa fractions. The results found that the 3–10 kDa and >10 kDa pep-
tides showed a high anti-inflammatory response in RAW 264.7 macrophages [80]. Hemp
seeds also had a wide variety of biologically active compounds. In a recent study, the
anti-inflammatory potential of hemp seed protein hydrolysate (HPH) was reported using
LPS-stimulated human primary monocytes. Lipopolysaccharides (LPS) are the major outer
membrane component of Gram-negative bacteria, mainly lipids and polysaccharides with
demonstrated toxic activity. The results of ELISA and RT-qPCR assays confirmed the
anti-inflammatory properties of HPH. The results showed that HPH increased the levels of
anti-inflammatory cytokines (IL-4 and IL-10) and reduced those of pro-inflammatory cy-
tokines (IL-6, IL-1β, and TNF-α). Furthermore, the results confirmed that M1 polarization
marker (CCR7 and iNOS) and M2 polarization marker (MRC1 and CD200R) gene expres-
sions were downregulated and upregulated, respectively [81]. Millet seed peptides have
also been reported for their beneficial bioactive functions. A recent study by Hu et al. [82]
reported peptides’ anti-inflammatory and antioxidative potential derived from heated and
germinated foxtail millet. In vitro GIT conditions were used to obtain bioactive peptides
and the findings confirmed seven novel peptide sequences from the boiled germinated
millet samples. The work found that seven peptides considerably (p < 0.05) reduced ROS
production and enhanced superoxide dismutase activity and glutathione content in Caco-2
cells. Furthermore, the results confirmed that two peptides (QNWDFCEAWEPCF and ED-
DQMDPMAK) inhibited the production of TNF-α, nitric oxide, and IL-6 in RAW 264.7 cells.
Table 1 shows examples of BAPs and protein hydrolysates from edible seeds and their
reported antioxidant and anti-inflammatory activities.

Table 1. Antioxidant and anti-inflammatory activities of bioactive peptides and protein hydrolysates from edible seeds.

Seeds Bioactive Peptides/Protein
Hydrolysates Activities References

Mung bean CSGD, CGN, HC, and CTN Radical scavenging activity (antioxidative
properties) [73]

Peanut kernels Protein hydrolysate Antioxidative capacity with regard to linolenic
acid peroxidation [74]

Cherry seed Protein hydrolysates/peptides Angiotensin-converting enzyme
(ACE)-inhibitory activity [75]

Sesame seed Protein hydrolysate Ferric reducing power (antioxidant) and metal
chelation activity [76]

Lupin IQDKEGIPPDQQR (IQD)
lupin-derived peptide

Inhibited monocyte chemoattractant protein-1,
interleukin IL-1β, (IL)-6, and tumor necrosis

factor-α production
[79]

Amaranth <3 kDa, 3–10 kD, and >10 kDa
peptide fractions

Anti-inflammatory response in RAW 264.7
macrophages [80]

Hemp seed Protein hydrolysate Increased IL-4 and IL-10 levels and reduced IL-6,
IL-1β, and TNF-α levels [81]

Foxtail millet QNWDFCEAWEPCF and
EDDQMDPMAK

Inhibited tumor necrosis factor-α, nitric oxide,
and IL-6 production in RAW 264.7 cells [82]

5.2. Antihypertensive Activity

Hypertension is one of the biggest public health concerns worldwide. It is diagnosed
when systolic and diastolic blood pressures rise above >140 and 90 mmHg, respectively [83].
Obesity, diabetes, and kidney diseases are well-established causes of hypertension. Dis-
orders involving the renin–angiotensin system (RAS) are also causative factors in the
development of hypertension. Within the RAS, ACE plays a pivotal role by converting
inactive angiotensin I to the vasoactive angiotensin II. Therefore, excessive activities of
ACE can lead to strong vasoconstrictions with weak vasorelaxation, and hence high blood
pressure develops. The inhibition of ACE activity by drugs is a proven pharmacological
approach for lowering blood pressure. However, the adverse side effects associated with
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current antihypertensive ACE-inhibitory drugs could lead to a compromised state of health
of the patient with a significant negative impact on the quality of life or life expectancy and
healthcare costs. Apart from ACE regulation, newer approaches propose that food-derived
peptides exhibit antihypertensive potential via ACE2 (an ACE homologue) upregulation,
which balances the harmful outcome of raised ACE and leads to decreases in vascular
oxidation and inflammation along with the enhancement of endothelial function [84].
Therefore, there is interest in using natural ACE inhibitors such as plant-based bioactive
peptides to replace or complement drugs as antihypertensive agents [85]. In a separate
study, Malomo et al. [86] showed that the protein hydrolysate from hemp seed possesses
antihypertensive activities. In their study, they used 2% papain, 2% alcalase, 1% alcalase,
2% pepsin, 4% pepsin, and 2% pepsin + pancreatin to digest the hemp seed proteins. The re-
sultant hemp seed protein hydrolysates (HPHs) were administered orally to spontaneously
hypertensive rats (dosage of 200 mg/kg body weight) followed by SBP measurement for
24 h. The results showed that the 1% alcalase HPH treatment was highly effective in lower-
ing the SBP efficiently (−32.5 ± 0.7 mmHg after 4 h). In contrast, the pepsin hydrolysate
had a long-lasting effect (−23.0 ± 1.4 mmHg after 24 h). Ma et al. [87] conducted a study
on the novel ACE-inhibitory peptides from Ginko biloba seeds. They used LC-MS/MS
and identified three novel ACE-inhibitory peptides: TNLDWY (IC50 = 1.932 mM), RADFY
(IC50 = 1.35 mM), and RVFDGAV (IC50 = 1.006 mM).

Previous works have shown that partial enzymatic hydrolysis of plant proteins could
produce a broad range of ACE-inhibitory peptides. Huang et al. [88] showed that ultra-
sound pre-treated wheat germ protein produced an enzymatic protein hydrolysate with
32% higher ACE-inhibitory activity when compared to the non-pretreated protein. In
another study, Chao et al. [89] showed that high pressure (600 Mpa) pretreatment of pea
proteins led to a significant increase in ACE-inhibitory activity after hydrolysis with 1%
alcalase. In a similar study, alcalase and thermolysin hydrolysates of pitted plum seed
proteins showed higher ACE-inhibitory activity compared to Flavourzyme and protease
P-treated samples [65]. In several studies, in vitro inhibition of ACE activity by edible
seed-derived peptides has resulted in blood pressure lowering effects in animal models and
humans [67,86,87]. For instance, oral administration of a black soybean peptide mixture
to prehypertensive patients for eight weeks significantly reduced SBP. In addition to ACE
inhibition, this effect was reported to be mainly due to the high arginine content of the
sample [90]. The reason behind this is that arginine is a precursor of nitric oxide, which
possesses vasodilatory activity and also acts as an ACE inhibitor. Renin is another target to
control hypertension because this enzyme generates angiotensin I from angiotensinogen.
Three dipeptides (IR, KF, and EF) from a digest of pea protein were reported to have
renin-inhibitory activity. The renin-inhibitory activity of peptides with positively charged
AAs was more effective than those carrying negatively charged AAs [91]. In a previous
study, wheat bran protein hydrolysate was produced with alcalase and fractionated into
different peptide sizes using membrane ultrafiltration. Furthermore, these hydrolysates
were evaluated for inhibition of ACE and renin activities. The results showed that renin and
ACE inhibition were considerably higher for the <1 kDa fraction, i.e., 75.19% ± 1.75%, and
84.25% ± 2.45%, respectively. Moreover, the results confirmed that the <1 kDa membrane
fraction (100 mg/kg weight), when orally administered to spontaneously hypertensive rats,
decreased (−35 mmHg) the SBP [92]. A recent study by Aondona et al. [93] assessed the
in vitro antihypertensive potential of sesame seed protein hydrolysate and its fractionated
peptides. The sesame seed protein hydrolysate was formed by using pepsin and pancreatin
and then filtered through membrane ultrafiltration in order to obtain different peptide
size fractions. The results found that the <1 kDa peptide fraction was the most potent
ACE inhibitor (81%), while peptides having 5–10 kDa and 3–5 kDa sizes were the most
potent (75–85%) renin inhibitors. The study findings suggest that sesame seed protein
hydrolysate products could serve as potential antihypertensive agents. Another work by
Udenigwe et al. [94] confirmed the potential activities of renin-inhibiting dipeptides using
quantitative structure–activity relationship modeling. The modeling results suggested that
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low molecular size AAs with hydrophobic side chains were favored at the n-terminus. In
contrast, AAs with bulky side chains were favored at the C-terminus for renin inhibition
potency. Another study reported that peptides TF, LY, and RALP with renin-inhibitory
activity were isolated from an alcalase digest of rapeseed protein; LY and RALP with
predominantly hydrophobic groups had better activity than TF [95]. Lastly, hemp seed
protein-derived peptides WYT and SVYT showed 76% and 86% in vitro renin-inhibitory
activity, respectively, at 0.5 mg/mL peptide concentration [48]. Though these peptides have
shown promising in vitro results, sometimes they are ineffective under in vivo conditions.
This may be due to the activity of gastrointestinal enzymes, which degrade these peptides
to limit absorption and bioavailability [11,96]. As protein hydrolysates contain a mixture of
different peptides, the identification of specific peptides remains a challenge. Apart from
the limitations of GIT inactivation during in vivo testing and the high cost of purification,
peptides have enormous potential as antihypertensive agents. Figure 2 shows the mecha-
nism by which blood pressure is controlled and the probable targets of antihypertensive
peptides derived from edible seeds. Table 2 shows examples of BAPs/hydrolysate from
edible seeds and their reported physiological functions (antihypertensive activity).
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Table 2. Antihypertensive bioactive peptides and protein hydrolysates from edible seeds.

Seeds
Bioactive

Peptides/Protein
Hydrolysates

Activities References

Hemp seed Protein hydrolysates Lowered the SBP in
hypertensive rats [86]

Ginko biloba TNLDWY, RADFY, and
RVFDGAV ACE-inhibitory activities [87]

Wheat bran Protein hydrolysates Renin and ACE inhibition
activity [92]

Sesame seed Different peptide
fractions Anti-hypertensive potentials [93]

Rapeseed TF, LY, and RALP Renin-inhibitory activity [95]
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5.3. Hypoglycemic Activity

Diabetes is a very old disease of human civilization. Different effective therapeutic
approaches have been successfully used during the last few years, but a lot of side effects
of drug treatments may compromise patients’ health. BAPs and protein hydrolysates
from different edible seeds possess antidiabetic activity and have the potential to be
used as an alternative therapy. Peptides exert antidiabetic effects through one or more
mechanisms, such as the inhibition of dipeptidyl peptidase IV (DPP-IV), leading to a
reduced blood glucose level and an increased physiological level of insulin. Various
edible seeds are used as protein sources to isolate antidiabetic hydrolysates and peptides
through enzymatic digestion [97]. Apart from DPP-IV inhibition, the administration of
natural constituents/ingredients that have the capacity to inhibit α-glucosidase and α-
amylase activities is also another significant approach to control diabetes. This is because α-
glucosidase and α-amylase are the main digestive enzymes that take part in the metabolism
of dietary carbohydrates. These enzymes break down digestible carbohydrates to release
free glucose, which is then absorbed into the body. Evidence has been established that
food-derived peptides contain attributes that regulate the activities of α-glucosidase and
α-amylase [98]. A recent study by Olagunju et al. [99] reported the in vitro anti-diabetic
potential of pigeon pea peptides. In the study, pigeon pea protein was hydrolyzed with
thermoase and the hydrolysate was separated into different peptide fractions (<1, 1–3, 3–5,
5–10, and >10 kDa) using ultrafiltration. In vitro results found that all the peptide fractions
inhibited α-amylase and α-glucosidase activities, with the 3–5 and >10 kDa peptides being
the most potent.

Hatanaka et al. [100] reported that rice bran protein hydrolysate had the capability of
inhibiting DPP-IV activity. For this study, the authors used two enzymes (Bioprase SO and
Umamizyme G) and showed that the rice bran peptides generated using Umamizyme G
had ten times more inhibitory activity than those from Bioprase SP. The IC50 value of the rice
bran peptide was 2.3 ± 0.1 mg/mL. In a different study to evaluate the potential of antidia-
betic peptides from two rice products, rice bran and sake lees were subjected to enzymatic
digestion with a commercially available protease (Denazyme AP) [101]. The results demon-
strated that the protein hydrolysates generated from the rice bran showed higher DPP-IV
inhibition activity when compared to the hydrolysate from sake lees. Previous evidence
also supports the anti-diabetic properties of soybean and lupin protein hydrolysates. Six
peptides (GQEQSHQDEGVIVR, LILPKHSDAD, LTFPGSAED, YVVNPDNNEN, YVVN-
PDNDEN, and IAVPTGVA, respectively) were assessed for their potential to inhibit DPP-IV
activity. The results found that IAVPTGVA (soybean) and LTFPGSAED (lupin) are the
most effective inhibitors with IC50 values of 106 and 228 µM, respectively [102]. Further-
more, another study confirmed the α-amylase inhibition characteristics of five peptides
obtained from pinto bean (PB), using pancreatic cell line AR42J. The results found that
PB peptide 9 (LSSLEMGSLGALFVCM) showed the highest α-amylase inhibitory activ-
ity [103]. In a recent study by González-Montoya et al. [104], the anti-diabetic potential
of germinated soyabean peptides was confirmed. In the study, a protein hydrolysate was
produced using pancreatin and pepsin and further separated into peptide fractions of <5,
5–10, and >10 kDa sizes using ultrafiltration. Subsequently, peptides were assessed for
in vitro inhibiting sucrase, maltase, α-amylase, and DPP-IV activities. The results reported
that the <5 and 5–10 kDa peptides significantly inhibited α-glucosidase and α-amylase
activities, whereas >10 and 5–10 kDa peptides were inhibitors of DPP-IV (IC50 = 1.18 and
0.91 mg/mL, respectively).

Amaranth grain contains storage proteins such as globulins, glutelins, and albumins,
which were subjected to enzymatic hydrolysis using alcalase to produce hydrolysates.
The results confirmed that albumin 1, globulin, and glutelin hydrolysates competitively
inhibited DPP-IV activity in vitro with an inhibitory constant (Ki) of 0.11–5.61 mg/mL.
Furthermore, the evidence established that the glutelin hydrolysates possessed the highest
enzyme inhibitory activity [105]. In another study, the protein hydrolysates were separated
by SEC and collected fractions orally administered to diabetic mice. The results showed
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that a fraction of glutelin hydrolysate had the highest DPP-IV inhibitory activity [106].
Quinoa is a pseudo-cereal, which contains a higher protein content than most cereals;
therefore, quinoa seeds have been used as a rich source of BAPs. Peptides released through
a simulated gastrointestinal digestion of quinoa seed proteins showed antidiabetic activi-
ties [107]. Notably, peptides from the enzymatic digestion of quinoa seed proteins with a
molecular weight lower than 5 kDa showed high α-glucosidase inhibitory activity with
an IC50 value of 1.45 ± 0.12 mg protein/mL. In another study, oat-derived peptides were
evaluated for hypoglycemic potential using a streptozotocin-induced diabetic mice model.
Different doses of oat peptides (0.25, 0.5, and 1.0 g kg/bw) were orally administered to
mice for four weeks. The results found that mice that received the highest oat peptide dose
had a considerably higher insulin activity index, serum fasting insulin, and food efficiency
but significantly lowered fasting blood glucose and total food intake compared to the other
groups that received lower doses [108].

Mojica et al. [109] studied peptides generated by enzymatic digestion from Mex-
ican black beans and Brazilian carioca. Four peptides had strong α-glucosidase and
DPP-IV inhibitory activity, with CPGNK, KTYGL, GGGLHK, and KKSSG inhibiting DPP-
IV activity at IC50 values of 0.87, 0.03, 0.61, and 0.64 mg dry weight/mL, respectively.
Mojica et al. [110] conducted a study and evaluated the hypoglycemic potential of a hy-
drolyzed protein from black beans and peptides purified using in vitro and silico analysis.
The results showed that the black bean fractions significantly reduced blood sugar levels
by blocking glucose transporters in Caco-2 cells. Rocha et al. [111] also demonstrated
that germination and alcalase hydrolysis influenced the antidiabetic potential of peptides
isolated from black bean proteins. The study showed that neither the insulin secretion nor
the DPP-IV inhibition was improved, but germination after 24 h increased the α-amylase in-
hibitory activity of the sample. After simulated GIT digestion of the black bean proteins, the
peptides generated also had the potential to increase insulin secretion. This suggests that
endogenous proteases could release BAPs with health promoting effects. A previous study
by Oseguera-Toledo et al. [112] confirmed the anti-diabetic capacity of isolated peptides
from two common beans (pinto Durango and black 8025). Aglycin is a natural 37-amino
acid residue bioactive peptide (ASCNGVCSPFEMPPCGSSACRCIPVGLVVGYCRHPSG),
which was isolated from soybean. Aglycin has a stable structure (during enzymatic action)
and three disulfide bonds involving six cysteine AAs. Furthermore, it has been reported
that aglycin was found to be effective in reducing blood glucose in diabetic mice when
orally administered at 50 mg/kg body weight/d for four weeks [113]. A recent study by
Boachie et al. [114] assessed the pigeon pea protein inhibition of DPP-IV activity using
in vitro and in silico parameters. In silico results confirmed that 46% of AAs in 40 pigeon
pea proteins possessed DPP-IV inhibition attributes. Furthermore, in vitro findings exhib-
ited that thermolysin liberated the most active DPP-IV inhibitors. The overall finding of the
study established that pigeon pea proteins contain DPP-IV inhibitory peptide sequences,
which could be used as promising functional food ingredients for the management of type
2 diabetes. The above evidence suggests that edible seed peptides possess the potential
attributes to regulate several activities such as dipeptidyl peptidase DPP-IV, α-glucosidase,
and α-amylase, which could be used to control diabetes and related conditions. Table 3
shows examples of edible seed-derived BAPs and protein hydrolysates with potential
hypoglycemic activity.
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Table 3. Hypoglycemic activity of bioactive peptides and protein hydrolysates from edible seeds.

Seeds Bioactive Peptides/Protein Hydrolysates Activities References

Pigeon pea Peptide fractions (<1, 1–3, 3–5, 5–10, and
>10 kDa)

Inhibited α-amylase and
α-glucosidase [99]

Defatted rice bran UG peptides DPP-IV inhibition activity [100]

Soybean and lupin IAVPTGVA (soybean) and LTFPGSAED
(lupin) Inhibited DPP-IV activity [102]

Amaranthus grain Albumin hydrolysate fraction after 48 h
(AHF48) DPP-IV inhibition activity [105]

Quinoa
Bioactive peptides

IQAEGGLT,
DKDYPK, GEHGSDGNV

Anti-diabetic activity, free radical
scavenging activity [107]

Oat Oat peptides (0.25, 0.5, and 1.0 g kg/bw) Lowered fasting blood glucose [108]

Black beans Bioactive peptides
(AKSPLFATNPLF, FEELN, LSVSVL)

Reduced glucose uptake, blockage of
glucose transport, and DPP-IV

inhibition activity
[110]

Common beans Bioactive peptides (RGPLVNPDPKPFL) Anti-diabetic activity (DPP-IV
inhibition) [111]

5.4. Anti-Cancer Activity

One of the main problems with the available cancer treatments is the severe negative
side effects of drugs used as chemotherapeutic agents. Bioactive peptides have potential
cytotoxic activity in different cancer cell lines and could be used as anti-cancer agents
with minimal or no side effects. Peptides could act as cytotoxic components through
different mechanisms. Additionally, BAPs could work as new carriers of cytotoxic agents to
target cancer cells specifically without killing normal cells [115,116]. Peptides might inhibit
specific molecular signaling pathways of cancer cells related to the process of oncogenesis,
cancer stem cell self-renewal, and differentiation pathways. Different types of dysregulated
signaling pathways could be targeted by specific peptides. Previously reported evidence
has confirmed the inhibiting effects of mung bean, adzuki bean, black soybean, and
soybean meal proteins against cancer cells (hepatocellular carcinoma cells SMMC-7721
and ovarian cancer cell line SKOV3) in the concentration range of 200–600 g/mL [117].
In addition, another study reported the anti-cancer potential of quinoa peptides, i.e.,
IFQEYI, DVYSPEAG, RELGEWGI (F-3), DKDYPK (F-2), and LWREGM (F-1), using human
colorectal cancer cell lines [118]. Taniya et al. [119] also reported the anti-cancer property
of an amaranth seed protein hydrolysate. The hydrolysate was formed by simulated GIT
digestion and further evaluated for anti-cancer effect using an in vitro breast cancer cell
model. The results confirmed that the digested amaranth sample inhibited the growth of
cells with 50% growth inhibition concentration of 48.3 ± 0.2 µg/mL.

Lunasin is a soybean-derived peptide that possesses antineoplastic effect in different
cancer cell lines through various mechanisms [120]. Studies have reported the anticar-
cinogenic activity of lunasin in vivo, especially the potential protective effect on breast
cancer in mice. Tumor occurrence was 67% and 50%, respectively, for the control and
experimental diet-fed mice after AIN-93G supplementation with 0.23% lunasin (lunasin-
enriched soy protein concentrate) [121]. Another research study by Devapatla et al. [122]
assessed the chemoprotective and therapeutic potential of lunasin as an anti-cancer agent.
In this study, lunasin potential was evaluated using in vitro colony formation and cell
proliferation assays against murine Lewis lung carcinoma (LLC) and B16-F0 melanoma
cells. In addition, in vivo tests used C57BL/6 mice (lunasin-treated and untreated), which
were subcutaneously implanted with B16-F0 or LLC cells. The results showed that lunasin
inhibited the growth of murine B16-F0 melanoma cells and LLC cells in vitro and in the
C57BL/6 mice model.

Another group of plant-derived proteins with anti-cancer properties is lectins. Lectins
recognize and bind with specific carbohydrate moieties on cancer cells. A tepary bean lectin
was found to be effective against different human cancer cell lines, such as cervical and
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colon cancer cell lines [123]. A previous study reported the anti-tumor potential of an olive
seed-derived peptide (LLPSY). The results confirmed that LLPSY had anti-proliferative
potential in a dose-dependent manner when tested on MDA-MB-468 and PC-3 cancer
cells [124]. Another piece of evidence suggested the anti-cancer property of chickpea
peptide using MDA-MB-231 and MCF-7 cell lines with RQSHFANAQP inhibiting the
growth of breast cancer cell lines via p53 protein [125]. Previous evidence confirmed that
a rapeseed peptide extract, which was prepared using mixed solid-state fermentation,
had anti-proliferative properties when tested against human HeLa cervical, MCF-7 breast,
and HepG2 liver cancer cell lines [126]. Table 4 shows examples of BAPs and protein
hydrolysates from edible seeds with demonstrated anti-cancer activity.

Table 4. Edible seed-derived bioactive peptides and protein hydrolysates with anti-cancer properties.

Seeds Bioactive Peptides/Protein Hydrolysates Activities References

Quinoa IFQEYI, DVYSPEAG, RELGEWGI (F-3),
DKDYPK (F-2), and LWREGM (F-1) Anti-cancer potential [118]

Amaranth Protein hydrolysate Anti-cancerous effect using breast cancer
cell model [119]

Olive LLPSY peptide Anti-proliferative potential when tested
on MDA-MB-468 and PC-3 cancer cells [124]

Chickpea RQSHFANAQP Anti-cancerous property using
MDA-MB-231 and MCF-7 cell lines [125]

5.5. Mineral-Binding Peptides

Minerals such as iron, zinc, and calcium are essential inorganic micronutrients that
play vital biological roles in maintaining human health [127,128]. Thus, mineral deficien-
cies are a public health concern worldwide. The nutritional value of raw foods is lower
due to reduced mineral bioavailability, which could cause several metabolic health issues.
Hence, the nutritional status of a population could be promoted through increasing the
nutrient bioavailability of foods [129]. For instance, iron is an integral part of erythrocyte
hemoglobin, muscle myoglobin, liver ferritin, and serves as a cofactor for several cellu-
lar enzymes. To prevent or alleviate health issues associated with mineral deficiencies,
ion-binding peptides from plant seeds can be used as promising carriers of mineral sup-
plements. Some organic compounds, such as amino acid chelators, that form complexes
with metal ions have reduced mineral interactions with the food matrix [130,131]. For
example, ferrous bis-glycinate was found to result in four times higher iron absorption than
ferrous sulphate because the bis-glycinate effectively protected iron from the inhibitory
effect of maize phytate in vivo [132]. Due to the excessive cost of AAs, peptides derived
from edible seed proteins commonly produced in vivo or in vitro by enzymatic prote-
olysis are promising ligands for complexation with divalent metals towards improving
mineral bioavailability and for alleviating micronutrient deficiency [130,133,134]. To date,
a variety of metal-chelating peptides have been generated and identified from different
edible seed proteins [135,136]. For instance, Wang et al. [137] reported that a pentapep-
tide FVDVT from wheat germ protein hydrolysate (WGPH) possessed significantly (86%)
higher calcium-binding property when compared to crude hydrolysates. The authors
proposed that the amido group nitrogen atoms and carboxy group oxygen atoms were
the major metal-binding sites. Mineral-chelating peptides possess a structurally diverse
backbone as they contain both the terminal carboxyl and amino groups and the side
chains of AA residues. Furthermore, the cysteine, glutamic acid, serine, and aspartic acid
residues that contain S, O, and N atoms contribute to the construction of peptide–mineral
complexes [130,134,136]. For instance, the serine hydroxyl group has a robust binding
capacity with zinc [138]. Moreover, another piece of evidence established that the WGPH
had nearly 69.62% metal-chelating ability. The zinc-chelating HNAPNPGLPYAA and
NAPLPPPLKH were identified as the two major peptides in the WGPH using MALDI
TOF/TOF. Furthermore, HNAPNPGLPYAA had a higher (~92%) zinc-chelating capacity
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and higher bioavailability of zinc in Caco-2 cells than ZnSO4-treated cells [139]. In addition,
wheat germ protein was found to be a potential source for calcium-binding peptides. For
example, peptides produced from hydrolyzed wheat germ protein at 21.5% degree of
hydrolysis using alcalase had improved calcium binding capacity. It was suggested that
the calcium-binding regions of peptides are mainly comprised of glycine, aspartic acid,
arginine, and glutamic acid [140]. Indeed, in addition to the carboxyl- and amino-terminal
groups, AA side-chain groups such as guanidine (arginine), ε-amino (lysine), sulfhydryl
(cysteine), hydroxyl (serine), and carboxyl (glutamic acid and aspartic acid) are responsible
for metal binding [134]. Lv et al. [141] also reported the isolation of iron-chelating peptides
VEDELVAVV and LAGNPDDEFRPQ from defatted walnut flake. The iron and calcium-
binding capacities of mung bean-derived peptides were assessed by Budseekoad et al. [142].
Enzymatically hydrolyzed mung bean hydrolysates were separated into different fractions
using ultrafiltration and SEC. The results found that fraction 2 had the most potential
iron and calcium-binding abilities. RP-HPLC separation coupled with mass spectrome-
try identified several peptides, among which HADAD, AIVIL, and LLLGI had the best
calcium-binding capability, whereas PAIDL had the most effective iron-binding capacity.
Another study also confirmed the potential of mung bean protein-derived peptides for
iron-binding capacity [143]. Using an enzymatic membrane reactor, the mung protein hy-
drolysate was prepared, and further peptide separation was carried out by anion-exchange
chromatography and reverse-phase HPLC. The results showed that the PAIDL peptide had
significantly the highest iron-binding ability. Table 5 shows examples of mineral-binding
BAPs and protein hydrolysates from edible seeds.

Table 5. Edible seed-derived mineral-binding bioactive peptides and protein hydrolysates.

Seeds Bioactive Peptides Activities References

Wheat germ Pentapeptide FVDVT Calcium-binding property [137]

Walnut flake VEDELVAVV and
LAGNPDDEFRPQ Iron-chelating peptides [141]

Mung bean HADAD, AIVIL, and
LLLGI Calcium-binding capability [142]

Mung bean PAIDL Iron-binding capacity [143]

6. Concluding Remarks and Future Perspectives

Edible seed-derived BAPs have immense potential to interact with cells, tissues,
enzymes, and other target molecules to exhibit several therapeutic attributes useful in
regulating and treating lifestyle-related health disorders, including cancer, diabetes, hyper-
tension, and inflammation. This review provided an overview of BAPs derived from edible
seeds with multifunctional characteristics related to human health promotion. Research
on BAPs is attracting the interest of scientists due to the discovery of several molecular
targets to ameliorate human lifestyle. However, other concerns, including scale-up chal-
lenges, potential peptide reactivity with the food matrix, biostability (structural breakdown
during passage through the GIT), potential bitter taste, and the safety of BAPs, need to be
properly addressed prior to their incorporation into human food products. Therefore, it is
necessary to obtain strong evidence using human studies on different potential concerns,
as mentioned above, to enhance the use of BAPs for the development of nutraceuticals and
functional foods.
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