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Abstract
COVID-19 caused by the SARS-CoV-2 outbreak quickly has turned into a pandemic. However, no specific antiviral agent 
is yet available. In this communication, we aimed to evaluate the significance of CD147 protein and the potential protective 
effect of melatonin that is mediated by this protein in COVID-19. CD147 is a glycoprotein that is responsible for the cytokine 
storm in the lungs through the mediation of viral invasion. Melatonin use previously was shown to reduce cardiac damage 
by blocking the CD147 activity. Hence, melatonin, a safe drug, may prevent severe symptoms, reduce symptom severity and 
the adverse effects of the other antiviral drugs in COVID-19 patients. In conclusion, the use of melatonin, which is reduced 
in the elderly and immune-compromised patients, should be considered as an adjuvant through its CD147 suppressor and 
immunomodulatory effect.
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Background

Coronaviruses (CoVs) are RNA viruses, which affect the 
respiratory, gastrointestinal and central nervous system, and 
may infect both humans and animals [1, 2]. In recent years, 
the coronavirus subtypes, SARS and MERS, through their 
contagiousness have led to the deaths of thousands of peo-
ple. The current epidemic, namely, COVID-19 discovered in 
Wuhan, China, has become a global pandemic in a relatively 

short period. Despite the use of antiviral, anti-malarial, cor-
ticosteroid treatments and mechanical respiratory support, 
no specific treatment has been found for COVID-19, and 
mortality rates remain high, particularly in the elderly sec-
tion of society [3].

CD147 and coronavirus

CoVs have been reported as non-segmented RNA viruses. 
CoVs leads to enzootic infections, particularly in birds 
and mammals, and are highly fatal in humans [4]. These 
viruses carry four known structural proteins; envelope (E), 
nucleocapsid (N), membrane (M) and spike (S) proteins. 
[5]. The S protein is the critical constituent during the 
cellular invasion of SARS-CoV-2 [6]. Angiotensin-con-
verting enzyme 2 is the host cellular receptor (ACE2) for 
SARS-CoV-2 and expressed in different tissues [7–10]. 
The interaction of S protein and ACE2 contributes to 
SARS-CoV-2 invasion of host cells [11]. Direct interac-
tions have been demonstrated between SARS-CoV-2 and 
CD147 [2, 12], which is a type I transmembrane protein 
from the immune-globulin superfamily that plays a role in 
tumour development, plasmodium invasion and viral infec-
tion [13]. In lung diseases, ACE2 and CD147 increase the 
vascular permeability and pulmonary edema, activate the 
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renin-angiotensin-aldosterone system (RAAS) and con-
tribute to the pathogenesis of severe lung damage [13]. 
Studies confirm that HEK293 expressing CD147 bind 
with high affinity to SARS-CoV-2, thus demonstrating the 
importance of CD147 in the host cells [14].

CD147 (Cluster of differentiation 147) is synthesized 
in various cell types and widely distributed to different 
tissues including lungs, brain, liver, spleen, intestines 
and the kidneys [15]. CD147 binds to certain receptors 
and ligands, including S100A9, mono-carboxylate carrier 
(MCT)-1 and MCT-4, CD98, CD44, CD43, glycoprotein 
VI (GPVI), E-selectin, apolipoprotein D (ApoD), CyP60, 
Annexin-2 and NOD2, Caveolin-1, syndecan-1 and also 
integrin α 3β1 and α 6β1 [16–19]. Targeting CD147 have 
been shown to reduce inflammation and severity of the 
disease by affecting these ligands in asthmatic pulmo-
nary inflammation, multiple sclerosis and myocardial 
ischemia/reperfusion injury [20–22]. Previous studies 
have noted that the expression of CD147 increases matrix 
metalloproteinase (MMP) activity, which is induced by 
MAPKs-bound Angiotensin II [23–25]. Additionally, 
CD147 plays a role in inflammation that develops through 
pro-inflammatory cytokines, including interleukin-6 (IL-
6), interferon-gamma (IFN-γ), tumor-necrosis factor-α 
(TNF-α), and monocyte chemo-attractant protein-1 (MCP-
1) [26]. In most recent studies it has been suggested that 
SARS-CoV-2 infection stimulates the increased expres-
sion in these cytokines, which is referred to as a cytokine 
storm, and it is critical in disease progression [27, 28]. 
The cytokine storm, also referred to as hypercytokinemia, 
is an uncontrolled cytokine release that has been seen in 
some infectious and noninfectious diseases, prompting a 
hyper-inflammatory condition in the host [29].

The emergence and rapid spread of SARS-CoV-2 
has highlighted the importance of reorganizing a global 
health system. Abnormal chest tomography findings are 
seen together with cough, fever and fatigue in COVID-19 
patients [30]. Middle-aged and elderly patients who have 
concurrent illness have increased susceptibility to res-
piratory failure, with a poorer prognosis [31]. It has been 
stated that CD147 is involved in COVID-19 symptoms 
by being extremely expressed in tumor, inflammatory and 
infected cells [32, 33]. Thus, a drug that will target CD147 
could prevent the virus from invading host cells. Hence, 
inhibiting the viral replication and limiting the over-
expression is vitally important in COVID-19 treatment. 
In relation to this, CD147 antibody, Meplazumab, has 
been tried, and despite having achieved positive results, 
its administration via the parenteral route, non-availability 
in the market and having insufficient knowledge regarding 
its interaction with other antiviral drugs, have limited its 
widespread use [2].

The effect of melatonin on immune 
and antioxidant systems

The pineal gland is a neurochemical converter perceiving 
environmental information that can be integrated with the 
secretion of various biomolecules such as 5-methoxytryp-
tophol, N-acetylserotonin, N-acetyltryptamine that work 
best with melatonin (N-acetyl-5-Methoxytryptamine). 
These secreted biomolecules have a function in the syn-
chronization of the circadian and seasonal timing of vari-
ous behavioural and physiological processes [34]. The 
melatonin rhythm is a powerful and vital message from 
suprachiasmatic nucleus signalling in order to maintain 
the circadian rhythm of the organism [35].

Melatonin is also a strong hydroxyl radical scavenger 
that protects cells from oxidative damage [36]. Besides, 
melatonin scavenges peroxyl radicals during lipid per-
oxidation [37, 38] and enhance the activity of antioxidant 
enzymes such as glutathione [39]. In light of the exam-
ples mentioned above, melatonin shows to be a crucial 
compound of the antioxidative system [40–42]. Indole 
initiates an increase in the immune response bound to 
T-helper cells [43]. Various immune functions, includ-
ing the anti-tumorigenic defence and the cytotoxicity of 
natural killers, are seen to be modulated by melatonin 
[44]. Besides, exogenous melatonin administration has 
been shown to increase antibody production [45]. Thus, 
melatonin has immunomodulatory effects under physi-
ological and pathophysiological conditions [46]. Notably, 
in cases where the immune system is suppressed, it shows 
an immunostimulant effect, and in cases of inflammation, 
it exhibits an immunosuppressive effect. It achieves its 
immunostimulant effect by increasing T cell activation, 
lymphocyte growth and humoral response. It shows its 
immunosuppressive effect by decreasing active iNOS and 
nNOS activities during inflammation, inhibiting COX-2, 
and preventing Toll-Like receptor-4 activation [47, 48]. 
In addition to its anti-inflammatory and pro-inflammatory 
effects, melatonin, unlike other modulators, has other very 
beneficial properties, such as antidepressant, anxiolytic, 
neuroprotective and antihypertensive effects [49].

The antiviral effect of melatonin 
through CD147

Viral infections are usually related to immunity-inflam-
matory damage, which includes a significantly increased 
oxidative stress level and adverse effects on multiple 
organs [50]. Melatonin does not have viricidal proper-
ties; however, it has indirect antiviral effects through 
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anti-inflammatory, antioxidant and immunity-enhancing 
effects [51]. Previously, melatonin was been shown to sup-
press the features of viral infections [50, 52]. Melatonin 
use was seen to reduce virus-mediated stroke and death, 
and the potency of the virus by modulating the IL-2 and 
IFN-γ concentrations during Venezuela equine encepha-
lomyelitis (VEE) virus infection in mice [53]. Melatonin 
has also been reported to reduce acute lung damage in res-
piratory syncytial virus models, through the inhibition of 
oxidative damage and pro-inflammatory cytokine release. 
Current studies have reported that SARS-CoV-2 invades 
the host cells through a CD147 S protein [2]. To date, no 
studies have reported the influence of melatonin on CD147 
S protein in COVID-19 patients. However, melatonin was 
demonstrated to possess a protective effect through the 
inhibition of CD147 signalling pathway via its antioxidant 
effects in AngII-induced cardiac hypertrophy models [54] 
(Fig. 1).

The processes that prevent the free radical formation 
as a result of exposure to stress, viral infections or toxic 
agents lead to a decrease the melatonin levels in older age 
and under suppressed immune system conditions [36, 55]. 
This could be part of the explanation for the poor prognosis 
and respiratory system failure seen in many middle-aged 
and elderly patients. Despite the absence of studies inves-
tigating melatonin use in COVID-19 patients, melatonin 
administration has yielded promising outcomes through 
suppressing the circulating cytokine levels in other diseases 
and in cases with elevated inflammation levels [51, 56, 57]. 
Melatonin was shown to stimulate a significant decline in 
serum MMP, TNF-α, IFN-γ, IL-6, MCP-1 and C-reactive 
protein (CRP) levels in experimental and clinical studies 
[58, 59]. These mediators are known to have a critical role 

in CD147-mediated inflammation pathway. Melatonin has 
also been reported to have an anti-diabetic effect. Evidence 
from experimental studies show that melatonin induces insu-
lin growth factor synthesis and promotes insulin receptor 
tyrosine phosphorylation. Disruption of the internal circa-
dian system causes glucose intolerance and insulin resist-
ance, and this can be restored with melatonin administration 
[60–62]. Further, melatonin administration has been proven 
to reduced cellular apoptosis and promote antioxidants in 
diabetes [63]. Thus, it is suggested that CD147 may play a 
role in the emergence of these effects of melatonin in dia-
betic patients with COVID-19.

The safety of melatonin administration is of vital impor-
tance when its use is suggested for treating COVID-19. Pre-
viously, short-term administration of melatonin has shown 
to be secure even when used at relatively high doses [64, 
65]. Additionally, the use of melatonin, together with other 
drugs in COVID-19 treatment, was shown to increase their 
potency and reduce their side effect potential [66].

Conclusion

One could speculate that melatonin may be a candidate drug 
to provide relief from the clinical symptoms of COVID-
19 even though its antioxidant effect cannot eliminate or 
stop the viral replication or transcription. Together with 
ACE2, CD147 has a vital role in the activation pathway of 
COVID-19. It could be suggested that the possible reason 
for the greater impact of COVID-19 on the elderly part of 
populations is both related to reduced melatonin levels and 
increased CD147 levels. Thus, in light of current literature 
and the above discussion, we suggest that the use of mela-
tonin in combination with antiviral agents could yield more 
effective outcomes through its CD147 suppressor effect, 
immune-modulatory effect and reducing the potential nega-
tive side effects of antiviral agents.
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