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Abstract
A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does

this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved

developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molec-

ular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to

solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algo-

rithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods

are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise

closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-

known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive,

evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and

their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive,

evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine.
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Introduction
There is still not a clear understanding of how ‘life’ emerges

from ‘non-life’. One definition of life (NASA) is “A self-

sustaining chemical system capable of Darwinian evolution”

[1]. Clearly all living things in our world are complex and

extremely organized. They are, or contain components that are

self-organized, requiring input of energy and matter from the

http://www.beilstein-journals.org/bjoc/about/openAccess.htm
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Figure 1: Hypothesized evolution of ‘life’ and ‘intelligence’.

environment and using it to sustain self-organized states,

enabling for growth and reproduction. Living creatures must

maintain their internal states (homeostasis) but, conspicuously,

must also respond to their surroundings, fostering a reaction-

like motion, recoil and, in advanced forms, learning (feature

recognition). As life is by definition reproductive, a mechanism

for copying is also essential for indefinite existence, and for

evolution to act through mutation and natural selection on a

population of related individuals.

Increasingly, some of these essential operations and characteris-

tics of living entities can now be simulated in silico and in the

laboratory. We are now experiencing another type of evolution,

driven by human intellect, that is modifying the way life

evolves now and in the future. Figure 1 illustrates how modifi-

cation and adaptation of organisms, initially arising from

natural processes, is now being supplanted increasingly by

intentional, precision genetic manipulations, and in the future

by a greatly increased understanding of what constitutes a living

system, spawning in silico, artificial intelligence processes [1].

Living versus synthetic systems
Living systems adapt to changes in the environment by learning

and evolving. Nature achieves this so effectively that much

contemporary research now aims to understand and mimic bio-

logical processes. Historically, biomimicry in chemistry

involved learning from Nature by exploiting and synthesizing

bioactive natural products as drugs, for example (Figure 2).

Contemporary research aims to elucidate how molecular

machines self-assemble, and to discover the mechanisms by

which they operate, thereby providing a template for the

rational, intentional design of useful molecular machines at the

nanoscale [2].

Intensive experimental effort has been applied to the deliberate

reengineering of biosynthetic pathways for natural product syn-

thesis which, when combined with directed evolution, can

generate libraries of potentially bioactive organic molecules

with significant diversity and high chemical complexity [4].

Concurrently, biomimetic computational evolution, feature

identification, and learning methods are being developed to

solve complex problems in science, medicine and engineering.

Many of these new and very useful metaheuristic methods, such

as ant colony optimization, agent-based, evolutionary [5,6], and

particle swarm algorithms, are indeed inspired by solutions that

Nature has evolved to solve difficult problems [7]. We are also

beginning to understand how to create artificial self-organized

systems (reliant on the continuous input of matter and energy)

that are ubiquitous in the natural world rather than the self-

assembled systems that have been a major feature of contempo-

rary nanotechnology [8-10]. Computational adaptive, evolving,

self-learning design and optimization methods are approaching

an era of very rapid growth, and their impact is already being

seen as potentially disruptive. Their application to chemistry,

particularly synthetic chemistry, is still at an embryonic stage

but they have the potential to generate rapid paradigm changes

in the short to medium term.
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Figure 2: Structure of maitotoxin, one of the most complex natural products ever tackled by total synthesis. Reprinted with permission from [3]; copy-
right 2014 American Chemical Society.

This perspective paper provides a brief overview of these

methods for chemists who may wish to understand their current

and future impact. It introduces the most common type of algo-

rithm, machine learning. A discussion of a very useful machine-

learning algorithm, the neural network follows, and problems

that often arise in their use, and solutions to these difficulties

described. A new type of deep learning neural network algo-

rithm is then discussed and its performance compared to tradi-

tional ‘shallow’ neural networks is described in the context of

mathematical theorem governing the performance of neural

networks. The paper then discusses another very important

concept in life and in silico learning, feature selection.

Biomimetic in silico evolutionary methods and their synergy

with high throughput materials synthesis technologies (materi-

als defined very broadly) are then briefly described. Finally, all

of these concepts are combined in the discussion of new adap-

tive, learning in silico evolutionary methods for the discovery of

new bioactive molecules and materials, with examples.

Review
Open questions in artificial intelligence (AI)
Before describing these AI methods and how they can be used

in chemistry, biology and elsewhere, it is instructive to consider

some of the “big picture” questions of the AI field. Among the

many open questions relating to artificial intelligence, the most

pertinent to this paper relate to how life is connected to mind,

machines, and culture [11]:

• Demonstrating emergence of intelligence and mind in an

artificial living system.

• Evaluating the influence of machines on the next major

evolutionary transition of life.

• Establishing ethical principles for artificial life.

Development of advanced computational AI methods is likely

to cause social disruption in the next two decades but they

should bring unprecedented benefits, such as improved medical

diagnostics, and cheaper more efficient services [12]. These

benefits are not without risk, as most strongly disruptive tech-

nologies have demonstrated to date. Apart from possible social

and employment upheaval, some technology leaders have

cautioned about other major detrimental outcomes if AI systems

are developed and implemented without sufficient thought and

constraints [13,14]. Like all powerful scientific discoveries and

technologies, care must be taken to ensure that their very con-

siderable benefits are captured, and their possible misuse mini-

mized.

Machine learning and artificial intelligence
Among the myriad of AI methods developed to date, one of the

most useful and topical methods is machine learning. Machine

learning algorithms are a family of computational methods that

find relationships between objects (e.g., molecules, materials,

people) and a useful property of these objects (e.g., biological

activity, melting point, hardness, credit worthiness etc.). They
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Figure 3: Hypothesis-driven closed-loop learning rationale for Adam and Eve. Hypothesis-driven experimentation cycles can autonomously generate
new knowledge. Creative Commons Attribution License, http://creativecommons.org/licenses/by/2.0, from the work of Sparkes et al. [20]; copyright
the authors of [20].

include artificial neural networks, decision trees and several

other types of biologically inspired computational algorithms.

They have been applied to most areas of science and technolo-

gy and have made important contributions to chemistry and

related molecular and biological sciences. For example, they

have recently been applied to predicting the feasibility of chem-

ical reactions by learning relationships between the molecular

properties of the reaction partners and the outcomes of the reac-

tions in a large database [15]. Another recent example is the

robot scientists Adam and Eve that automate drug development

via cycles of quantitative structure–activity relationship

(QSAR) learning and biological testing (Figure 3) [16-18].

Eve’s selection of compounds was more cost efficient than stan-

dard drug screening, and the robotic scientist has identified

several new drugs active against tropical disease parasites [19].

Neural networks are the machine learning algorithm most

widely used in chemistry and related research areas such as

drug and materials discovery. Consequently, the following

discussion relates to these highly useful algorithms, and the

potentially paradigm shifting new variants called deep learning.

We provide a brief summary of these types of machine learning

algorithms to assist those organic chemists who are not familiar

with them.

Traditional backpropagation algorithm
A common machine learning algorithm is the backpropagation

neural network. This is a mathematical object usually consisting

of three layers, each of which contains a variable number of

nodes (see Figure 4). A mathematical representation of an

object (such as a molecule) is applied to the input layer nodes.

Figure 4: Traditional backpropagation neural network machine
learning algorithm.

The representations are distributed via a set of weights to the

hidden layer nodes where nonlinear computation is performed.

The inputs to each hidden layer node are summed and trans-

formed by a nonlinear transfer function in the hidden layer

node. The output of these nodes is transmitted to the output

layer node (there can be more than one) where the weights are

summed and used to generate the output. Initially the weights

are set to random numbers. During training, the difference be-

tween the predicted outputs from the neural network and the

measured properties of the molecules used to train the network

generates errors. These errors are propagated backwards using

http://creativecommons.org/licenses/by/2.0
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Figure 5: Comparison of architectures of shallow (non-deep) and deep neural networks. Adapted with permission by Michael Nielsen from http://
neuralnetworksanddeeplearning.com/chap5.html.

the chain rule to modify the weights so as to minimize the errors

in the predicted property values generated by the neural

network. The training stops when the predictions of the neural

network do not improve. While these types of neural network

work very well they do have some problems, some of which are

common to any regression method (e.g., overfitting) and some

specific to neural networks (overtraining, difficulty in choosing

the best neural network architecture). While traditional back-

propagation neural networks like those described above are

undoubtedly useful, their shortcomings can be almost entirely

eliminated by the additional of an additional operation called

regularization, essentially applying a penalty to models that are

more complex (nonlinear). A balance is struck between the

accuracy and complexity of the model, thus minimizing overfit-

ting, optimizing the predictive power of models, and identi-

fying the most salient molecular properties that control the

property being modelled.

Bayesian regularized neural networks
Applying regularization to neural networks, or any other types

of regression, involves defining a new cost function, the param-

eter that is minimized when the regression algorithm operates.

A cost function M listed below describes this balance, with the

α and β parameters adjusting the relative importance of the

errors in the model predictions (β parameter) and the size of the

neural network weights (a measure of model complexity, α pa-

rameter).

where ND is the number of data points and NW is the number of

neural network weights (wj).

Unregularized models use cost functions containing only the

first (error) term, corresponding to the normal least squares

criterion. In applying any type of regularization, it is essential to

identify the best values for the α and β parameters, often by trial

and error. It has been shown that Bayesian statistics can be used

to find the optimal values of α and β to generate models with

the best prediction performance. Detailed discussion is beyond

the scope of this paper but are available elsewhere [21-23].

Deep learning
Very recently, LeCun, Bengio and Hinton described a different

type of neural network AI method called deep learning [24].

Unlike shallow neural networks with three layers and few

hidden layer nodes, deep neural networks have several hidden

layers with thousands of nodes in each layer (see for example

Figure 5). They are not trained in the same way as traditional

neural networks because the very large number of adjustable

weights they contain would lead to training difficulties and

overfitting, seriously compromising their ability to predict.

Instead they make use of sparsity-inducing methods that involve

a ‘linear rectifier’ transfer function in the hidden layer nodes,

and implementation of random weight drop outs. The linear

rectifier function returns zero if the sum of the input weights is

below a given threshold (zero for example), and returns a

multiple of the sum of the input weights if this is above the

threshold. Random weight dropout involves randomly selecting

weights or hidden layer nodes, setting them identically to zero

for one or more training cycles. Both of these methods effec-

tively ‘switch off’ relatively large parts of the deep neural

network, this reducing the number of fitted parameters (network

weights) and minimizing overfitting.

While deep learning is attracting much attention in fields like

image and voice recognition, it may not be superior to three

http://neuralnetworksanddeeplearning.com/chap5.html
http://neuralnetworksanddeeplearning.com/chap5.html
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Table 1: Comparison of large drug data set standard errors of prediction (SEP) from deep (DNN) and shallow (BNN) neural networks [25].

Data set Size of data set Test set SEP
Training Test DNN BNN

CYP P450 3A4 inhibition pIC50
a 37241 12338 0.48 0.50

Binding to cannabinoid receptor 1 pIC50 8716 2907 1.25 1.14
Inhibition of dipeptidyl peptidase 4 pIC50 6148 2045 1.30 1.27
Inhibition of HIV integrase pIC50 1815 598 0.44 0.46
Inhibition of HIV protease pIC50 3212 1072 1.66 1.04
LogD measured by HPLC method 37388 12406 0.51 0.53
Metabolism – % remaining after 30 min microsomal incubation 1569 523 21.78 23.89
Inhibition of neurokinin1 receptor pIC50 9965 3335 0.76 0.72
Inhibition of orexin 1 receptor pKi

b 5351 1769 0.73 0.79
Inhibition of orexin 2 receptor pKi M 11151 3707 0.95 1.08
Transport by P-glycoprotein log(BA/AB) 6399 2093 0.36 0.40
Log(bound/unbound) to human plasma protein 8651 2899 0.56 0.58
Log(rat bioavailability) at 2 mg/kg 6105 1707 0.54 0.49
Time dependent Cyp 3A4 inhibitionc 4165 1382 0.40 0.39
Human thrombin inhibition pIC50 5059 1698 2.04 1.53

apIC50 = −log(IC50) M; bpKi = −log(Ki) M; clog(IC50 without NADPH/IC50 with NADPH).

layer ‘shallow’ neural networks for modelling chemical, molec-

ular and biological properties. An important mathematical

theorem, the Universal Approximation Theorem states that a

feed-forward network with a single hidden layer containing a

finite number of neurons can approximate any continuous func-

tion under mild assumptions on the activation function. Conse-

quently, although deep learning methods are currently attracting

much interest in some emerging technologies, they may not

offer any advantages over shallow neural networks for chemi-

cal problems. A recent publication has shown how deep and

shallow neural networks exhibit similar performance in

predicting the activities of drug-like molecules against impor-

tant pharmaceutical targets [25].

Table 1 summarizes the prediction performance of deep neural

networks (DNN) and (shallow) Bayesian regularized neural

networks (BNN) for very large sets of organic drug-like mole-

cules screened against fifteen protein targets [25]. Good predic-

tions have low RMS errors (RMSE) or standard error of predic-

tion (SEP) values. Table 1 clearly shows that, on average deep

and shallow neural networks have broadly similar prediction

performance. Conspicuously, the very significant advantages of

regularized machine learning methods can be further enhanced

when processes to identify the most important features in a

conceptual landscape are also employed.

Sparse feature detection in vivo
Detection of important features in the environment is critical for

the long-term sustainability of life. For example, the roughly

100 million photoreceptors in a human retina cannot not

directly transmit a picture to the brain due to the limited

capacity of the optic nerve (there are 100 times more photore-

ceptor cells than ganglion cells). The retina carries out exten-

sive signal analysis and feature detection on the image and

sends this processed, compressed image along the optic nerve to

the brain. This is achieved by the way the ganglion cells' recep-

tive fields are organized, detecting contrast and edges. This

allows a much smaller amount of information to be sent to the

brain for subsequent analysis and response. We can learn from

biology and teach computational analysis methods to identify

features in data in an analogous way. This facilitates the devel-

opment of models with higher predictive performance and the

identification of the factors that have the most influence over

the property being modelled, leading to clearer interpretation of

the structure–activity relationships represented by the model.

This capability is particularly useful in phenomena described by

many parameters (high dimensionality) and those sampled by

very large numbers of observations (Big Data).

Sparse feature selection in silico
An increasing number of experiments are employing large

scale, high throughput ‘omics’ technologies to probe deep

scientific questions [26]. Examples include gene expression

microarray technologies, rapid development of glycomics tech-

nologies, large-scale use of proteomics, and the proliferation of

mathematical descriptions of molecules and more complex ma-

terials. Analogous to biological feature detection, informatics

methods attempt to use mathematical methods to identify the
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most relevant features in these data sets so that interpretation of

experiments is easier, and predictions of outcomes in new

experiments are more reliable (see for example Saeys et al.

[27]).

In our research we have adapted an elegant sparse feature selec-

tion method, initially reported by Figueiredo [28]. It employs a

sparsity-inducing Laplacian prior that can be used in conjunc-

tion with linear regression and neural networks to prune the

irrelevant features from models and less relevant weights from

neural networks, resulting in models with optimal predictivity

and interpretability [28]. Although mathematically too complex

to describe here, the sparsity-inducing Laplacian prior has the

very useful property of removing uninformative features and

neural network weights by setting them to zero [21,29]. These,

and related feature selection methods provide a valuable adjunct

to molecular and materials modelling methods based on struc-

ture–activity/property regression and neural networks models.

Such machine learning-based models have been used success-

fully in pharmaceutical discovery for several decades. More

recently, they have been applied to modelling materials other

than small, discrete, organic molecules, with considerable

success. Many types of materials are considerably more com-

plex than small organic molecules (e.g., with size and weight

distributions, diverse shapes, variable degree of crosslinking,

different degrees of porosity, processing-dependence of final

properties etc.) and the size of ‘materials space’ is conse-

quently much larger than that of ‘drug-like’ space. This

recognition has accelerated the development of very high

throughput synthesis and characterization methods for

materials, and spawned the application of evolutionary

algorithms to explore materials space more quickly and effec-

tively than other methods. When coupled with learning algo-

rithms, in silico evolutionary adaptation is possible, as we now

describe.

Evolving materials for the future
The development and application of evolutionary methods for

the design and discovery of novel technologies, materials, and

molecules has its origin in two seemingly unrelated historical

figures.

Charles Darwin and Josiah Wedgwood
Many are not aware that, arguably, one of the first ‘combinato-

rial’ materials scientists was Josiah Wedgwood. His ultimate

products were the ceramics used in the eponymous fine china.

He developed a rigorous and systematic way of understanding

the relationships between the properties of the clays used, the

manufacturing process variables, and the performance of the

final ceramics. Figure 6 shows a tray of jasper tiles from a

typical “high throughput” experiment.

It is also not well known that Charles Darwin, the ‘father of

evolution” was related to Josiah Wedgwood, who financed

some of Darwin’s expeditions. Fittingly, there has been a recent

synergistic convergence of the concepts of natural selection and

evolution with high-throughput synthesis and testing of mole-

cules and more complex materials in the past decade. Recogni-

tion of the enormous, essentially infinite, size of materials space

(≈10100) has driven to the development of evolutionary methods

for molecular and materials discovery. Evolutionary algorithms

mimic the processes of natural selection, and they are efficient

ways of exploring extremely large materials spaces. Although

accelerated synthesis and testing methods for bioactive mole-

cules (drugs and agrochemicals) and materials are invaluable

for accelerating drug and materials research, they cannot alone

solve the problem of the size of materials space. Exhaustive

searches are intractable and will always be so (even making and

testing a billion materials per second would not make an impact

on the total number of materials that could theoretically be syn-

thesized). A synergistic combination of these accelerated exper-

imental technologies with evolutionary algorithms provides a

potentially disruptive change in the way molecules and materi-

als are designed. Recent reviews describe the application of

evolutionary approaches to drug and materials discovery [5,6].

High-throughput experimentation
The pharmaceutical industry developed high-throughput chemi-

cal synthesis and screening technologies in the late 20th

century. Materials scientists have recently begun adapting these

technologies to the synthesis and characterization of materials.

Figure 7 shows a new high-throughput-materials synthesis and

characterization facility at CSIRO Manufacturing in Melbourne

Australia. This can generate and test hundreds of polymers,

nanomaterials, catalysts, or metal organic frameworks in a day.

Clearly, certain types of chemistries (benzodiazepines, click

reactions, etc.) are amenable to large chemical library synthesis,

and peptides and oligonucleotides can also be synthesized effi-

ciently using automated methods, it is not yet possible to carry

out chemical syntheses in a general sense using these technolo-

gies. However, several groups are making significant break-

throughs in generalizing and expanding the automated synthe-

sis of organic compounds. Rzepa, and Murray-Rust among

others, have begun systematizing chemistry using a type of

chemical mark-up language (a machine-readable language de-

signed to describe the central concepts in chemistry) and chemi-

cal ontologies (a formal naming and definition of the types,

properties, and interrelationships of chemical entities) [31-34].

One aim to transform every type of chemical synthesis into a

precisely defined language that can be used by instruments and

synthesis robots to carry out all of the unit operations required

in chemical synthesis and analysis. The ultimate aim is to
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Figure 6: Tray of Josiah Wedgwood’s jasper trials from 1773 (copyright Wedgwood Museum; all rights reserved). Each ceramic sample is marked
with labels that correspond to an entry in Wedgwood’s ‘Experiment Book’ or relate to firing instructions, e.g., ‘TTBO’ for ‘tip-top of biscuit oven’. Used
with permission from the Wedgwood Museum. Also see the summary of Josiah Wedgwood’s work by Sammut [30].
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Figure 7: A high-throughput-materials synthesis and characterization facility RAMP, (Rapid Automated Materials and Processing) https://
www.csiro.au/en/Research/MF/Areas/Chemicals-and-fibres/RAMP.

develop a technology that will allow a machine to carry out the

same chemical reaction in the same way with the same yield

and purity, regardless of where it is performed. Cronin’s group

recently reported how to employ 3D-printed chemical reaction

ware (Figure 8) to carry out chemical synthesis and analysis

under computer control [35].

Figure 8: An interactive procedure to design and 3D print bespoke
reaction ware to optimization yield and purity of a chemical synthesis.
Reprinted with permission from [36]; copyright 2016 Macmillan
Publishers Ltd.

Another very recent and important step towards general auto-

mated chemical synthesis was reported in Science in 2015

(Figure 9) [37]. This platform provided a proof of concept of a

general and broadly accessible automated solution to the prob-

lems of small-molecule synthesis. These technologies have now

made practical the autonomous evolution of materials, where

the design-synthesis-testing cycle is run by algorithmic evolu-

tionary control and implemented robotically.

In order to achieve autonomous algorithmic control, it is neces-

sary to translate the essential operations of evolution by natural

selection into mathematical form. The basic components of

evolutionary algorithms are summarized below to assist organic

chemists who are not familiar with them.

Representing materials mathematically
(materials ‘genome’)
To model or evolve molecules or materials, it is necessary to

convert key compositional, structural, synthesis, or processing

properties into a numerical ‘genome’. These must encapsulate

salient features of the molecule or material that influence the

property being modelled, mutated and optimised in an evolu-

tionary process. For example, the components in a molecule (or

material) can be represented as a binary string.

where 0 = fragment (e.g., CH3) not present in the structure and

1 = fragment present in the structure (perhaps multiple times).

There are many other ways of generating these molecular repre-

sentations, commonly called descriptors. Compositional

descriptors have been successfully used to model and evolve

materials like catalysts and phosphors. These are vectors of real

numbers encoding composition (Figure 10). These strings repre-

sent a material or molecular ‘genome’, that can be used to

predict the materials property or that can be operated on by

mutation.

Mutation operators
Once materials or molecules have been converted into mathe-

matical entities, several types of mutation operators can be

https://www.csiro.au/en/Research/MF/Areas/Chemicals-and-fibres/RAMP
https://www.csiro.au/en/Research/MF/Areas/Chemicals-and-fibres/RAMP
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Figure 9: (Top) Photograph of a small-molecule synthesizer comprised of three modules for deprotection, coupling, and purification steps.
(Bottom) Natural products, materials, pharmaceuticals, and biological probes synthesized by automated synthesis by iterative coupling of different
building blocks (colors). TBDPSE, tert-butyldiphenylsilylethyl; TMSE, trimethylsilylethyl. Adapted with permission from [37]; copyright 2015 American
Association for the Advancement of Science.

Figure 10: An example of a composition-based descriptor vector that
could be used to model or evolve materials properties like phosphor
brightness and colour, or catalyst efficiency. Adapted with permission
from [38]; copyright 2003 American Chemical Society.

applied to the materials genome. The simplest and most com-

monly used are the point mutation and crossover operators.

Point mutation involves altering a single element in the string

representing the genome of a material or molecule. For exam-

ple, a bit string genome might have a single bit flipped into the

alternate state. Alternatively, a compositional genome could

have the amount of one of the components increased or de-

creased. Crossover operators take genomes from two materials,

select an arbitrary point to split them, and the fragments

swapped between the two (Figure 11).

Fitness functions and the evolutionary cycle
Once the materials have been represented mathematically in a

genome, and the mutation operators defined, a fitness function

must be defined. The fitness function is a method (experimen-

tal or computational) of determining the suitability of mole-

cules or materials in the population of entities being evolved.

The fitness is usually some useful property, or a combination of

properties, that needs to be improved. Examples include, phos-

phor brightness, drug binding efficacy, toxicity, catalytic effi-

ciency, ability of the material to support the growth of cells,

efficiency of gas adsorption, and many others.

The relationship between the materials genome and the fitness

can be presented as a surface, commonly called the fitness land-

scape (Figure 12). The object of an evolutionary process is to
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Figure 11: Example of a simple elitism (copy unchanged), crossover, and point mutation operations acting on the genomes of two materials.
Reprinted with permission from [6]; copyright 2016 American Chemical Society.

find the peaks (or valleys, if a property is to be minimized

instead of maximized) on the fitness landscape. The complexity

lies in the fact the almost all fitness landscapes are multidimen-

sional, often highly so. Applying mathematical evolutionary

algorithms to the system allows vast, multidimensional fitness

landscapes to be searched efficiently.

Once an initial population of molecules or materials is created,

and the mutational operators and fitness function(s) have been

defined, an iterative cycle is traversed where the fitness of the

population is measured and the best (fittest) entities are mutated

and bred to generate the next generation. This generation

proceeds through the same process of selection, mutation, and

breeding for several more cycles. The process stops when

members of the population exceed some performance criterion

or when no further improvement occurs. Evolutionary algo-

rithms are very efficient at searching large materials spaces to

find excellent (although not optimal) solutions, just as natural

selection does with biological populations. Table 2 shows how

extremely large search spaces (up to 1022) can be traversed to

find good solutions using a modest number of experiments.

Figure 12: A simple example of a two-dimensional fitness functions.
The lines represent different evolutionary trajectories on the land-
scape that lead to different local optima. Real fitness landscapes are
dependent on many more dimensions (multiple materials ‘genes’ in the
genome). Reprinted with permission from [39]; copyright Randal S.
Olson.

Two recent reviews have summarised how evolutionary

methods have been used to discover and optimize drug leads

[5], and materials [6].
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Table 2: Examples of evolutionary optimization experiments showing the number of control variables (parameters or dimensions), fitness or objective
function (mainly catalysis) and the number of experiments used to sample the theoretical experimental space. From Moore et al. [40].

Variables Objective Number of experiments Size of space

6 binding to stromelysin 300 6.4 × 107

8 propane → propene 328 NA
4 inhibition of thrombin 400 1.6 × 105

8 propane → CO2 150 NA
8 propane → propene 280 NA
13 propane → propene 60 NA
23 NH3 + CH4 → HCN 644 NA
9 CO → CO2 189 NA
4 CO + CO2 + H2 → CH3OH 115 2.7 × 109

5 3CO + 3H2 → C2H6O + CO2 160 2.4 × 1011

6 CO + CO2 + H2 → CH3OH 235 4.7 × 109

10 n-pentane isomerization 72 1.44 × 104

7 propane → aldehydes 80 NA
8 isobutane → methacrolein 90 109

8 membrane permeability 192 9 × 1021

4 cyclohexene epoxidation 114 NA
3 protein inhibition 160 1016

6 red luminescence 216 NA
7 green luminescence 540 1014

6 colour chromaticity 168 NA
8 red luminescence 270 NA
7 red luminescence 1080 NA

Evolution coupled with learning
As with natural biological systems, evolutionary processes like

natural selection (and the in silico analogue) can couple syner-

gistically with learning. This is a part of adaptation (generically

named complex adaptive systems). The Baldwin effect de-

scribes the influence of learned behaviour on evolution. In 1987

Hinton and Nowlan used computer simulation to show that

learning accelerates evolution and associated it with the

Baldwin effect. In practice, machine learning models of fitness

functions can significantly accelerate the rate of optimization of

evolutionary processes in silico [41-43].

Examples of applications of AI methods, fea-
ture selection, evolution of materials
The following brief examples show how these new in silico fea-

ture selection, machine learning, and adaptive evolution have

been applied to chemical problems.

Sparse feature selection: how strontium ion controls
mesenchymal stem cells (MSCs)
Bioglass materials containing strontium ions have been shown

to reduce bone loss and fractures by stimulating mesenchymal

stem cells (MSCs) to differentiate down the osteogenic (bone

forming) pathway. The mechanism by which this occurs was far

from clear. A broad gene expression microarray experiment was

performed on MSCs exposed to different levels of strontium

and other minerals from the bioglass. Computational sparse fea-

ture selection methods identified around ten genes from the tens

of thousands on the microarray chips used to determine how

gene expression changed in MSCs in response to strontium

levels [44]. These genes suggested the sterol and fatty acid

biosynthetic pathways were activated in the MSCs, and subse-

quent experiments validated the model predictions of increased

levels of proteins in these pathways and the formation of lipid

rafts on the cell membranes. In silico sparse feature selection

thus revealed a hitherto unknown mechanism for osteogenesis

that may be exploited to stimulate bone growth in grafts or in

patients suffering age-related bone loss.

Machine learning and evolutionary design:
pathogen-resistant polymers
Antimicrobial drugs and materials are becoming extremely im-

portant due to the rise in nosocomial infections and drug resis-

tant pathogens, and the increased use of implantable and

indwelling medical devices. Much research is now focusing on

developing materials that resist bacterial attachment and growth

as an alternative to new antibacterial agents to which the devel-

opment of resistance is inevitable. Artificial intelligence

methods such as machine learning have proven very effective in

predicting the propensity of pathogens to colonize polymer



Beilstein J. Org. Chem. 2017, 13, 1288–1302.

1300

Figure 13: Robotic synthesis and testing of populations of pathogen-resistant polymers evolved by a combination of machine learning and evolution.
The top panel shows a summary of the experiments ≈500 polymer spots are generated in an array and exposed to GFP transformed pathogenic
bacteria. The lower panel shows how the average pathogen attachment decreases markedly (less red, more blue) between the first (left) and third
(right) generations of polymers. Adapted with permission from [45]; copyright 2012 Macmillan Publishers Limited.

coatings, for example. Hook et al. generated large libraries of

copolymers using robotic methods, and exposed these to three

common hospital pathogens to try to identify low adhesion ma-

terials for coating medical devices [45]. These data were used to

generate a sparse machine learning model for each pathogen

(Figure 13) that predicted pathogen attachment and described

the relationship between polymer surface chemistry and attach-

ment [46]. The pathogen attachment performance of the poly-

mers determined experimentally and predicted by the machine

learning models was used as a fitness function to evolve several

populations of polymers with deceasing pathogen affinities.

Subsequently, machine learning methods were used to generate

a multipathogen model that could quantitatively predict the

likely attachment of several pathogens simultaneously [47]. The

research showed that models to predict attachment of an even

broader range of pathogens would be possible, accelerating

discovery of new materials with superior performance in

medical devices.

Adaptive evolutionary design of porous mate-
rials for hydrogen storage and CO2 capture
and reduction
Porous materials, such as metal organic frameworks (MOFs),

covalent organic frameworks (COFs) and zeolitic imidazolate

frameworks (ZIFs) are attracting much interest because of the

large numbers of bespoke materials that can be designed and

synthesized using these self-assembly paradigms. They are

being developed to tackle two major and interrelated environ-

mental challenges facing the planet, the rise in CO2 levels in the

atmosphere due to burning of fossil fuels, and the storage of

hydrogen for zero carbon emission transport. Millions of hypo-

thetical porous materials have been designed, and it is infea-

sible to try to synthesize and test all of them to find more effec-

tive gas-adsorbing materials. Computational prediction of the

performance of these materials is feasible using compute inten-

sive Grand Canonical Monte Carlo calculations. However, these

are intractable for libraries of millions of porous materials.

Thornton et al. recently showed how a combined artificial intel-

ligence-based modelling paradigm could be combined with

evolutionary algorithms to discover materials with superior gas-

adsorption properties in a more timely and resource efficient

way than by experiments or GCMC calculations alone

(Figure 14) [48].

Perspectives, and the Future
Evolutionary methods have been shown to be effective in mate-

rials discovery, helping with the “curse of dimensionality”.

They are complementary to the new high throughput materials

synthesis, characterization, and testing technologies – e.g.,

RAMP, flow chemistry, high-throughput beam lines, combina-

torial chemistry. They suggest that an automatic, closed loop

system could be developed where the fittest materials synthe-

sized in a given generation are used to design the next genera-

tion of improved materials. Early progress in this area has been

made – for example, a closed loop flow synthesis method has

been developed that automatically optimizes the yield and

selectivity of the products [49]. Use of evolutionary and

machine learning in silico methods as well as robotic synthesis

and characterization methods could explore large materials

spaces and accelerate discovery of novel, useful materials. The
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Figure 14: Net deliverable energy as a function of porous material void
fraction at 77 K cycling between 100 and 1 bar. Predictions include the
GCMC-simulated sample sets for three rounds of evolution (colours),
and the final neural network model for the complete genome (grey).
Experimental data from the literature is shown as black squares.
Adapted with permission from [48]; copyright 2017 American Chemi-
cal Society.

progress in the field of artificial intelligence and machine

learning is rapid and it is difficult to make clear predictions

about where this will lead. However, it is also already obvious

that a synergistic combination of robotics and automation with

machine learning and evolutionary algorithms will lead to a step

change in the ability to discover, design, and optimize mole-

cules and more complex materials with useful properties

thought to be inaccessible in the past. If evolutionary methods

can be efficiently coupled with AI so that systems for the

discovery of new materials become adaptive learning systems,

the implications for the progress of science and technology (and

employment) are massive and unpredictable. Such develop-

ments are already occurring in other fields, with AI systems

making more accurate diagnoses than medical experts [50], an

AI system taking a position on a company Board of Directors

[51], autonomous cars [52] and the mooted replacement of

many jobs by AI systems [53]. Perhaps the predictions of the

‘singularity’ (the point in time where machine learning matches

that of humans) by between 2029 and 2045 are not so unreal-

istic.
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