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A B S T R A C T   

In the past decades, the world has experienced several major virus outbreaks, e.g. West African Ebola outbreak, 
Zika virus in South America and most recently global coronavirus (COVID-19) pandemic. Many vaccines have 
been developed to prevent a variety of infectious diseases successfully. However, several infections have not been 
preventable so far, like COVID-19, which induces an immediate urgent need for effective vaccines. These 
emerging infectious diseases often pose unprecedent challenges for the global heath community as well as the 
conventional vaccine development paradigm. With a long and costly traditional vaccine development process, 
there are extensive needs in innovative vaccine trial designs and analyses, which aim to design more efficient 
vaccines trials. Featured with reduced development timeline, less resource consuming or improved estimate for 
the endpoints of interests, these more efficient trials bring effective medicine to target population in a faster and 
less costly way. In this paper, we will review a few vaccine trials equipped with adaptive design features, 
Bayesian designs that accommodate historical data borrowing, the master protocol strategy emerging during 
COVID-19 vaccine development, Real-World-Data (RWD) embedded trials and the correlate of protection 
framework and relevant research works. We will also discuss some statistical methodologies that improve the 
vaccine efficacy, safety and immunogenicity analyses. Innovative clinical trial designs and analyses, together 
with advanced research technologies and deeper understanding of the human immune system, are paving the 
way for the efficient development of new vaccines in the future.   

1. Introduction 

The vaccine is considered one of the most important achievements of 
public health during the past century. There are many vaccines that have 
been made available on market and have fundamentally changed the 
infectious disease prevention mindset of human beings. However, in the 
past decades, the world has experienced several new major virus out
breaks, e.g. West African Ebola outbreak, Zika virus in South America 
and most recently global coronavirus (COVID-19) pandemic. With the 
recent COVID-19 pandemic, efficient vaccine development is at the 
frontline and innovative clinical trial designs and analyses are needed 
more than ever for all vaccine development. 

The traditional vaccine development process from discovery to 
approval is long and costly, which usually requires enrolling huge 
numbers of subjects in a fixed design. In recent years, increasing needs in 
innovative vaccine trial designs and analyses have researchers designing 
more efficient vaccines trials. Featured with reduced development 
timeline, fewer resources and improved estimates of the endpoints of 

interests, these more efficient trials bring effective medicine to subjects 
in a faster and less costly way. For example, adaptive designs [1], which 
allow trial design modification during the trial based on ongoing 
available trial data, have become more frequent in recent years and have 
shown their advantages in accelerating the development timeline, 
identifying optimal vaccine dose, schedule, and target population, as 
well as reducing sample size as demonstrated in a few vaccine trial ap
plications. Bayesian designs, with flexibility and ability to incorporate 
the prior belief about the efficacy of treatment, provide an alternative 
for vaccine clinical trials where there are challenges due to extremely 
low incidence rates. Other types of innovative designs, e.g. master 
protocols, have emerged during the recent global outbreak of endemic 
COVID-19 in which vaccine development has the advantage of concur
rent assessment of multiple candidates. Faced with clinical site shut 
downs and clinical trials paused due to COVID-19, the rapid increase in 
the volume, variety, and accessibility of digitized Real-World-Data 
(RWD) has presented unprecedented opportunities for the use of RWD 
for the data collection, trial designs and analyses. Another important 
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topic that has gained intensive attention in vaccine development is 
correlate of protection (CoP). If established successfully, the immune 
marker could be used as surrogate endpoint to predict vaccine efficacy, 
which is less costly, and may reduce the vaccine development time. 
Besides innovative designs and CoP related researches, there are con
stant efforts to improve vaccine efficacy, safety and immunogenicity 
analyses. It is essential to summarize these statistical considerations, 
discuss the assumptions and case study implementations, and promote 
the usage of those methodologies in a proper setting. 

In this paper, Section 2 opens with a general discussion about vaccine 
design, with the focus on several vaccine innovative design imple
mentations. The design implementations include but are not limited to: 
treatment arm selection, population enrichment, and sample size re- 
estimation, followed by Bayesian designs accommodating historical 
data borrowing, the discussion of master protocols and utilizing RWD in 
clinical development. In Section 3, we will review a group of method
ologies for CoP from the Prentice criteria approach to Qin’s framework 
and other novel CoP trial designs and analyses. In section 4, we will 
briefly review additional considerations supporting vaccine efficacy, 
safety, and immunogenicity analyses. In Section 5, we will summarize 
our discussions and concluding remarks. 

2. Innovative designs for vaccine trial 

Although each vaccine may follow a different development path that 
depends on the type of vaccine, disease characteristics, target popula
tion, target regions, availability of existing vaccines, administration 
schedule, etc., all new vaccines need to demonstrate safety, immuno
genicity and protective efficacy in subjects before obtaining regulatory 
licensure. In general, there are two major categories of vaccine trials: 
immunogenicity trials and vaccine field trials, with safety assessed in all 
vaccine trials. 

Vaccine Immunogenicity Trials: Vaccines function in the human 
body by exposing the immune system to live or inactivated (or partially 
inactivated) microorganisms, which are subsequently recognized by the 
immune system when a natural viral or bacterial infection occurs. 
Therefore, endpoints based on immune response, e.g. serum antibody 
levels, immune response rates, etc. are of great interest and used for 
vaccine dose finding and optimal schedule selection during early phases. 
The immunogenicity outcomes remain primary endpoints for vaccine 
bridging trials, combination trials, concomitant trials, and lot-to-lot 
consistency trials, and play a critical role throughout the vaccine 
development [2]. 

Vaccine Field Trials: Vaccine field trials include vaccine efficacy 
trials and vaccine effectiveness trials. Vaccine efficacy measures the 
protective effects of vaccination by the reduced risk of vaccinated sub
jects relative to unvaccinated subjects in clinical Phase II or Phase III, 
while vaccine effectiveness is usually assessed at population-level post- 
marketing retrospectively via observational studies. 

Prior to obtaining licensure, the focus of a clinical development 
program is placed on vaccine efficacy. For candidate vaccines, the most 
common model used to evaluate vaccine efficacy is double blinded 
randomized trial with active and placebo arms. Under special circum
stances, the use of placebo arm may be constrained due to ethical or 
other reasons, e.g., West African Ebola vaccine [3]. One alternative is to 
use delayed vaccination as a comparator, which usually has lower power 
than placebo-controlled ones, and the staggered schedule may also 
introduce bias to vaccine efficacy estimate [4]. 

2.1. Adaptive design in vaccine trials 

Traditional vaccine efficacy trials usually use fixed designs with 
fairly large sample size. Recruiting a large number of subjects requires 
longer follow up time and costs. Therefore, vaccine developers are fac
ing more than ever needs in accelerating the vaccine development to 
fulfill the public’s medical needs. Adaptive design is defined as a clinical 

trial design that allows for prospectively planned modification to one or 
more aspects of the design based on accumulating data from subjects in 
the trial. Adaptive designs attempt to more efficiently select the right 
treatment arm, population and reduce sample size [1,5,6]. In this sec
tion, we will discuss how adaptive designs help to achieve these goals 
and eventually contribute to bringing promising vaccines to target 
population earlier. 

2.1.1. Treatment arm selection adaptive seamless design 
The four-valent human papillomavirus (4vHPV) vaccine was 

licensed in 2006 for the prevention of HPV 6/11/16/18 related cancer 
diseases [7]. These four HPV sub-types cause roughly 70% of cervical 
cancers. Aiming to cover additional five HPV sub-types (31/33/45/52/ 
58), clinical trials were designed to explore the 9vHPV vaccine efficacy 
[8]. Since the sponsor had extensive knowledge and experience from the 
4vHPV vaccine development and both 4vHPV and 9vHPV vaccines used 
the same mechanisms and other critical development aspects, they 
believed it was possible to expediate the 9vHPV vaccine development. 

A seamless phase II/III design was proposed to accelerate this vac
cine development [9]. Unlike traditional clinical trials that have a 
separate phase II learning stage and a phase III confirmatory stage, a 
seamless phase II/III design combines these two stages into one seamless 
clinical trial. This design has several attractive features, including (i) 
reduction of resources and time by avoiding the gap between phase II 
and phase III trials, and (ii) incorporation of related phase II data in the 
final analyses. 

In this trial, roughly 1250 subjects were equally randomized into 
four arms (low dose, medium dose, high dose and 4vHPV) in the phase II 
stage. The primary endpoint was the post-dose 2 immunogenicity of the 
original 4vHPV types. Based on the immunogenicity and safety data, the 
medium dose was selected for the phase III confirmatory doses. In 
addition, subjects who were in the medium dose arm and 4vHPV arm 
were followed up continually into phase III stage. In the phase III stage, 
approximately 13,400 subjects were randomized (1:1) to either the 
selected medium dose 9vHPV arm or 4vHPV arm. The primary objective 
of the phase III stage was vaccine efficacy. Approximately 14,200 sub
jects in both stages contributed to the final vaccine efficacy events. Even 
though only 620 subjects from phase II stage were included in the final 
analysis, they contributed roughly 10% of the person-years of follow-up 
due to the longer observation period. 

Despite the attractive features of the seamless phase II/III trials, these 
designs still have to overcome several statistical and operational chal
lenges. First, the Type I error must be well-controlled. The sponsor 
carefully chose the phase II endpoint, selected final analysis tests and 
confidence interval, and demonstrated the small correlation between 
biomarker endpoint in phase II and efficacy endpoint in phase III. These 
steps ensured the Type I error was under controlled in this seamless 
design. Moreover, a large simulation study that was conducted by the 
sponsor suggested the overall Type I error was well controlled. Secondly, 
the sponsor also took actions to ensure this seamless phase II/III was 
operationally efficient. The sponsor’s senior management committee 
(SMC), the external Data Monitoring Committee (eDMC) and other 
critical functions were set up for the end of phase 2 stage adaptation 
decision making and built the data blinding firewall. The scope of 
communication between SMC, eDMC and the study team were also well- 
planned to protect the integrity of the study. Finally, the sponsor also 
paid extra attention to vaccine supply, study enrollment, and other lo
gistics aspects for the adaptive designs. 

2.1.2. Population selection adaptive design 
Adaptive designs which allow population selection or enrichment 

can be critical in vaccine development. The fundamental principle of 
adaptations is to select the promising population at an interim analysis 
to maximize the probability of clinical trial success. Su et al. (2018) 
proposed a population-enrichment adaptive design strategy for an 
event-driven vaccine efficacy trial [10]. In their motivating example, the 
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vaccine was targeted for two subpopulations (A and B), which belong to 
the same general clinical disease family. However, the heterogeneity 
problem in the response was a concern from the earlier phase I and 
phase II studies. Two separate phase III clinical trials could be initiated 
to investigate a vaccine in two different subpopulations, but generally 
more resources are required. Alternately, one single trial that combines 
both populations is also feasible. However, the lower vaccine efficacy in 
one subpopulation may lower the probability of success for the whole 
trial. Therefore, to balance the probability of success and total sample 
size in this scenario, an adaptive design which allows population se
lection in the interim analysis was proposed. 

The total sample size in the phase III was around 6000 with equal 
allocation to both subpopulation A and subpopulation B. For each sub
population, subjects were equally randomized into active treatment 
vaccine arm and placebo arm. The lower bound of 95% CI for vaccine 
efficacy (VE) at the end of the study was defined to be 25%. The con
ditional exact binomial method proposed by Chan and Zhang was used 
for the primary analysis [11]. In their proposed adaptive design, three 
hypotheses (AB combined, subpopulation A and subpopulation B) were 
planned. Two interim analyses also were scheduled. The first interim 
analysis (IA) allowed a futility check and a population selection. If the 
VE passed the futility check in only one subpopulation but failed in other 
subpopulation, the study would continue with only the selected sub
population, and enrollment in the selected subpopulation would be 
increased with an additional 2500 subjects. The second IA allowed 
another futility check and an early efficacy claim. The process is sum
marized in Fig. 1 below. 

Multiplicity adjustment was also evaluated in this design because 
several efficacy analyses were planned for two subpopulations with an 
interim analysis across the entire clinical trial. For the most desired case, 
the vaccine works for both subpopulation A and subpopulation B. It is 
preferred to test the primary hypothesis (AB) at 1-sided α(AB) = 2.5% 
level. Thus, the corresponding test level for the primary hypotheses (A) 
and (B) would need to be decreased to less than 2.5%. Based on the 
interim analysis decision rule in Fig. 1, the testing procedure can be 
summarized as below:  

• If both A and B pass the futility check, the statistical criterion for 
success requires the lower bound of the 95% confidence interval (CI) 
(1-sided αAB = 2.5%) for the estimated vaccine efficacy based on 
both subpopulations combined to be greater than 25%;  

• If only A passes the futility check, the statistical criterion for success 
requires that the lower bound of the (1–2 × α(A))% CI for the esti
mated vaccine efficacy in subpopulation A to be greater than 25%.  

• If only B passes the futility check, the statistical criterion for success 
requires that the lower bound of the (1–2 × α(B))% CI for the esti
mated vaccine efficacy in subpopulation B to be greater than 25%.  

• If vaccine efficacy fails the futility check in both subpopulations, the 
trial will stop for futility. 

They have shown that with α(A) and α(B) set to be 0.0115, the overall 
Type I error was shown to be controlled weakly through theoretical 
deviation and simulation studies. The simulation results also suggested 
that the type one error rate was also well maintained in a strong sense. 
Based on the statistical power in the simulation analyses, the population 
selection design could still maintain a high power when the treatment 
effect existed for only one subpopulation. This adaptive design helped to 
maintain a high probability of success by selecting the promising 
treatment population at the interim analysis. 

2.1.3. Sample size re-estimation adaptive design 
Sample size re-estimation (SSR), which allows for the sample size or 

event size to change after an interim analysis, is also applicable to the 
vaccine development. The essential idea of SSR is to use interim analysis 
data (unblinded or blinded) to modify the final sample size. This 
adaptation feature aims to address the uncertainty in trial design as
sumptions and allow adaptation as information cumulates. Specifically, 
for vaccine clinical trials, the assumptions of vaccine efficacy (VE) and 
incidences rates usually have some uncertainties. Therefore, it would be 
beneficial to allow sample size adaptations when the information on 
vaccine efficacy (VE) and incidences rates is cumulated during the 
clinical trial. 

The unblinded SSR allows for sample size or event size adjustment 
based on the observed treatment effect at the interim analysis. The 
initial sample size of SSR design can be smaller based on a more opti
mistic VE assumption. If this optimistic assumption is true, the trial can 
save sample size and bring the effective vaccine to target population 
faster. However, if the VE interim result is not as good as the optimistic 
VE assumption, the sample size can be increased based on the observed 
treatment effect. Other factors such as chemistry, manufacturing and 
control (CMC) material or procedure change, or assay scale-up between 
an earlier phase and a later phase may also change the VE assumptions. 

Fig. 1. Flow chart of population selection design.  
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With an unblinded SSR feature, one can still use the original VE 
assumption from earlier phase studies for the originally sample size 
planning. It allows sample size to be re-estimated during the interim 
analysis. Despite the attractive features of unblinded SSR, a potential 
problem of SSR design based on unblinded interim analysis is Type I 
error inflation. As shown by Proschan and Hunsberger [12], the Type I 
error can be inflated by two times or more without statistical adjust
ments. Therefore, several approaches have been proposed to control the 
overall Type I error including the combination test statistic [13,14], 
modification the adaptation rule [15,16], and conditional error function 
[17]. 

On the other hand, blinded SSR allows sample size adjustment based 
on the blinded data at an IA. The treatment assignment and treatment 
effect will still be blinded at the IA. This feature is critical for vaccine 
clinical trial design when the incidence rate is not quite certain. Li et al. 
(2012) proposed an adaptive design for a case-driven vaccine study 
when the incidence rate is unknown [18]. In their proposed design, a 
modest number of subjects were enrolled in stage I. The incidence rate 
based on blinded data was estimated and this estimated incidence rate 
helped to assess the feasibility of the study. If the event feasibility of the 
study could not be confirmed due to the low case accrual rate, this study 
can be stopped early. If the feasibility of the study is established, an 
unblinded interim analysis can be performed at the end of stage I. Based 
on the IA results, the decision rules for the stage II were as follows: (i) 
stop the study for either futility or early efficacy; (ii) continue into Stage 
II without sample size changes; 3) increase the number of events/sample 
size in Stage II. The event size re-estimation was based on the rejection 
probability principle (CRP) by Muller and Schafer (2001) [19]. In 
addition, the sample size re-estimation was based on the pooled inci
dence rate estimated from the interim analyses. This combined approach 
ensured not only the high statistical power by re-estimating the event 
sizes but also a reasonable study duration by increasing the sample size 
based on the observed incidence rate. Since the incidence rate is low for 
this type of disease. Li et al. (2012) [18] also provided the adaptation 
decision table based on observed events for better illustration in 
different scenarios. 

2.2. Bayesian design for vaccines development 

To establish the therapeutic effect of novel vaccines, randomized 
clinical trials are often conducted to evaluate the reduction of the 
infection or disease incidence rate as compared to placebo or standard of 
care (SoC). Due to the natural low incidence rate for most of endpoints in 
vaccine efficacy clinical trials, exact conditional binomial testing is often 
used for sample size calculation with a large number of subjects needed. 
It is not uncommon for enrollment to be challenging given the extremely 
low incidence in certain infectious diseases. Bayesian historical 
borrowing provides a natural framework to reduce the sample size and 
increase the efficiency of clinical trials. Contrary to the frequentist 
approach, Bayesian approaches allow flexibility and incorporation of 
the prior belief on the efficacy of treatment. However, thoughtful 
specification of the prior distribution is important for the Bayesian 
analysis, as the scientific conclusion should be primarily based on the 
data from the trial itself. As discussed in the 2019 FDA complex inno
vative design (CID) draft guidance [20], the sponsor should include a 
borrowing strategy “for evaluating and addressing heterogeneity be
tween the prior data and the concurrent Phase 3 data, such as the use of 
hierarchical models or other approaches that automatically down 
weight borrowing in the presence of heterogeneity”. 

In general, Bayesian historical borrowing can be categorized into two 
areas. The first category is to incorporate information from control arms 
of similar historical trials to augment data. This approach is becoming 
common in the rare disease or oncology setting. To avoid bias and 
inflated type I error, the appropriate use of historical control borrowing 
must take the heterogeneity between the historical and current control 
data into account (Pocock 1976) [21]. The power prior proposed by 

Ibrahim and Chen (2000) [22] and modified power prior (Duan et al. 
2006 [23], Neuenschwander et al. 2009 [24]) are likelihood-based 
methods that discount the historical data to account for differences 
between the pool of historical data and the current control data. How
ever, both power prior and modified power priors could result in inflated 
type I error rate when historical control data is heterogeneous. These 
models require pooling in the historical control data and cannot capture 
the variation between historical trials. Neuenschwander et al. (2010) 
[25] proposed the meta-analytic-predictive (MAP) prior to accounts for 
heterogeneity by assuming exchangeability among the historical and 
current control parameters. This approach explicitly models the 
between-trial variation with standard normal random effect meta- 
analysis. Of note, in scenarios where the historical and current data 
are in conflict, MAP prior could potentially lead to an incorrect 
conclusion due to an insufficient discount on the historical data. 
Schmidli et al. (2014) [26] extended the work on MAP and presented a 
robust version of the MAP (R-MAP) prior to allow for further discounting 
historical data in the case of extreme conflict between the historic and 
current control data. R-MAP is a mixture prior where one component is 
MAP prior, and the other component is a vague prior with appropriate 
weight that needs to be prespecified in the beginning of the trial. 

The second category of historical borrowing is to use the treatment 
information from a historical trial, which is commonly encountered in 
pediatric trials, e.g. extrapolation from the adult efficacy data to pedi
atric subjects. The power prior and modified power priors discussed 
previously could also be applied in this framework. Schoenfeld et al. 
(2009) [27] proposed a Bayesian approach for a continuous endpoint to 
borrow information from previous adult trials in a pediatric efficacy 
study. Gamalo-Siebers et al. (2017) [28] also summarize the Bayesian 
methods which leverage available adult data for design and analysis of 
pediatric studies. Specifically, for vaccine efficacy clinical trials, Jin 
et al. (2020) [29] considered borrowing information for treatment ef
fects and propose a Bayesian framework under the exact conditional 
binomial test for vaccine trial sample size determination. Schoenfeld’s 
Bayesian hierarchical model was extended to borrow historical infor
mation for vaccine efficacy trials as well as a power beta prior distri
bution that was proposed with similar results in rejection region and 
power. 

Although there are still very limited publications of Bayesian design 
for vaccine development and regulatory setting, the conceptual flexi
bility and historical information borrowing incorporated in the Bayesian 
design do provide an alternative option for contemporary vaccine clin
ical trials. In addition, the Bayesian approaches require specification of 
prior distribution for the possible value, therefore it can allow to 
incorporate the uncertainty for the unknown vaccine effect. More 
extensive simulations are often required to evaluate the Bayesian design 
operating characteristics. As suggested in the FDA guidance on adaptive 
design and draft guidance on CID design [20,30], early engagement and 
detailed evaluation of operating characteristics in propose designs and 
the choice of prior, e.g. type I error and power, will be the key elements 
to get successful agreement with regulatory agencies. 

2.3. Master protocols for vaccines development 

Master protocols are becoming popular in recent years due to their 
ability to allow evaluation of multiple treatments, target populations or 
both within a single protocol in a more efficient and ethical way (Saville 
and Berry 2016 [31], Woodcock and LaVange 2017 [32], Lin et al. 2019 
[33]). Food and Drug Administration (FDA) also provided a draft 
guidance on master protocols (September 2018) [34] reflecting an 
increased interest in these designs by drug developers and major regu
latory agencies. In the past few years, there have been many thought- 
provoking master protocol studies conducted, which include but are 
not limited to: I-SPY2, BATTLE, NCI MATCH, LUNG-MAP, ALCHEMIST 
and FOCUS4 (Renfro et al. 2016) [35]. In the recent significant global 
effort between government, academia and industry to develop therapies 
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and vaccines against COVID-19, master protocols are quickly emerging 
as a critical tool for evaluating potential promising COVID-19 therapies. 
Master protocols allow efficient use of a standard shared control arm, 
generation of rapid efficacy/safety results and assignment of more 
subjects to more efficacious therapies with multiple comparison during 
pandemic period. Some of the earlier trial examples include RECOVERY 
(Randomized Evaluation of COVID-19 Therapy), SOLIDARITY, REMAP- 
CAP (Randomized, Embedded, Multifactorial Adaptive Platform Trial 
for Community-Acquired Pneumonia), ASCOT, Adaptive COVID-19 
Treatment Trial (ACTT) [36–41]. 

For the vaccine development, the benefit of utilizing master protocol 
trial designs are the same as for the therapies. For example, the SOLI
DARITY vaccine trial outlined by World Health Organization (WHO) 
[37,38] will test several preventive candidate SARS-CoV-2 vaccines 
under development to enable the concurrent evaluation of the benefits 
and risks of each candidate. The primary outcome of trial is the viro
logically confirmed COVID-19 disease, regardless of severity. Disease 
rates for each candidate vaccine will be compared with all concurrently 
randomized placebo/control arms. Within the adaptive trial design 
setting, the candidate vaccines might be added or dropped depending on 
the outcomes compared to placebo or other vaccines. If the early interim 
analysis suggests that a compound is doing well, then more subjects can 
be randomized to that treatment arm. This feature will allow the better 
performing vaccines to graduate from a trial faster with more data 
generated. This can potentially speed up the timeline by at least few 
months especially important when there are significant unmet medical 
needs in this highly infectious and deadly global COVID-19 pandemic. 

From design perspective, master protocols can be categorized into 
the following types: Basket trials, umbrella trials or platform trials. 
Basket trials usually evaluate a single treatment across different pop
ulations. This is particularly common in oncology drug development 
with the advanced knowledge of the molecular profile of disease. A 
basket trial will enroll subjects with specific genetic or molecular mu
tations in a single trial to evaluate the effect of corresponding targeted 
agents. Umbrella or platform trials, on the other hand, focus on 
screening multiple treatments simultaneously within one disease type. 
This will allow investigator to focus on the disease in question, rather 
than having the specific goal of evaluating a single treatment individ
ually. Bayesian adaptive design framework (Berry 2010) [42] have been 
increasingly used in the master protocol to expediate the clinical 
development. Lin and Bunn (2017) [43] gave an overview of different 
common types of designs for umbrella or platform trials, e.g. response- 
adaptive randomization (RAR) design and multiple-arm multi-stage 
(MAMS) design. They compared these two major methods and their 
extension under several scenarios under the umbrella or platform trial 
setting. Lin et al. (2019) [33] discussed both advantages and disad
vantages of adaptive randomization from a practical perspective of 
clinical trials as well as illustration of master protocol case studies. In 
addition, a nonparametric model which was robust to event time dis
tribution in response-adaptive designs for survival trials was also 
introduced. The simulation studies also compared the operating char
acteristics of the proposed design and the parametric design, including 
their robustness properties with respect to model misspecifications. 

Though different master protocols might come with a different study 
size and operational setting, there are many commonly shared features 
in term of implementation, e.g. increased planning and evaluation as the 
beginning of trial design, strong coordination between different stake
holders or organizations and more complex infrastructures for clinical 
trial operations. However, if master protocol is utilized appropriately, 
these additional efforts are all worthwhile considering the substantial 
gain in the development efficiency with the potential of running a study 
for many years, and the benefit of target population. 

2.4. Utilizing RWD in the vaccines development 

During the COVID-19 outbreak, pharmaceutical companies, clinical 

research organizations (CROs), university research centers and others 
have announced the suspension or delay of the enrollment of some 
clinical trials. These decisions have been made based on the relative 
benefits and risk assessment of patients’ disease type, phase of clinical 
trials, severity of virus spread and others. Therefore, many clinical sites 
were closed and large numbers of patients in clinical trials were lost 
follow up, which could induce massive missing data for the future an
alyses [44]. Nevertheless, the rapid increase in the volume, variety, and 
accessibility of digitized RWD has presented unprecedented opportu
nities for the use of RWD in data collection, trial designs and analyses in 
the vaccine development during this pandemic. 

During the COVID-19 pandemic, electronic health records (EHRs), 
vaccine registries, and patient-generated data using the mobile app can 
be beneficial for the clinical trial data collection, which does not require 
site visits for the subjects. For example, an RWD EHRs platform has fast- 
tracked updates and incorporates specific COVID-19 terminology into 
their system, which will help to capture the COVID-19 disease status. 
Moreover, the vaccine registry system will also contribute to COVID-19 
related efficacy and safety data collection. Finally, patient-generated 
data using a mobile app will allow patients to report their efficacy and 
safety events at home and avoid site visits. Therefore, if a COVID-19 trial 
is planned, these RWD sources will contribute to remote data collection, 
including baseline data, vaccine efficacy data and safety follow up data. 
Even though RWD cannot capture all the data in the vaccine trial 
(immunogenicity as an example), these precious data will also 
contribute to the COVID-19 vaccine designs and analyses. 

As reviewed in Section 2.1, adaptive designs with SSR features are 
helpful when the incidence rate is not clear. As a new disease discovered 
in 2019, the knowledge of incidence rate is still not clear. In addition, 
the incidence rate is also based on the degree of social distancing, 
population density and other factors. Thus, RWD which allow remotely 
collected data using electronic devices is useful when COVID-19 trials 
are designed. RWD data sources will assist to estimate the incidence rate 
and help to calculate an accurate sample size. Especially for the field 
trials as introduced in Section 2 for COVID-19 vaccine development, 
accurate sample size is extremely helpful for the massively large urgent 
international clinical trials. 

In order to accelerate COVID-19 vaccine development, a seamless 
phase 2/3 design using RWD could be considered. The primary endpoint 
of phase 2 is immunogenicity and the primary endpoint of phase 3 is 
vaccine efficacy. The data in the phase 2 part of this trial can be captured 
by traditional clinical trials without using RWD. After the evidence 
generated through the surrogate endpoint immunogenicity in phase 2, 
RWD could be beneficial in the phase 3 stage. Although RWD platform 
cannot capture immunogenicity data easily at the phase 2 stage, the 
vaccine efficacy and adverse events could be captured relatively easier 
in the phase 3 stage. Therefore, this hybrid design will contribute to the 
COVID-19 vaccine design with the RWD embedded into a seamless 
design frame. Zhu et al. (2019) has summarized practical consideration 
in implementing this type of hybrid trial including data quality and 
relevance, site selection, randomization, outcome adjudication, sample 
size, blinding, and bias [45]. 

Moreover, ethical concern could be raised for a placebo-controlled 
randomized efficacy trial for fatal diseases, like the West African Ebola 
vaccine [3,4], as discussed in Section 2. A similar concern may be raised 
for COVID-19, then if the efficacy signal in an early phase trial is high, 
there is a high possibility to adopt a single-arm trial with investigational 
vaccine only arm. In this scenario, a virtual control arm which used RWD 
including vaccine registry or natural history study can be beneficial. 
Through statistical modeling such as exact matching or propensity 
score-based methods, one can find a virtual control arm that has the 
similar inclusion/exclusion criteria, disease characters, target pop
ulations and other important factors. In this way, a quasi-randomization 
control arm can be derived to mimic the randomized clinical trial. The 
vaccine efficacy effect can be evaluated through this virtual control arm 
derived based on RWD. 
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However, to wisely use RWD for regulatory decision purpose in 
vaccine development, one should be cautious about the RWE generation 
procedure. Without a careful prospective plan on the selection of study, 
data source, population, endpoints, and a clear operational workflow 
using RWD, there could be risk of obtaining biased results. The biased 
results could not be considered as RWE for benefit-risk assessments nor 
further vaccine registration. More comprehensive considerations of how 
to use RWD in clinical development could be found in Li et al. (2020) 
[72]. 

3. Vaccine correlate of protection 

Correlate of protection (COP) is another important topic that has 
gained extensive attentions in vaccine development. A correlate of 
protection is an immunological marker that predicts vaccine protection 
against certain infection or disease. Therefore, COP is often used as 
surrogate endpoint to vaccine efficacy. Vaccine efficacy endpoints usu
ally require huge sample size to collect required number of events/cases, 
especially when the incidence rate is low. COP, on the other hand, al
lows the usage of immunological response to evaluate the vaccine effect, 
which is less costly, and may accelerate the vaccine development, 
among other numerous benefits. COP should be associated with 
immunological marker(s) and an antibody assay only. Although anti
body titer is the natural choice of the immunological marker, some re
searches also considered alternatives like fold rise, or composite 
biomarkers. In addition, multiple assays might be explored during vac
cine development. The COP conclusion needs to explicitly specify the 
correlation relationship between the assay and biomarker(s). Switching 
to other biomarker(s), or using new assay may require separately 
assessment of COP. 

3.1. The Prentice criteria 

The Prentice criteria were introduced in 1989 [46], when it was first 
developed to validate substitute endpoints in RCT data. Later his four 
criteria for validation of a surrogate endpoint was adapted for vaccine 
trials as follows by WHO [47]: 

(1) Protection against vaccine efficacy is significantly related to 
having received the vaccine; 

(2) The immune marker is significantly related to the vaccination 
status; 

(3) The substitute endpoint is significantly related to protection 
against the vaccine efficacy; 

(4) The vaccine efficacy can be explained by the immune marker 
fully. 

Criteria 4 requires the immune marker to fully capture the vaccine’s 
effect. That is, the incidence of the events is the same between vacci
nated and unvaccinated subjects given a particular level of the immune 
marker (e.g., titer value), since the effect of the vaccine disappears after 
adjusting for the immune marker. This requirement is quite restrictive, 
making it difficult to validate correlates as surrogates in general. Besides 
the restrictive criterion 4, the Prentice criteria is also criticized by its 
post-randomization selection bias by Frangakis and Rubin (2002) [48], 
since the immune marker is measured after randomization and could be 
impacted by the vaccination intervention. 

3.2. Qin’s framework 

Qin et al. proposed a framework to assess immunological correlates 
of protection [49], based on the methods of Prentice and Frangakis and 
Rubin (2002). Under this framework, the interests have been shifted to 
address post-randomization bias mentioned above. The proposed 
framework includes 3 levels of correlate of protection: correlate of risk 
(COR), level 1 surrogate of protection (SOP) and level 2 surrogate of 
protection. Qin et al. define the COR as an immune response that is 
associated with the primary efficacy endpoint. In comparison, a 

surrogate of protection (level 1 or level 2) is a COR that predicts the level 
of VE accurately. Level 1 SOP is defined as “an immunological mea
surement that is a COR within a defined population of vaccinees and is 
predictive of [vaccine efficacy] VE in the same setting as the trial”, 
whereas level 2 SOP extends the SOP to different populations or setting, 
for which meta-analytical approach is usually applied. 

Level 1 SoP is further subdivided into two categories: Statistical SOP 
and Principal SOP. Statistical SOP refers to the traditional SOP that 
satisfies Prentice criteria. The emphasize is placed on Principal SOP, that 
essentially evaluates how VE varies among subgroups defined by fixed 
level of an immune marker. However, there is inherent missing value 
challenge that the potential immune response given vaccine is unob
served for the placebo arm. 

3.3. Methods for correlate of protection 

In order to address the inherent missing value issue associated with 
principal SOP, Follmann (2006) [50] proposed two methods to augment 
the standard vaccine trials design: 1), utilization of baseline predictors of 
the immune marker, and 2), vaccination of uninfected placebo subjects 
at the close out of the trial, to estimate the missing immune values. 
Accordingly, a few new methodologies have been proposed based on the 
novel trial design and compared with the estimated likelihood-based 
methods. 

3.3.1. Semiparametric method 
Since multiple immune markers may be explored for even used as 

composite endpoint for COP, Huang and Gilbert (2011) [51] proposed a 
semiparametric approach that allows multiple potential surrogate 
markers to be considered, with the goal to estimate the conditional joint 
CDF F(s1,…, sJ|Wj). To be more specific, the joint CDF is estimated via a 
location-scale model on the residuals as follows: 

F(s1,…, sJ |W) = P(S1 ≤ s1, .., SJ ≤ sJ|W) = P
(

ε1 ≤
s1 − μ1(W)

σ1(W)
,…, εJ

≤
sJ − μJ(W)

σJ(W)

)

= F(0)
(1,..,J)

{
s1 − μ1(W)

σ1(W)
,…,

sJ − μJ(W)

σJ(W)

}

where F(1,..,J)
(0) is the joint CDF for the residuals ε1, …, εJ. The location and 

scale parameters can be estimated by solving the estimating equations 
for mean and variance. 

3.3.2. Pseudo-score (PS) 
Motivated by the observation that incorporating closeout vaccina

tion data into existing estimation procedures resulted in increased 
estimation error, Huang, Gilbert and Wolfson (2013) [52] proposed a 
pseudo score method to estimates the score equation instead of the 
likelihood equation. The score equation of the observed likelihood is 
defined as 

∂l(β,F)
∂β

=
∑

δi=1Uβ(Yi|Si,Zi,Wi)

+
∑

δj=0

Uβ
(
Yj|s,Zj,Wj

)
P
(
Yj|s,Zj,Wj

)
dF

(
s|Zj,Wj

)

∫
P
(
Yj|s,Zj,Wj

)
dF

(
s|Zj,Wj

)

with Z being the binary treatment indicator; W being baseline cova
riates; S be the immune marker; Y being vaccine efficacy; F{S} the dis
tribution of S; F(S|Z, W) being the CDF of S conditional on Z and W; P 
being risk conditional on Z, W and S; Uβ(Yi|Si, Zi, Wi) = ∂logP(Y,Z,W)/ 
∂β. 

The score type estimator improved the estimation by more efficient 
use of the augmented data hence but has the limitation requiring the 
baseline predictor W available for all trial participants. 

3.3.3. Semiparametric likelihood and pseudo-likelihood 
Liu et al. (2017) [53] proposed a semiparametric likelihood method 
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and a pseudo-likelihood method to explore the potential improvement 
to the pseudo score method. The semiparametric likelihood approach 
jointly estimates F(S|W) and the risk parameters β by treating F as an 
unknown parameter, which allows efficient use of the data. Pseudo- 
likelihood method defines a weighted estimator for F(S|W) such that 

F̂β(s|w) =

∑

i
I(Si ≤ s,Wi = w,δi = 1)

/
P̂(δi = 1|Si,w; β)

∑
iI(Si ≤ s,Wi = w)

/
P̂(δi = 1|Si,w; β)

Based on simulation results, the pseudo-likelihood method provides 
computational efficiency and comparable model estimation results 
compared with the pseudo score method and semiparametric likelihood 
method. 

There are continuous researches based on the principal SOP and/or 
the novel vaccine trial designs, e.g., three-phase sampling and non- 
monotone missing sampling design etc. Those likelihood-based ap
proaches discussed could be aimed to address inherent missing value 
issue for the placebo group, but the implementation relies on the study 
design, whether a reliable baseline predictor for immune marker exists, 
and whether the trial design allows additional booster dose by end of the 
trial to collect missing immune values. In practice, the traditional COP 
analyses based on VE curve are still used as the primary method as 
demonstrated in example [54]. 

4. Other considerations for vaccine development 

Besides innovative designs and correlate of protection, continuous 
efforts have been made to improve statistical methods to several 
fundamental components of vaccine clinical development, including 
vaccine efficacy, safety, immunogenicity and more. Heyse et al. (2016) 
[55] provided a comprehensive review to many aspects of the vaccine 
development highlighting statistical applications that have contributed 
to successful vaccine development. This section below, instead, offers a 
summary of statistical considerations of selected topics that target on 
ongoing real-world challenges, and are of great interests to many vac
cine researchers. 

4.1. Vaccine efficacy 

In vaccine efficacy trials, vaccine protective effects are investigated. 
Halloran et al. (2010) [56] provided a theoretical framework to assess 
vaccine effects, allowing different parameters to be used measuring 
various effects of vaccine. Prior to licensure, interest of clinical devel
opment programs has been placed on the capability of vaccination to 
prevent or reduce the probability of vaccinated subjects getting the 
targeted disease or infection, e.g., vaccine efficacy. Commonly used 
definitions include comparing attach rates, compare person-time, or 
comparing time-to-event (infection) data. For this subsection, special 
attention is given to two efficacy related research topics: asymptomatic 
events and burden of illness (BOI) efficacy measure. 

4.1.1. Asymptomatic events 
Many pathogens have high proportions of asymptomatic or mild 

infection, such as Zika virus. However, VE remains an important 
endpoint of vaccine trials for these pathogens regardless the level of 
symptom, as it could trigger onward transmission and some long-term 
sequelae. From an operational perspective, asymptomatic events pose 
challenges for trial conduction, since those infections require frequent 
periodic testing of all trial subjects to confirm the real-time infection 
status. 

Kahn et al. (2019) [57] compared seven approaches to estimate 
vaccine efficacy.  

• Approach 1 is the benchmark. They assume that the exact day of 
infection is known for all asymptomatic infections. This is the ideal 
scenario, hence referred as the “perfect knowledge” scenario by 

Kahn. However, this is not practical because this requires daily 
testing of infection throughout the trial.  

• Approach 2 assumes that only symptomatic infections are recorded 
in a trial, and asymptomatic infections are treated as non-event and 
censored. As expected, this approach introduces bias in vaccine ef
ficacy estimation.  

• Approach 3 performs infection testing only once at the end of the 
trial to obtain the total counts of injection from each treatment 
group, and estimate vaccine efficacy using a risk ratio instead of a 
hazard ratio, e.g., VE =

Attach rate of vaccinated subjects
Attach rate of placebo subjects .  

• Approach 4 improved this relative risk estimate by assuming VE can 
be recovered from the ratio of cumulative hazards e.g., VE =
ln(1− Attach rate of vaccinated subjects)

ln(1− Attach rate of placebo subjects) . 
• Approaches 5 assumes the day of infection for the symptomatic in

dividuals is known, and asymptomatic infection is tested twice 
throughout the trial and once at end (3 intervals). This approach 
further assumes that the serological test is able to distinguish be
tween natural infection and vaccine-introduced immunity.  

• Approach 6 uses the same concept as of approach 5 but only 
assuming one serological testing at the end of the trial (one interval).  

• Approach 7 assumes that only one serological test at the end of the 
trial for 10% subjects. For remaining subjects, the infection status is 
imputed using multiple imputation then approach 6 is used for the 
imputed datasets. 

Based on simulation results, the corrected relative risk estimate 
(approach 4), the interval-censored Cox models (approaches 5, 6 and 7) 
yields unbiased VE estimates while approach 2 and 3 returns biased 
results. In addition, compared with approach 5, approach 6 provides 
similar estimation in terms of the coverage probability and power but 
only requires one serological test and hence has the advantage of 
requiring fewer resources. It is interesting to see that approach 7, testing 
only 10% subjects at the end of the trial could also provide an accurate 
estimate but requires even reduced resources. In practice, when “perfect 
knowledge” posts costs and resources challenges, alternative approaches 
like corrected relative risk estimate or interval-censored Cox models 
could be considered. 

4.1.2. Burden of illness (BOI) 
Vaccine intervention could be assessed by not only incidence but also 

severity. Chang et al. (1994) [58] proposed the concept of burden of 
illness (BOI) to take severity of the cases into consideration. First, the 
investigators graded the severity of each case, and nonevents were 
graded as zero. Secondly, they set up a BOI score that was simply the 
sum over all cases for each treatment group. Test statistics were pro
vided alone with sample size and power calculation. 

Mehrotra et al. (2006) [59] compared eight methods for testing dual 
vaccine efficacy endpoints in a proof of concept (POC) HIV vaccine trial. 
The two endpoints of interests are incidence of HIV infection, and the 
viral load set point among infected subjects. The first two methods were 
based on BOI and used a single test for the actual values or ranks of BOI 
respectively. The remaining six approaches were based on unweighted 
or weighted two-part z tests, Simes’, and Fisher’s methods. Simulation 
results showed that for a POC efficacy trial, the BOI is generally less 
powerful. Both unweighted Simes’ and Fisher’s are more powerful even 
after adjusting for the selection bias, especially when VE is low. When 
VE is relatively high (>60%), all methods have comparable perfor
mance. Hu et al. (2015) [60] also proposed weighted two-part z test 
based on the combination of two endpoints. In their methods, the 
optimal weight is obtained by maximizing testing power – assign more 
weight to the statistic with larger effect size. The paper also proposed 
conditional exact procedure to handle the issue with excessive number 
of uninfected subjects. 

Another problem for vaccines targeting rare events is that most of the 
participants do not become infected during the trial. Follmann et al. 
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(2009) [61] introduced chop-lump Wilcoxon and t-tests based on BOI to 
tackle the issue. Similar to BOI, this approach also assigns a score to each 
subject, 0 for uninfected subjects and S for severity endpoint assessment. 
Assuming equal number of subjects in each treatment group, the chop- 
lump test removes an equal number of zeros from both groups, then 
performs the test based on the modified BOI, with the null distribution is 
provided using permutation method. 

4.2. Vaccine safety 

Vaccines are usually target healthy subjects; therefore, safety per
formance remains a primary consideration for all vaccines. Vaccine 
reactogenicity data (also referred as vaccine solicited AEs) and clinical 
adverse events (AE) data are routinely evaluated throughout the clinical 
development. Vaccine reactogenicity refers to a set of adverse events of 
special interests, that are either caused by or attributable to the vacci
nation. Vaccine trials also collect subject self-reported AE similar to 
therapy trials, hence share the challenge of multiplicity when multiple 
safety variables are analyzed. 

4.2.1. Multiplicity issue for vaccine safety 
Vaccine trial enrollment could be considerably large, resulting in the 

possibility of an excess of false positive findings although clinically not 
meaningful. Nauta (2020) [62] discussed five approaches to account for 
vaccine safety multiplicity: 

(1) No correction. False negative is usually of greater concern for 
vaccine regulatory reviewers than false positives. Therefore, no adjust
ment is considered as inaccurate but conservative approach, and fol
lowed by most vaccine trials. 

(2) Strong control of family-wise error rate (FWER) using Bonferroni 
correction or Holm method. 

(3) False discovery rate (FDR) method. Results based on 10,000 
simulation showed that FDR approach could address less false positive 
than uncorrected method but more than Holm methods. 

(4) Double false discovery rate approach proposed by Mehrotra and 
Heyse (2004) [63]. This approach method involves a two-step applica
tion of adjusted P values based on the Benjamini and Hochberg false 
discovery rate (FDR). Step 1, categorize AE by body system or other 
characteristics and disregard rare AEs that cannot even be rejected at 
unadjusted α =0.05 level. Step 2, define Pi* = min {Pi1, Pi2, …, Pik} to be 
the ‘representative’ P-value for the ith body system, as smallest P-value 
indicates the strongest safety signal. Then apply FDR to Pi* for all pre- 
defined groups, e.g., body system. Then apply the second level of FDR 
adjustment within each body system, e.g., {Pi1, Pi2, …, Pik} and flags AE 
(i, j) if final adjusted Pi* < α1 and Pij < α2. The cutoff α1 and α2 are set to 
be α/2 and α respectively (assuming FDR is controlled at level α) sug
gested by bootstrap resampling results. 

(5) Bayesian 3 level hierarchical mixture model proposed by Berry 
et al. (2004) [64], that allows borrowing information across body sys
tem and potentially within body system. 

In practice, most trials follow approach one reporting safety data 
without correction. Approach 2–5 could be considered as alternative or 
sensitivity analysis should there be concerns regarding safety profile. 

4.2.2. Vaccine safety surveillance 
Although a huge number of subjects are usually enrolled in vaccine 

clinical trials to build up vaccine safety database, rare AEs could still go 
undetected during clinical development. For example, tetravalent 
rhesus-human reassortant rotavirus vaccine (RRV-TV) was withdrawn 
from the market due to reported intussusception, a type of intestinal 
obstruction. 

One goal for post-licensure vaccine safety surveillance is to detect 
serious AEs as early as possible without too many false positive findings. 
Sequential statistical analysis allows multiple looks of the data by 
adjusting for multiple testing issue and control of the overall significance 
level. Two groups of sequential methods could be considered: 

continuous or group sequential methods. The former achieves near real- 
time monitoring by allowing testing as frequently as possible, while the 
later analyzes data at some time point after data is available for a group 
of subjects. Silva et al. (2015) [65] systematically compared the per
formance of two designs and concluded that continuous sequential 
method has a shorter expected time-to-signal than a group sequential 
method and data should be collected as frequently as possible. One of 
the most popular continuous sequential tests, the maximized sequential 
probability ratio test (MaxSPRT), was proposed by Kulldorff et al. 
(2011) [66]. MaxSPRT is based off of Wald’s clinical sequential proba
bility ratio test (SPRT) but with composite alternative hypothesis instead 
of a simple alternative hypothesis. The MaxSPRT has been applied to 
Pediarix vaccine data and showed good performance in terms of statis
tical power and time-to-signal duration. 

As a comparison, Li et al. (2020) [67] proposed a Bayesian paradigm 
describing how sequential analysis can be performed under Bayesian 
framework. Comparing with MaxSPRT, the Bayesian approach signifi
cantly improves the false negative rate and decreased the earliest time to 
signal based on both simulation results and a real-world vaccine safety 
example. As discussed in Section 2, there are very limited applications of 
a Bayesian approach in vaccine phase I to phase III trials designs. 
Therefore, although the proposed Bayesian sequential method is for post 
marketing safety surveillance, this could still be a promising signal for 
potential further Bayesian approaches implemented in vaccine 
development. 

4.3. Vaccine immunogenicity 

Most vaccine immunogenicity trials are based on non-inferiority or 
equivalence testing. Within the four types of immunogenicity trials 
mentioned in Section 2, bridging, combination and concomitant trials 
are usually conducted under a non-inferiority framework while lot-to-lot 
consistency trial is categorized as equivalence testing. Due to the 
massive usage of non-inferiority testing, some statistical considerations 
around this topic would be worth further discussion. 

4.3.1. Non-inferiority testing 
Non-inferiority designs are often used to demonstrate that the 

immunogenicity of the candidate vaccine is not less than that of a 
licensed vaccine, but could provide other benefits, like cost, storage, 
improved safety, reduced number of injections etc. Non-inferiority 
methodology could also be used to bridge established vaccine efficacy 
to extended age groups or regions. For example, an immunogenicity trial 
was conducted to bridge the efficacy findings for 9-valent human 
papillomavirus virus-like particle (9vHPV) developed in young women 
(16–29 years of age) to girls and boys (9–15 years of age). 

Although often used, some characteristics of the non-inferiority test 
should be considered prior to performing analysis. Wang et al. (2001) 
[68] discussed a series of statistical considerations for noninferiority/ 
equivalence vaccine trials, including endpoints, hypothesis testing, se
lection of the noninferiority margin, adjustment for stratification fac
tors, missing data and sample size. For stratification factor, different 
choices of weights that are assigned to different stratum are discussed 
and compared – Cochran-Mantel-Haenszel (CMH) weights, the precision 
or inverse-variance (INVAR) weights and the minimum risk (MR) weight 
strategy that has the smallest asymptotic mean squared error. In addi
tion, MR strategy when used alone with observed variance, could offer 
notable power advantages for trials with high response rates. Kong et al. 
(2004) [69] discussed type I error and power testing for multiple end
points of noninferiority or equivalence when different immune re
sponses are measured. Assuming relatively large sample size, 
approximately multivariate normal distribution can be assumed, and the 
distributions of the test statistics can be derived with known covariance 
matrix. Simulation was conducted to further demonstrate the Type I 
error and power performance. 
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5. Concluding remarks 

Traditional vaccine development can be time-consuming and high 
cost. Especially in the global pandemic, e.g. COVID-19, we are 
increasingly facing the need for efficient designs and analyses in vaccine 
clinical trials. As such, the purpose of this article was to provide an 
overview of innovative trial designs and analyses for vaccine clinical 
trial development. Starting with adaptive design, the first type of 
adaptive design we reviewed was a 4vHPV seamless phase II/III vaccine 
efficacy trial. This design allowed dose selection by the end of phase II 
and incorporated phase II data into final Phase III analyses. Type I error 
was carefully controlled which was demonstrated through theoretical 
proof and simulation. The second type of adaptive design featured 
population enrichment, which allowed dropping sub-populations based 
on undesired interim analysis results. Type I error was controlled by a 
pre-specified testing procedure, and simulation results showed that the 
design had a high probability of success by selecting the promising 
target population at the interim analysis. A sample size adaptation 
design which addressed the issue of uncertainty of sample size calcula
tion assumptions at the beginning of the trial was also discussed. More 
comprehensive considerations of adaptive design implementation, 
including the role of cross functional team, communication process and 
documentations could be found in Li et al. (2020) [70]. 

Although there are still very limited case studies of using Bayesian 
design for vaccine development, the conceptual flexibility and advan
tages of borrowing historical information in the Bayesian design do 
provide a new paradigm for efficient vaccine clinical trials. Of note, 
early engagement and detailed evaluation of operating characteristics in 
proposed Bayesian design and choice of prior, e.g. type I error and 
power, would be the key considerations to get successful endorsements 
with regulatory agencies. For example, in a recent phase 1/2/3 study of 
RNA vaccine candidate again COVID-19 in healthy individuals [71], the 
primary analysis is based on the Bayesian posterior probability with a 
minimal informative (pessimistic allowing for considerable uncertainty) 
beta prior is proposed. The study has four interim analyses and over
whelming efficacy can be declared if the posterior probability is higher 
than the success threshold. Given the use of Bayesian success criteria (e. 
g. based on the posterior probability P[VE > 30%|data]), the success 
thresholds for each interim analysis need to be appropriately calibrated 
through simulations to control the overall type I error rate at 2.5%. 

As an emerging new type of innovative trial design, master protocols 
have been popular for the past several years and have been implemented 
for several therapy trials. It is newly introduced to vaccine development, 
triggered by the emergency to develop a vaccine during the global 
COVID-19 pandemic. In addition, the master protocol has the appealing 
feature of concurrent evaluation of multiple vaccine candidates, and 
turned over a new leaf of vaccine development, which allows more 
ethical and accelerated vaccine development in public health emer
gencies. More recently, the rapid increase in the volume, variety, and 
accessibility of digitized RWD has also presented unprecedented op
portunities for the use of RWD for the data collection, trial designs and 
analyses in the vaccine development. However, rigorous statistical 
methodologies are necessary to ensure the robustness of results are 
characterized from the RWD, especially for regulatory purpose [72]. 

Correlate of protection (COP) is another complex yet essential sta
tistical consideration of vaccine development. The traditional Prentice 
criteria approach and its disadvantages were discussed, prior to intro
ducing Qin’s framework that was incorporated in WHO’s report. 
Correlate of protection novel trial designs that utilize baseline predictor 
or closeout vaccination were discussed, and a series of later research 
work based on the novel design was summarized in detail. However, for 
traditional trials without those design features, the usage could be 
limited. 

We also summarized several other statistical considerations for 
vaccine efficacy, safety and immunogenicity analyses, highlighting 
asymptomatic event handling, composite vaccine efficacy endpoint 

using the burden of illness score, multiplicity issues for vaccine safety, 
post marketing safety surveillance challenges, and some statistical 
considerations related to non-inferiority testing for immunogenicity 
endpoints. As expected, with the benefits of novel clinical trial designs 
and analysis – reduced bias, accelerate development timeline, flexible 
and efficient trial features etc., comes the requirement of more complex 
statistical modeling and simulations. Of note, these advances require 
continuous statistical inputs seamlessly integrated in the clinical 
development plan. However, the additional quantitative efforts are all 
worthwhile given the substantial gain of efficient vaccine development, 
and most importantly, the benefit of the target population. 
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