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Huntington’s disease is a fatal autosomal genetic disorder characterized by an expanded glutamine-coding CAG repeat sequence in
the huntingtin (Htt) exon 1 gene. The Htt protein associated with the disease misfolds into toxic oligomers and aggregate fibril
structures. Competing models for the misfolding and aggregation phenomena have suggested the role of the Htt-N-terminal
region and the CAG trinucleotide repeats (polyQ domain) in affecting aggregation propensities and misfolding. In particular, one
model suggests a correlation between structural stability and the emergence of toxic oligomers, whereas a second model proposes
that molecular interactions with the extended polyQ domain increase aggregation propensity. In this paper, we computationally
explore the potential to reduce Htt aggregation by addressing the aggregation causes outlined in both models. We investigate the
mutation landscape of the Htt-N-terminal region and explore amino acid residue mutations that affect its structural stability and
hydrophobic interactions with the polyQ domain. Out of the millions of 3-point mutation combinations that we explored, the
(L4K E12K K15E) was the most promising mutation combination that addressed aggregation causes in both models. The mutant
structure exhibited extreme alpha-helical stability, low amyloidogenicity potential, a hydrophobic residue replacement, and removal
of a solvent-inaccessible intermolecular side chain that assists oligomerization.

1. Background

Huntington Disease (HD) is a fatal autosomal dominant
genetic disorder that is characterized by CAG trinucleotide
repeats in the huntingtin (Htt) exon 1 gene [1, 2]. HD is part
of the amyloidoses group of diseases characterized by large
deposits of amyloid proteins that inflame and weaken cells,
leading to their destruction. Parkinson’s, Alzheimer’s, and
diabetes, to name a few, also belong to the same amyloidosis
group and have been shown to be greatly aggravated by
amyloids [3–5]. These diseases caused or implicated by pro-
tein misfolding are usually categorized by the accumulation
of insoluble amyloid proteins that form into long fibrils
in the body [6]. The build-up of these fibrils causes tissue
degradation and appears at the onset of the particular disease.
In HD, both the alpha-helical Htt-N-terminal region and the

CAG trinucleotide repeats (polyQ domain) are believed to
participate in themisfolding process of the huntingtin protein
into beta-sheet rich amyloids that aggregate into potentially
toxic oligomeric species and fibril structures [7–9].The wild-
type form of Htt is 3144 amino acids in length; however the
amyloid form has more CAG repeats causing an extended
polyQ domain. The polyQ domain begins at residue 18, as
drawn in Figure 1.The rate of aggregation greatly depends on
the flanking regions of the polyQ domain. In some cases, the
N-terminal domain has been shown to adopt an alpha-helical
structure that affects aggregate formation [8] and mutations
have been observed to influence fibril formation [10–15].

Htt is found everywhere in human tissues but is sig-
nificantly expressed in the cerebral cortex of the brain.
The homology of Htt is not well known; hence identifying
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Figure 1: Chain B from PDB 3IO6. Orange residues are positions 1–
370 and part of theHtt amino terminal region.The red positions 371–
387 are the 17 residues of theHtt-N-terminal region implicated in the
formation of amyloids (MATLEKLMKAFESLKSF). The blue residues
are GLN repeats attached to the N-terminal region.

the exact function of the protein has been very difficult.
Moreover, the Htt protein interacts with more than 100
different proteins in the body, displaying numerous functions
[16]. The ubiquitous Htt in the human body is involved in
microtubule machinery and vesicle trafficking [17, 18]. The
presence of Htt in the brain of mice has been pivotal to
proper development due to its maintenance of ER in neurons
[19]. The exact trigger to commence the oligomers and fibril
formation is not well defined. Nevertheless, the onset of
symptoms is usually attributed to a toxic gain of function by
the mutant amyloid [20–22]. This gain of function usually
enables a pathway that destabilizes the Htt-N-term to start
forming beta-sheets.

There is no known cure forHD and approximately 30,000
people possess the gene that causesHD in theUS andCanada.
The prevalence of the disease is mainly among Caucasians
in a ratio of 5–7 per 100,000 people [23]. As the disease
progresses it causes neuronal damage to the brain causing
a variety of symptoms including involuntary movements,
decreased cognitive function, and psychotic behavior [24].
Current treatments for the disease remain mostly ineffective
due to the lack of knowledge surrounding the function of
the huntingtin protein [25]. The disease is characterized by
intracellular inclusions that form in the GABA-ergic neurons
in the brain leading to cell death [26]. The death of these
essential neurons leads to uncoordinated movements, erratic
body movements, and changes in behavior [27]. Degradation
of neuronal pathways leads to dementia and loss of bodily
control resulting in injury and eventually full-time medical
care. In its last stages, the disease can cause death by triggering
failure of most of the body’s vital systems.

Stem cell therapy has recently been shown to be a
potential treatment for damaged brain cells, allowing for
the reversibility of the damages caused by the disease [28].
The disease begins in the central nervous system as large

amounts of the healthy form of the Htt protein (native form)
misfold and become toxic. The transition between a native
and amyloid structure is governed by an amyloidogenic
energy barrier that is easier to surpass when the Htt protein
is unstable. Hence theoretically, increasing the stability of the
Htt protein is one way to potentially decrease the emergence
of amyloids and allow for a slower progression of the disease.

Currently, there are two prominent aggregation models
outlining how the Htt protein misfolds and aggregates.
The first model suggests that the Htt-N-terminal region
is the key player behind aggregation, existing normally
in a random coil conformation and folding into a helical
structure upon interaction with a second Htt-N-terminal
to form an oligomer structure [29]. The Htt-N-terminal
region is present in helical form in fibrils of huntingtin exon
1, suggesting an involvement in fibril formation, possibly
via alpha-helical interactions that create oligomers [8, 30–
32]. The Lysine residues (6 and 15) in the Htt-N-terminal
region are believed to form an intermolecular side chain
interaction and are solvent-inaccessible in the aggregate state
[15]. Mutating any of these residues could potentially weaken
or break oligomerization. More recently, Arndt et al. strongly
confirmed the high degree of helical propensity of the Htt-N-
terminal region in solution and observed that some Htt-N-
terminal regions turn back on themselves and self-associate
with helical bundles [9]. The second model suggests that
aggregation of the huntingtin protein occurs as a result
of the interaction between the Htt-N-terminal region and
huntingtin’s extended polyQ domain (the domain cross-talk
model) [33, 34]. This model proposes that the hydrophobic
residues of theHtt-N-terminal region interact with the polyQ
domain and stabilize its structure, driving fibrillization and
bypassing the oligomer state.

Computational models have served to increase our
understanding of biological processes throughout time. The
problem of multiple protein sequence alignment [35], the
mapping of molecular evolution [36, 37], and modeling the
dynamics of molecules could have only been tackled with the
use of computational power [38]. Computational methods
assisted analysis on genomic data, mapping of nucleotide
and amino acid sequence relationships, exploring protein
domains and structures, and storing data sets [39, 40]. The
development of computationally intensive techniques and
algorithms improved efficient access and use of biological
data leading to immediate growth in the fields of drug
design, drug discovery, gene finding, and protein structure
prediction. The aim of this article is to computationally
explore the potential to reduce Htt aggregation by simulta-
neously addressing the aggregation causes outlined in both
models. We investigate the mutation landscape of the Htt-
N-terminal region and design potential amino acid residue
mutations that can be applied to lower the amyloidogenicity
of Htt. We do not promote one aggregation model over the
other; rather, we explore mutations that consolidate both
aggregation models. To perform this, we outline three pro-
cedures. First, we explore the entire stability landscape of the
Htt-N-terminal region and identify mutation combinations
that significantly increase helical stability to prevent self-
association of the Htt-N-terminal region into helical bundles
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(1) procedure GenerateLandscape(𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒, 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒)
(2) if 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒.𝑙𝑒𝑛𝑔𝑡ℎ! = 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒.𝑙𝑒𝑛𝑔𝑡ℎ then
(3) return null
(4) end if
(5) 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 ← List(“ARNDCQEGHILKMFPSTWYV”)
(6) 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← [ ]
(7) for 𝑥 in [1 . . . 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒.𝑙𝑒𝑛𝑔𝑡ℎ] do
(8) for 𝑚 in𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 do
(9) 𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ←mutate(positionfl 𝑥, mutation fl 𝑚, 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒)
(10) 𝑀𝑢𝑡𝑎𝑛𝑡 ← createStructure(𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒)
(11) Coulomb𝐸 ← calculateCoulombEnergy(𝑀𝑢𝑡𝑎𝑛𝑡)
(12) LJ𝐸 ← calculateLJEnergy(𝑀𝑢𝑡𝑎𝑛𝑡)
(13) Solvation𝐸 ← calculateSolvationEnergy(𝑀𝑢𝑡𝑎𝑛𝑡)
(14) 𝑅𝑒𝑠𝑢𝑙𝑡𝑠.𝑎𝑑𝑑(𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒,Coulomb𝐸, LJ𝐸, Solvation𝐸)
(15) end for
(16) end for
(17) 𝑟𝑒𝑡𝑢𝑟𝑛𝑅𝑒𝑠𝑢𝑙𝑡𝑠
(18) end procedure

Algorithm 1: Generating the mutational landscapes of the Htt-N-term.

and lower the aggregation propensity suggested by the first
model. Second, we analyze the most promising mutation
combinations from the previous step in search for mutations
that replace hydrophobic residues with charged amino acids
toweaken interactionswith the polyQdomain outlined in the
secondmodel. Finally, we explore anymutation combinations
that additionally break the intermolecular side chain between
residues 6 and 15, further lowering oligomerization potential.
Together, all three procedures simultaneously address the
theories behind Htt aggregation proposed by both models.
Our results indicate that the mutation combination (L4K
E12K K15E) is the most promising mutation that satisfies
all three conditions. We confirm with molecular dynamics
productions that this mutation combination does not alter
native form and results in an Htt-N-terminal mutant struc-
ture that exhibits extreme stability and potentially lowers
amyloidogenicity. Although not a substitute for experimental
studies, computational simulations of proteins can provide
insight and test procedures that remain difficult to study
experimentally.

2. Materials and Methods

In this section, we outline the technical procedure we used
to map the mutation landscape of the Htt-N-terminal region
and explain in detail how we assess the stability of residues
on the protein fragment structure. We performed a brute-
force procedure to calculate the stability effect of every
possible single-point mutation in the 17 residues of the Htt-
N-terminal region and used the results to efficiently estimate
the effect of 3-point mutations on the protein fragment.

2.1. Exploring Single-Point Mutation Landscape. Algorithm 1
is inspired from Smaoui and Waldispühl [41] and outlines
the detailed procedure we used to generate the mutational
landscape of the Htt-N-term. Starting with the helical Htt-
N-term PDB structure in native form (PDB 3IO6, residues

371–387; see Figure 1), we mutated every residue on the
structure backbone into all the other possible 19 canonical
amino acids. For each single-point mutation experiment, we
compute the Lennard-Jones (LJ), Coulomb, and solvation
energy terms. While the LJ and Coulomb measure the elec-
trostatic potential and charges between atoms and solvation
measures the interactions with a water surface, together, the
sum of the three terms provides a good estimate for the
stability of a protein structure, as given by the following:

𝐸 = Solvation + LJ + Coulomb. (1)

Low values indicate stable energetics, while high energy
values suggest unfavourable destabilizing interactions. The
single-point mutation results generate the 3D landscape plot
in Figure 2. The amino acid length of the Htt-N-term makes
up 1 dimension, the 20 possible amino acid mutations make
up the second dimension, and the energy values produced by
a (residue, mutation) pair make up the third dimension.

The LJ and Coulomb terms were calculated using the
standard definitions given by the GROMACS 4.5 [42] molec-
ular dynamics package using the GROMOS96 53a6 [43] force
field along with the SPC [44] water model. We used a cutoff
of 10 Å for van der Waals and short range electrostatic inter-
actions and calculated long range electrostatic interactions
using a particle mesh Ewald sum [45, 46].

For every mutation, the sum of LJ, Coulomb, and solva-
tion energies is computed and compared to the nonmutant
structure energies as shown in the following:

Δ𝐸 = 𝐸 − 𝐸0, (2)

where 𝐸0 is the energy of the native nonmutant Htt-N-term
and 𝐸 is the energy of a native mutant structure.

TheΔ𝐸 valuemeasures the difference in energy caused by
introducing a mutation to the Htt-N-term structure. PositiveΔ𝐸 values correlate to a decrease in stability and negative Δ𝐸
values correlate to an increase in stability.
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Figure 2: Single-point mutation landscape of the Htt-N-terminal region. Stable mutants have low energies (blue), while destabilizing
mutations have the highest energies (red). Energies are in KCal/mol.

2.2. Solvation Energy. The solvation energy term used to
calculate the interactions of our mutant structures with a
water surface was computed by AquaSol [47, 48] and solves
the following:

Solvation

= 𝐹(𝑝0,𝐶dip) − 𝐹(0,0)
− (𝑘B𝑇 ln (1 − 𝑁𝐴𝐶dip𝑎3)𝑁𝐴𝐶dip𝑎3 )∫

solvent
𝑑r𝜌dip (r) ,

(3)

where 𝐹(𝑝0,𝐶dip) defines the free energy of a protein system
defined at dipoles of moment values 𝑝0 and concentration𝐶dip, 𝐹(0,0) is the free energy of a protein system with
solvent concentration set to zero, 𝑎3 is the lattice grid size
volume of the solvent, 𝑘B is the Boltzmann constant, 𝑇 is the
temperature in Kelvin, and r is the surface definition, solvent-
accessible surface probe.

The solvation energy is calculated during formation of the
protein when it is in water. The tool utilizes the hydrogen
bonds between molecules, the pH, and the temperature to
efficiently solve the dipolar nonlinear Poisson-Boltzmann-
Langevin equation using a fast and detailed dipolar water
model. We used AquaSol with the following setup: atomic
charges and radii assigned with PDB2PQR using CHARMM
force field at neutral pH, a grid of 257 × 257 points spaced by
1 Å, a temperature of 300K, and a solvent-accessible surface
with an Rprobe of 1.4 Å. All hydrogen bonds were optimized.
We used a trilinear interpolation protocol for projection of

fixed charges on the grid, a lattice grid size for the solvent: 𝑎
= 2.8 Å, and solvent made of dipoles of moment 𝑝0 = 3.00D
at a concentration of 𝐶dip = 55M. No salt was added to the
solution and small ions (Na+, Cl−) were used to equilibrate
the systemwhen needed.The electrostatic potential was set to
zero at the boundaries, and the stopping criteria for residual
were sent to 1 ⋅ 10−6 (when possible).
2.3. Performing Mutations. We mutated every residue in
the Htt-N-term region into the other 19 canonical amino
acids using SCWRL4 [49], a tool that computes the van der
Waals forces and hydrogen bond interactions to determine
the electron densities of different areas of the protein and
predict the side chain conformations to a backbone structure.
For every mutation, SCWRL4 fit the new mutant amino
acid sequence onto the original Htt-N-terminal backbone to
produce a mutant Protein Data Bank (PDB) structure.

2.4. Molecular Dynamics Productions. Subsequent to gen-
erating the mutant PDB structures for the Htt-N-term, we
perform short energy minimization (EM) runs to relax the
structures and remove any steric clashes that were introduced
by SCWRL4. The difference of the sums of the LJ, Coulomb,
and solvation energy terms (2) between the mutants and
nonmutant structures was used to rank the stability of the
mutations. Mutants that have a Δ𝐸 that is negative are more
stable than the nonmutant structure. Structures that were
deemed very stable (low Δ𝐸) were then prepared for molec-
ular dynamics (MD) production to formally computationally
test structure stability over time.
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(1) procedure EstimateDeltaE(𝑅𝑒𝑠𝑢𝑙𝑡𝑠, 𝐸0, 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑛)
(2) 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 ← List(“ARNDCQEGHILKMFPSTWYV”)
(3) Table Δ𝐸 ← 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 − 𝐸0 //for each element in Results
(4) 𝐿𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 ← [ ]
(5) Tuples𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ← 𝐶𝐻𝑂𝑂𝑆𝐸(𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒.𝑙𝑒𝑛𝑔𝑡ℎ, 𝑛)
(6) for (𝑥1, 𝑥2, . . . , 𝑥𝑛) tuples in𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 do
(7) for 𝑚1 in𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 do
(8) for 𝑚2 in𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 do
(9)

...
(10) for 𝑚𝑛 in𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 do
(11) 𝑀𝑆𝑒𝑞 ←mutate((𝑥1, 𝑥2, . . . , 𝑥𝑛), (𝑚1, 𝑚2, . . . , 𝑚𝑛), 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒)
(12) Δ�̃� ← 𝑛∑

𝑖=1

Δ𝐸(𝑚𝑖, 𝑥𝑖)
(13) 𝐿𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒.𝑎𝑑𝑑(𝑀𝑆𝑒𝑞, Δ�̃�, (𝑥1, 𝑥2, . . . , 𝑥𝑛), (𝑚1, 𝑚2, . . . , 𝑚𝑛))
(14) end for

(15)
...

(16) end for
(17) end for
(18) end for
(19) 𝐿𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒.𝑆𝑂𝑅𝑇(𝐾𝑒𝑦 ← 2) //Sort on second element ascending
(20) return 𝐿𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒
(21) end procedure

Algorithm 2: Generating Δ�̃� for 𝑛-point mutations.

We used the GROMACS 4.5 [42] molecular simulation
package to run molecular dynamics (MD) and energy min-
imization simulations. Our mutant molecules were solvated
in a cubic box (with a minimum distance of 35 Å from any
edge of the box to any atom) and neutralized with chloride
ions and modeled using the GROMOS96 53a6 force field
along with the SPC water model. We used a cutoff of 10 Å
for van der Waals and short range electrostatic interactions
and calculated long range electrostatic interactions using a
particle mesh Ewald sum [45, 46]. Simulations were prepared
for a full MD run in both isothermal-isobaric (100 ps) and
canonical equilibration (100 ps) ensembles. Temperature and
pressure were controlled at 300K and 1 bar using the velocity
rescaling thermostat and the Parrinello-Rahman barostat,
respectively. A linear constraint solver was used to keep all
bonds at their equilibrium length. Approximately twenty-five
million time steps were used with an integration time step
of 2 fs to assess any potential turbulence introduced into the
molecules by mutations. The system’s coordinates were saved
every 10 ps for further analysis.

2.5. Assessing Structural Deviations. Following EM relax-
ation, we use MD to compute the stability of the mutant
structure over time by analyzing amino acid perturbations
using RMSD and RMSF plots. An RMSD plot measures the
root mean-square deviations, in angstroms, of the 𝐶𝛼 atom
positions in protein’s residues over a simulation run, whereas
the RMSF measures the root mean-square fluctuations, a
measure of the deviation between the position of a particle𝑖 over a simulation run given by

RMSF = 1𝑇
𝑇∑
𝑡𝑗=1

(𝑥𝑖 (𝑡𝑗) − �̃�𝑖)2 , (4)

where 𝑇 is the total simulation time and �̃�𝑖 is the reference
position of particle 𝑖. Low RMSF at a particular mutation site
suggests the absence of local residual instability.

2.6. Estimates for Multiple-Point Mutations. The problem of
calculating 𝑛-point mutations (multiple simultaneous single-
point mutations) grows exponentially in time and space as 𝑛
increases in size. Even for a reasonable 𝑛 = 3, the number of
structures that we need to consider grows to the millions. To
circumvent these calculations, we use the data from single-
point mutations to estimate the effect of 3-point mutations.
This method has been shown to return accurate estimates
[41]. We outline the procedure of calculating an approximateΔ𝐸 for multiple-point mutations in Algorithm 2. The Δ�̃�
estimates are computed by

Δ�̃� = 𝑛∑
𝑖=1

Δ𝐸 (𝑚𝑖, 𝑝𝑖) , (5)

where𝑚𝑖 is the mutation number 𝑖, 𝑝𝑖 is the residue position
that the mutation 𝑚𝑖 should take effect on, 𝑛 is the total
number of desired mutations and the dimension of the
landscape, and Δ𝐸 is the result returned by (2) of mutation𝑚𝑖 on position 𝑝𝑖. The estimates are calculated directly by
summing values from the Δ𝐸 table. The estimates might
deviate slightly from actual values since they do not take
into account pairwise electrostatic and coulomb effects of the
mutations with one another.

2.7. Predicting Amyloidogenicity. Although the stability
results returned by the Htt-N-term landscape predict the
effect of mutations on the native helical structure, the
landscape does not reveal amyloidogenicity potentials of the
mutations. Moreover, the 3-dimensional PDB conformation
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of the amyloid form of the Htt-N-term is unknown at the
present time. Hence, it is difficult to estimate the energy
barrier between native and amyloid Htt forms. Nevertheless,
we resort to several state-of-the-art computational tools to
approximate the 3-point mutations that are both stable and
least amyloidogenic, which would result in slower amyloid
formation and slower disease progression. In particular,
we use Zyggregator [50], TANGO [51], and PASTA [52]
to predict the aggregation propensities of the top ranking
stable 3-point mutations. The top 3 mutations with best
stability and lowest amyloidogenicity were run through an
MD production to verify that they conserve the native helical
structure of Htt-N-term.

3. Results and Discussion

To generate the mutation landscape of the Htt-N-term
region of the huntingtin protein we computationally mutated
each of the 17 amino acid positions in the N-terminal
region to each of the 20 canonical amino acids, as outlined
by Algorithm 1. For each mutant structure, we calculated
the total energy produced by introducing the respective
mutation when computing the electrostatic, solvation, and
enthalpy terms in (1). The complete mutation landscape is
plotted in Figure 2. Mutations that increase the stability
of the structure have the lowest energies, while mutations
that destabilize the structure increase its energy. Table S1
(see Table S1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2016/6247867) ranks the top 100
mutations in decreasing order of stability. Our results outline
that certain single-point mutations lead to an increase in the
total energy of the Htt-N-term (mutations with red peaks),
while others significantly stabilize the region, potentially
lowering amyloidogenicity and aggregation rates of amyloids
(mutations with purple nadirs) with respect to the first model
of huntingtin aggregation outlined in Section 1. This increase
in stability is aimed at preventing self-association of the Htt-
N-terminal region into helical bundles [9] and at lowering
the potential of aggregation that is not mediated through an
oligomeric precursor [53].

3.1. Increasing Htt-N-Terminal Stability to Prevent Self-
Association and Lower Aggregation Propensity. Three specific
mutations in the landscape of Figure 2 introduce a significant
increase in structural energy, resulting in a less stable helical
form. These three mutations indicate that the Htt-N-term
sequence is most likely to destabilize when mutations are
applied at the beginning of the sequence (position 1), in
the middle (position 9), or at the end (position 17). These
corresponding positions show energy spikes in the landscape
that can possibly be attributed to the strain that themutations
introduce in the alpha-helical structure. When the Htt-N-
term is mutated at position 1 from a Methionine to Aspar-
tic Acid (M1D) it causes an enormous increase in overall
energy of the structure. Similarly, mutating the positively
charged Lysine at position 9 to a hydrophobic polar Tyrosine
(K9Y) and a hydrophobic Phenylalanine to a hydrophobic
polar Tyrosine (F17Y) destabilizes the region. In turn, this
destabilization could make it easier for the region to break

away from its helical form. By decreasing the stability of the
Htt-N-term dramatically, the process of aggregation may be
increased significantly. Similar to other amyloid proteins in
various diseases, the oligomerization of themonomeric forms
of the Htt protein is initiated and promoted by the instability
in the alpha-helical Htt-N-term region [14, 29, 30, 54]. Apart
from the three mutations we mentioned above, the following
mutations can also contribute in destabilizing it: L4P, L4M,
K9F, K9M, F11T, E12D, S13Y, and S16R. If thesemutations find
their way into theHtt-N-terminal region, they can potentially
promote beta strands to form into long beta-sheets [14, 32,
49].

There are several reasons why certain mutations cause
increases in the total energy of the sequence, which include
effects caused by structural, electrostatic, and functional
groups. Increasing the negative charge of the sequence by
phosphorylation of the Htt-N-term region has been shown
to decrease fibril formation and disease toxicity [55, 56].
The destabilizing mutation at position 1 increases the total
negative charge of the sequence. In conjunctionwith the elec-
trostatic characteristics of aspartic acid, its steric properties
could also contribute to the impairment of the alpha helix
assembly which might promote the nucleation of beta-sheets
into fibrils. Similarly, the mutations K9Y and F17Y could also
have a similar outcome. Tyrosine’s high polarity and steric
hindrance as a result of its phenol group would make the
assembly of the alpha helix extremely difficult. As a result, the
rate of fibrillation of Htt proteins could drastically increase
leading to higher toxicity in the body.

More importantly, the landscape suggests that various
single-point mutations can stabilize the helical N-terminal
region. More specifically, Figure 2(b) suggests that four types
of mutations can introduce the greatest stability. First, intro-
ducing a Lysine (K) into the helical structure can strengthen
the bonds of the N-terminal region. This can be seen by the
blue dots across the landscape that result from performing
a mutation into a K. Similarly, introducing an Arginine (R)
into the helical structure also appears to increase stability,
regardless of which position it is introduced at (except at
position 16). Third, most mutations at positions 15 and 17
result in blue dots, which translates to a relaxation of the
structure and increased stability. A complete list of the effect
of these mutations on structure energy is ordered in Table S1.

Since our first goal is to explore how to improve the
stability of the Htt-N-terminal region to considerably lower
amyloidogenicity and aggregation propensities, we can bene-
fit more from mutations by considering the effect of simulta-
neous multiple-point mutations on the region’s stability. We
have recently shown that efficiently estimating the structural
energy, Δ�̃�, of multiple 𝑛-point mutations by summing the
total effect of the 𝑛-single-point mutations separately returns
accurate estimates so long as the mutations are not all
adjacent [41].We list the top 2-point and 3-pointmutations of
the Htt-N-terminal region in Tables S2 and S3, respectively,
and include in Algorithm 2 the procedure we followed to
generate these two lists. Moreover, we capture the best 20
mutation results in Table 1.

Although we can differentiate between the results in
Table 1 according to stability, it is unclear which of the top

http://dx.doi.org/10.1155/2016/6247867
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Table 1: The top 3-point mutations in Htt-N-term with lowest Δ�̃�
values.

Mutant Sequence Δ�̃� Mutations
M1 ---KK---------D-- −668.3 L4K E5K K15D

M2 --KK----------D-- −667.7 T3K L4K K15D

M3 --K-K---------D-- −664.9 T3K E5K K15D

M4 ---KK---------E-- −649 L4K E5K K15E

M5 --KK----------E-- −648.4 T3K L4K K15E

M6 ---K-------K--D-- −646.7 L4K E12K K15D

M7 --K-K---------E-- −645.7 T3K E5K K15E

M8 --KKK------------ −645.6 T3K L4K E5K

M9 ----K------K--D-- −644 E5K E12K K15D

M10 --K--------K--D-- −643.4 T3K E12K K15D

M11 ---K----------D-D −637.3 L4K K15D F17D

M12 ----K---------D-D −634.5 E5K K15D F17D

M13 --K-----------D-D −633.9 T3K K15D F17D

M14 ---K----------D-E −629.4 L4K K15D F17E

M15 -R-K----------D-- −629.2 A2R L4K K15D

M16 ---K-------K--E-- −627.5 L4K E12K K15E

M17 ----K---------D-E −626.6 E5K K15D F17E

M18 -R--K---------D-- −626.5 A2R E5K K15D

M19 --K-----------D-E −626 T3K K15D F17E

M20 -RK-----------D-- −625.8 A2R T3K K15D

3-point mutations is the least amyloidogenic. The Δ�̃� values
do not estimate the size of the energy barrier between the
native and disordered states of the N-term region. Such an
estimate would clearly indicate the effect of the mutations on
amyloidogenicity and aggregation propensity. However, this
can still be roughly estimated by existing tools. More pre-
cisely, we resorted to three tools, Zyggregator [50], TANGO
[51], and PASTA [52], to predict the aggregation propensities
of the top 3-point mutations. The results of each of the tools
are listed in Tables 2–4. The results returned by Zyggregator
in Table 2 do not suggest a difference in amyloidogenicity
in the 20 sequences. The beta-sheet propensities are similar,
the alpha-helical propensities only differ slightly, and the
intrinsic aggregation propensities are within close range. The
results returned by TANGO in Table 3 suggest that resultM16
(L4K E12K K15E) has the lowest amyloidogenic potential, a
relatively high helical potential, and one of the lowest beta-
sheet propensities. The results returned by PASTA in Table 4
favor result M7 (T3K E5K K15E). Result M7 has the highest
percentage of residues predicted to be in a helix state and
is the most stable out of the set, resulting in the lowest
aggregation potential. The stability results in Table 1 satisfy
conditions from the first model of aggregation, suggesting
that M16 and M7 are potentially the most stable Htt-N-
terminal mutant forms.

3.2. Weakening Interactions between the Htt-N-Terminal
Region and the PolyQ Domain. The second step of this
multiobjective approach is to analyze which of the mutation
combinations has likely weaken interactions with the polyQ
domain, satisfying the condition set by the second model of

aggregation (see Section 1). For this procedure, we considered
mutations that replace hydrophobic residues on the Htt-N-
term with charged ones. In the domain cross-talk model, the
hydrophobic residues are responsible for playing a part in
stabilizing the polyQ domain. Altering hydrophobic residues
to charged residues adds strain to the Htt-N-term and
affects the stability and length of the polyQ domain, altering
aggregation. From Table 1, we find that most mutation
combinations in our list already substitute a hydrophobic
amino acid with a charged reside (M1, M2, M4, M5, M6,
M8, M11, M14, M15, M16, M18, and M20). Although the Htt-
N-terminal region contains several hydrophobic residues, it
has been shown that removing just one of the hydrophobic
amino acids can effectively weaken the interactions with the
polyQ domain and potentially reduce overall aggregation
[9]. We acknowledge that we cannot quantitatively model
the interactions of the mutations with the polyQ domain
without a good PDB representation; however, we are relying
on the theoretical understanding behind the interactions of
the hydrophobic residues and the polyQ domain to conclude
that the charged residues with weaken interactions.

3.3. Breaking the Solvent-Inaccessible Intermolecular Side
Chain of the Htt-N-Terminal Region. In addition to satisfying
the first two conditions of helical stability and hydrophilic
substitution, the M16 combination luckily also contains a
K15E substitution. Substituting the Lysine residue at position
15 breaks the solvent-inaccessible intermolecular side chain
interaction that contributes to oligomerization [9].

Since we are introducing three mutations to the Htt-
N-terminal structure and lowering the stability by a large
factor, it remains to check that the mutations do not alter
the 3D helical conformation of the region. To check this, we
performed a complete molecular dynamics simulation of 50
nanoseconds on the most stable mutants from Table 1 (M1,
M7, and M16) and found that indeed the Htt-N-terminal
regionmaintains its stability in all three structures.We report
the results of the RMSD and RMSF graphs of each mutant
structure in Figure 3. Figures 3(a), 3(c), and 3(e) plot the
RMSD fluctuations over time and Figures 3(b), 3(d), and 3(f)
plot the RMSF graphs indicating the stability of the mutated
residue positions during the respective MD run. The RMSF
graphs show that the regions around themutated residues are
relatively stable and the RMSD graphs all report values less
than 1 nm. While all the three mutant structures appear to
exhibit good stability, we observe that mutant M16 shows less
RMSD variations thanM1 andmore stable RMSF values than
M7 at the mutated residues (positions 4, 5, and 15). For all the
reasons we explored above, we believe that the M16 mutant
(L4K E12K K15E) is the best mutation candidate to lower
the amyloidogenicity of Htt in both models of huntingtin
aggregation.

4. Conclusion

The Htt protein is a huge protein that contains 3144 amino
acids. One limitation of the study is that we did not consider
the entire structure in our energy predictions.The simulation
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Table 2: Aggregation potentials of top 20 results for Htt-N-term 3-point mutations computed by Zyggregator.

Mutant Hydrophobicity Charge Beta-sheet propensity Alpha-helical propensity Aggregation propensity
Native 4.91 1 74.04 75.00 −5.01
M1 10.40 2 73.87 74.39 −5.37
M2 12.31 1 73.71 75.01 −5.37
M3 7.58 2 73.87 75.04 −5.49
M4 9.50 2 73.87 74.87 −5.50
M5 11.41 1 73.71 75.49 −5.50
M6 10.40 2 73.87 74.39 −5.37
M7 6.68 2 73.87 75.52 −5.62
M8 11.13 5 73.71 75.30 −6.70
M9 5.67 3 74.04 74.42 −5.48
M10 7.58 2 73.87 75.04 −5.49
M11 16.62 −1 73.58 74.24 −5.30
M12 11.89 0 73.74 74.27 −4.78
M13 13.80 −1 73.58 74.89 −5.42
M14 15.72 −1 73.58 74.72 −5.43
M15 14.88 1 74.10 74.67 −5.24
M16 9.50 2 73.87 74.87 −5.50
M17 10.99 0 73.74 74.75 −4.91
M18 10.15 2 74.26 74.70 −5.35
M19 12.90 −1 73.58 75.37 −5.55
M20 12.06 1 74.10 75.33 −5.36

Table 3: Aggregation potentials of top 20 results for Htt-N-term 3-
point mutations computed by TANGO.

Mutant Amylo Turn Helix Beta
Native 0.55 3.17 28.74 15.36
M1 4.18 6.31 1.26 20.41
M2 0.57 6.38 0.00 18.00
M3 0.57 6.16 0.00 20.56
M4 4.21 3.67 1.26 15.58
M5 0.57 3.75 0.00 13.17
M6 0.00 6.11 16.82 19.46
M7 0.57 3.53 0.00 15.73
M8 0.57 3.64 0.00 11.63
M9 0.00 5.87 9.52 26.75
M10 0.00 5.95 8.95 21.72
M11 0.56 5.92 7.97 19.19
M12 4.16 5.65 6.32 26.40
M13 0.56 5.75 1.85 21.45
M14 0.56 5.80 7.97 19.42
M15 0.08 6.54 0.00 20.13
M16 0.00 3.49 17.05 14.66
M17 4.16 5.53 6.32 26.63
M18 0.95 6.24 0.00 27.17
M19 0.57 5.63 1.85 21.68
M20 0.34 6.25 1.06 23.01
The Amylo column of the results returned by TANGO suggests that mutant
M16 has the least amyloidogenicity.

Table 4: Aggregation potentials of top 20 results for Htt-N-term 3-
point mutations computed by PASTA.

Mutant Best energy % 𝛼-helix % coil
Native −1.12 76.47 23.53
M1 −0.48 70.59 29.41
M2 −0.48 76.47 23.53
M3 −0.90 76.47 23.53
M4 −0.82 70.59 29.41
M5 −0.82 76.47 23.53
M6 −1.07 70.59 29.41
M7 −1.50 82.35 17.65
M8 −1.00 76.47 23.53
M9 −0.68 76.47 23.53
M10 −1.12 76.47 23.53
M11 −1.07 64.71 35.29
M12 −0.90 76.47 23.53
M13 −1.12 76.47 23.53
M14 −1.07 64.71 35.29
M15 −0.91 70.59 29.41
M16 −1.07 70.59 29.41
M17 −0.90 76.47 23.53
M18 −0.90 76.47 23.53
M19 −1.12 76.47 23.53
M20 −1.12 76.47 23.53
MutantM7 results in the lowest energy, highest% 𝛼-helix, and lowest% coil.
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(a) RMSD graph for the Htt-N-term M1 mutant
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(b) RMSF graph for the Htt-N-term M1 mutant

10 20 30 40 500
Time (ns)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RM
SD

 (n
m

)

(c) RMSD graph for the Htt-N-term M7 mutant
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(e) RMSD graph for the Htt-N-term M16 mutant
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Figure 3: MD results of mutants 1, 7, and 16. (a) A 52 ns RMSD plot of mutant (L4K E5K K15D) and (b) the RMSF plot of the same mutant.
(c) A 50 ns RMSD plot of mutant (T3K E5K K15E) and (d) the RMSF values of the same mutant. (e) a 52 ns RMSD plot of mutant (L4K E12K
K15E) and (f) the RMSF values of the same mutant. All structures appear to be stable and conserved.

run-time would have been excessive and it was therefore not
possible to conduct MD simulations and stability analysis on
the entire protein. However, many studies have consistently
reported valid findings by only examining the N-term region
of Htt and considered it the most important component to
study in the progression of Huntington’s disease [11–14, 47,
57].

The two models of huntingtin aggregation describe the
role of the Htt-N-terminal region in (1) utilizing alpha-
helical interactions to create oligomers and (2) the role of its
hydrophobic residues in stabilizing the polyQ domain and
exciting aggregation. We explored the mutation landscape
of this structure by mutating amino acid residues and
calculating the resulting changes in total energy. Our goal
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was to probe the entire mutation landscape of the Htt-N-
terminal region to identify mutations that would lower the
aggregation propensities outlined in both Htt models. By
identifying critical maxima and minima points in the land-
scape, experimentalists have a smaller subset of possibilities
to test for mutants that change HD progression rates.

Exploring the entire stability landscape of the Htt-N-
terminal region enabled us to identifymutation combinations
that significantly increase helical stability to prevent self-
association of the Htt-N-terminal region into helical bundles
and lower the aggregation propensity suggested by the first
model (see Section 1 for model descriptions).We investigated
themutation landscape of theHtt-N-term to unravel unstable
regions characterized by high energy values while identifying
regions that can further stabilize the Htt-N-term. By nar-
rowing our search space for lowest amyloidogenic potential
mutations, we calculated theΔ�̃� formultiple-pointmutations
(2-point and 3-point). We focused on mutants that possessed
the lowest energies and used state-of-the-art tools to predict
which of those mutations have promising low amyloidogenic
propensities.We analyzed themost promisingmutation com-
binations that additionally replace hydrophobic residues with
charged amino acids to weaken interactions with the polyQ
domain to lower the aggregation resulting from interaction
with the polyQ domain. Out of the millions of 3-point
mutations that we considered, the (L4K E12K K15E) mutant
exhibited extreme stability, low amyloidogenicity, hydropho-
bic replacement, and removal of the solvent-inaccessible
intermolecular side chain that assists oligomerization. The
results we explored computationally can serve as possibilities
that experimentalists can potentially utilize.
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