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Systems biology is an important approach for deciphering the complex processes

in health maintenance and the etiology of metabolic diseases. Such integrative

methodologies will help better understand the molecular mechanisms involved in growth

and development throughout childhood, and consequently will result in new insights

about metabolic and nutritional requirements of infants, children and adults. To achieve

this, a better understanding of the physiological processes at anthropometric, cellular

and molecular level for any given individual is needed. In this respect, novel omics

technologies in combination with sophisticated data modeling techniques are key. Due

to the highly complex network of influential factors determining individual trajectories,

it becomes imperative to develop proper tools and solutions that will comprehensively

model biological information related to growth and maturation of our body functions.

The aim of this review and perspective is to evaluate, succinctly, promising data analysis

approaches to enable data integration for clinical research, with an emphasis on the

longitudinal component. Approaches based on empirical and mechanistic modeling of

omics data are essential to leverage findings from high dimensional omics datasets

and enable biological interpretation and clinical translation. On the one hand, empirical

methods, which provide quantitative descriptions of patterns in the data, are mostly used

for exploring and mining datasets. On the other hand, mechanistic models are based on

an understanding of the behavior of a system’s components and condense information

about the known functions, allowing robust and reliable analyses to be performed by

bioinformatics pipelines and similar tools. Herein, we will illustrate current examples,

challenges and perspectives in the applications of empirical and mechanistic modeling

in the context of childhood metabolic health research.
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Introduction

The rise in chronic and progressive diseases worldwide
leads to new challenges in the field of health economics
(Nicholson, 2006). The biological complexity of multifactorial
disorders such as diabetes, food intolerances, inflammatory
diseases, obesity, amongst others, highlights the need to
model the web of interactions between genetics, metabolism,
environmental factors, lifestyle and nutrition (Nicholson et al.,
2011). Furthermore, advances in clinical research pinpoint the
critical importance for early diagnosis and treatment of disease
progression to minimize their consequences, especially in the
case of progressive diseases such as inflammatory bowel diseases
or rheumatoid arthritis. Life-long health promotion and disease
prevention by nutrition and lifestyle can prevent or delay the
onset of chronic diseases (Martin et al., 2012). Identification
of personal risk factors for chronic disorders together with a
better understanding of individual lifestyle requirements may
thus provide a roadmap for a healthier metabolic and clinical
status. In such a context, there is a clear need to develop
new approaches for enabling personalized therapeutical and
nutraceutical management andmonitoring solutions (Rezzi et al.,
2013; Martin et al., 2013b).

Systems Biology Research in Health and Disease
Across Lifetime
Metabolic syndrome encompasses multifactorial metabolic
abnormalities including visceral obesity, glucose intolerance,
hypertension, hyperuricaemia, dyslipidemia, and non-alcoholic
fatty liver disease, all of which are associated with cardiovascular
complications (Mottillo et al., 2010; Scherer et al., 2015).
Although insulin resistance (IR) remains a key mechanism
underlying the pathophysiology of metabolic syndrome, many
studies further investigate the more complex etiology that seems
to also depend on genetics, body composition, nutrition, and
lifestyle. In particular, adiposity is subject to extensive research,
since its quantitative and qualitative (e.g., subcutaneous, visceral)
distribution in the body associates with different cardiometabolic,
obesogenic, and diabetogenic risks (Wildman et al., 2008). More
specifically, epicardial adipose tissue may play an important
role for predicting metabolic health in overweight and obese
children (Schusterova et al., 2013). Recent multivariate data
analyses have associated specific metabolite and lipid profiles
to body fat distribution (Wahl et al., 2012; Yamakado et al.,
2012; Martin et al., 2013b; Scherer et al., 2015). More
specifically, these studies described the close relationships
between region-specific fat distribution and the levels of
amino acids, sphingomyelin, diacylglycerols, triacylglycerols, and
phospholipid species in the blood. Such metabolic insights
generate new mechanistic knowledge of complex underlying
physiological processes. For instance, the inability of adipose
tissue to expand or to store fat, results in lipid overflow
to other organs under conditions of excess caloric intake
combined with a lack of physical activity (Scherer et al.,
2015).

In parallel, new evidence has pointed toward the critical
and long-term importance of early nutrition and lifestyle on

later health and disease risk predisposition (Koletzko et al.,
1998). The rising prevalence of type 2 diabetes and obesity in
children is a growing and alarming problem, associated with
several short-term and long-term metabolic and cardiovascular
complications (Rosenbloom et al., 1999; Marcovecchio and
Chiarelli, 2013; Cominetti et al., 2014). Consequently, early
identification of people with high risk of becoming diabetic is
important because the development of diabetes can be delayed
or prevented by lifestyle or medical intervention (Hosking
et al., 2014). However, evidence-based dietary guidelines and
a more comprehensive characterization of the influence of
environmental factors at the onset and during the evolution of
type 2 diabetes and obesity are needed (Martin et al., 2013a).
As a pre-requisite, reference information on how dietary and
lifestyle habits influence metabolic functions must be further
expanded. This will enable us to comprehensively document
the biological processes associated with individual health at the
different stages of the life cycle, including the critical pubertal
physiological window, which may appear as a susceptibility
period for several metabolic deregulations (Mantovani and Fucic,
2014).

Growth during childhood and adolescence occurs at different
rates and is influenced by the interaction amongst genetic,
nutritional, and environmental factors, which can lead to
different susceptibility to childhood disease and disease risks
later in life. This introduces a temporal dimension in the study
designs and poses additional analytical challenges. Although
little is known about the underlying genetics, growth variability
during puberty correlates with a complex genetic architecture
linking pubertal height growth, the timing of puberty and
childhood obesity and provides new information about processes
linking these traits (Cousminer et al., 2013). In the context of
metabolic health, childhood and adolescence, obesity introduces
a significant disturbance into normal growth and pubertal
patterns (Sandhu et al., 2006; Marcovecchio and Chiarelli, 2013).
There is evidence in both adults and children that glucose levels
that are close to the upper limit of the normal range are indicative
of future diabetes. One third of children showing transient
hyperglycaemia in the absence of serious illness can be expected
to develop diabetes within 1 year (Herskowitz-Dumont et al.,
1993; Hosking et al., 2014). IR is associated with diabetes and
is modulated by complex patterns of external factors throughout
childhood that remains poorly understood. IR is higher during
puberty in both males and females, with some studies showing
the increase to be independent of changes in adiposity (Jeffery
et al., 2012). Modeling of longitudinal data on IR, its relationship
to pubertal onset, and interactions with age, sex, adiposity, and
IGF-1 has recently been conducted (Jeffery et al., 2012). The
study exemplified how IR starts to rise in mid-childhood, some
years before puberty, with more than 60% of the variation
in IR prior to puberty remaining unexplained. In addition,
conventional markers, such as HbA1c, that are used to detect
diabetes, or to identify adult individuals at risk of developing
diabetes, and for adult metabolic disease risk, are not sensitive
and specific enough for pediatric applications, suggesting that
other factors influence the variance of these markers in youth
(Hosking et al., 2014). One key factor currently being studied
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is the excess of body weight during childhood which can also
influence pubertal development, through an effect on timing of
pubertal onset and pubertal hormonal levels (Marcovecchio and
Chiarelli, 2013). Additionally, skeletal growth and changes in
body composition during growth show important variability in
both genders (Ballabriga, 2000). The link between fat and puberty
is complex and gender-specific. Body fat of contemporary UK
children, for example, does not appear to be deleterious to
bone quality (Streeter et al., 2013). Moreover, in girls, higher IR
limits further gain in body fat in the long term, an observation
consistent with insulin desensitization as an adaptive response
to weight gain (Hosking et al., 2011). The complex dynamics
of growth and development also involve changes in biological
processes that influence basal metabolic function (for instance,
resting energy expenditure) and physical activity. The role of
resting energy expenditure and weight gain in children is subject
to controversy, with particular interest in studying whether low
energy expenditure may be a predisposing factor for childhood
obesity (Griffiths et al., 1990), and in better understanding of
energy requirements prior to and during puberty (Hosking
et al., 2010). In recent years advances in microbiota research
has provided compelling evidence that the intestinal microbiota
contributes to the overall health status of the host and therefore
plays an important role in modulating the effect of nutrition
on health and disease (Nicholson et al., 2012). In particular,
there is increasing evidence for the role that the gut microbiota
plays in regulating fat storage and energy homeostasis in the
host, hence acting as an important environmental factor for
diabetes and obesity (Musso et al., 2010). We and others (Wikoff
et al., 2009; Moco et al., 2012, 2014; Tremaroli and Bäckhed,
2012; Sommer and Bäckhed, 2013) have also demonstrated how
specific metabolic activities of gut bacterial species can provide
the host with new biochemical compounds in sufficient amounts
to be detected in the systemic blood stream. These host-gut
bacterial co-metabolites may subsequently impact human host
metabolism, for instance through modulating quantitatively and
qualitatively the nutrient and calories made available to the
host throughout digestion (Jumpertz et al., 2011; Martin et al.,
2013a).

Omics Modeling and Integration in Clinical
Research
The rising prevalence of multifactorial disorders, the lack of
understanding of the molecular processes at play, and the need
for disease prediction in asymptomatic conditions are some
of the many challenges that systems biology is well-suited to
address. With its aim to connect the information flow between
the different organizational levels of life such as the genome,
epigenome, transcriptome, proteome, and metabolome, systems
biology approaches are becoming highly relevant for assessing
the connection between human physiology and nutrition
(Mantovani and Fucic, 2014; Moco et al., 2014). Systems
biology also aims at understanding the global dynamics of
biological processes to gain a deep understanding of the system,
which adds an additional layer of complexity to existing intra-
cohort heterogeneities, inter-laboratory methodology differences
and changes in the instrumentation (Moco et al., 2014).

Omics technologies are often employed to generate a snapshot
of the system being studied, at multiple pathway levels,
yet only considering cross-sectional information. Therefore,
integrative solutions and resources are becoming nowadays
a pre-requisite to clinically leverage the knowledge from
large amounts of existing omics data collected from different
compartments, and ultimately to provide a unified view
and personalized therapeutic approaches to disease (Moco
et al., 2014). In the context of childhood metabolic studies,
major challenges lie in the high dynamics (e.g., metabolic
requirements for growth and development), specificities (e.g.,
hormonal maturation) and amplitude of changes (e.g., acute
growth, major switch in the distribution of body fat and
lean mass) that affect the biological, physiological, clinical,
and anthropometric parameters. Hence, there is a need to
adapt methodologies and design of experiment to explore
processes related to growth, development, maturation and
pubertal stages over months and years of the childhood
spectrum.

The aim of this current review and perspective is to
evaluate, summarily, some promising data analysis approaches
to enable data integration for clinical research, with an emphasis
on the longitudinal component (Table 1). Approaches based
on empirical (statistics) and mechanistic modeling of omics
data are essential to leverage findings from high dimensional
omics datasets and enable biological interpretation and clinical
translation. Empirical methods are based on direct observations,
measurements, and extensive data records. These methods
provide quantitative descriptions of patterns in the data and do
not attempt to describe underlying processes or the mechanisms
involved. Therefore they are mostly used for exploring
and mining datasets. Contrasting with empirical approaches,
mechanistic models aim at understanding the behavior of a
system’s components (Thakur, 1991). Mechanistic models are
based on the most comprehensive set of available knowledge of
the systems of interest (knowledge base)—more than just the
data used to train it. They are rooted in two basic principles,
namely (i) every observed phenomenon is based on multiple
inter-connected processes; and (ii) when the most significant
processes are represented mathematically, the simulated output
resembles the actual observations. Mechanistic models may
also lead to the discovery of emerging properties. These are
properties that arise through interactions among smaller or
simpler entities but they cannot be observed within the isolated
smaller entities. In biology the most prominent mechanistic
models are the genome scale metabolic models. They are built
on current knowledge (biochemical, metabolic, transcriptional,
translation, and signaling) and condense information about
the known functions of protein-encoding genes, how these
genes/proteins interact with other bioactive compounds and
associated reactions, allowing robust and reliable analyses to be
performed by bioinformatics pipelines and similar tools (Shen
et al., 2010). They are also the base for multi-scale models.
In the following sections, we will illustrate current examples,
challenges and perspectives in the applications of empirical and
mechanistic modeling in the context of childhood metabolic
health research.
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TABLE 1 | Overview of methods and relevance for childhood metabolic health research.

Field of data

analysis

Main methods Strengths Weaknesses References Relevance for

childhood metabolic

health

High dimensional

omics data

* PCA

* PLS

* SVM

* RF

* Low n, high p

* Linear and non-linear

relationships

* Suitable for classification

* Avoids multiple testing and

takes full variance/covariance

information into account

* Unable to capture

subjects’ trajectories

* Problematic if there exists

autocorrelation between

variables/subjects

Geladi and Kowalski, 1986;

Wold et al., 2001; Jolliffe,

2002; Montoliu, 2015

* Stratification of

childhood group behavior

* Prediction early vs late

status

Longitudinal omics

data

* Mixed models

* Markov models

* Bayesian models

* Timeseries

analysis of

Lomb-Scargle

[Fourier]

transformed omics

data

* Model complex curves of

longitudinal trajectories

* One dataset at a time

* Application dependent of

experimental design

* Problematic when dealing

with missing data or low n

Carin et al., 2012; Chen

et al., 2012; Cominetti

et al., 2014

* Modeling individual

childhood trajectories

* Predicting/forecasting

progression of metabolic

readouts

Combined analysis

of multiple omics

data

* DISCO-SCA

* PARAFAC

* MCR-ALS

* CCA

* Clustering of

Lomb-Scargle

[Fourier]

transformed omics

data

* Combined analysis of omics

data

* Relationships within a single or

a few blocks at the same time

* How to weight variables

when there is a large

difference between

dimensions p and q

Hotelling, 1936; Montoliu

et al., 2009; Martin et al.,

2010; Chen et al., 2012;

Schouteden et al., 2013

* Signature common or

specific to different

age/disease groups

Mechanistic models * ODEs

* GEMs

* Describe underlying processes

or the mechanisms involved

since based on complete

metabolic network

* Identification of reactions that

are causally related to phenotype

* Identification of knowledge

gaps

* Time consuming to build

* Combination of the 3

levels signaling, gene

regulation and metabolism

still not completely solved

* Addition of kinetic

information still in its

infancy

Bordbar et al., 2011;

Goncalves et al., 2013;

Mardinoglu et al., 2013

* Generation of testable

hypotheses

* Mechanistic

interpretation of childhood

phenotypes

Integration of Longitudinal Omics Data:
Methods and Challenges

Unlike for adult and elderly population studies, there is a lack
of standards and thresholds used to characterize healthy status
during childhood, as well as a lack of comprehensive human
trials which could guide its study. Moreover, as previously
discussed, the nature of growth and development occurring
across childhood is linked with complex patterns of dynamics
and amplitudes of changes not observed in adult and elderly.
Therefore, there is a need to include a wider number of data types
including time resolved data and to have a more exploratory type
of approach when analyzing the data.

Similarly to other omics technologies, metabolic profiling
(Nicholson et al., 1999; Fiehn, 2002; Smith et al., 2006) based
on mass spectrometric (MS) and nuclear magnetic resonance
spectroscopy (NMR) produce data, analysis of which brings a
number of challenges, with some requiring special attention in
clinical omics studies, namely (i) high-dimensional nature of
omics data; (ii) longitudinal aspect of multivariate omics data;

(iii) multiple omics datasets; and (iv) mechanistic interpretation.
The different levels of complexity are depicted through a series of
schematic pictures in Figure 1. In the case of childhoodmetabolic
health research these challenges are clearly present and important
to address.

High-dimensional Omics Data
The high number of variables in omics data involves working
with a particular structure between the variables, often related
to their analytical or biological relationships, which results
in the need for complex frameworks for biomarker discovery
(Montoliu, 2015). Furthermore, even if most omics data types
are continuous, it is not uncommon to have to deal with discrete
variables (clinical or experimental). To address such challenges,
multivariate data analyses appears as a more appropriate
alternative to the standard approach of univariate analysis plus
multiplicity testing correction (Massart et al., 1997; Montoliu,
2015). From the set of techniques driven by a pure chemometric
approach, Principal Component Analysis (PCA) (Jolliffe, 2002),
Partial Least Squares regression (PLS) (Geladi and Kowalski,

Frontiers in Molecular Biosciences | www.frontiersin.org 4 August 2015 | Volume 2 | Article 44

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Sperisen et al. Longitudinal omics modeling and integration

FIGURE 1 | Different levels of complexity in longitudinal omics data

analysis. Schematic pictures depicting (A) a matrix with n number of

subjects/samples and p number of analytes or variables measured, where n <

p, (B) several matrices of same variables measured over time, where an

increase in color gradient represents a change in time t; the variable

corresponding to a given time point when the samples were collected or the

measurements obtained, (C) two matrices of different platforms or variable

types (e.g., metabolites and proteins) with different numbers of columns and

(D) metabolic pathways where nodes correspond to metabolites and edges

connecting the nodes correspond to enzymatic reactions. Different colors

correspond to different metabolic pathways. In Section Integration of

Longitudinal Omics Data: Methods and Challenges we address alternative

methods currently used to overcome such complexity.

1986; Wold et al., 2001) and their derivates, such as Orthogonal
Projection on Latent Structures (OPLS) (Trygg and Wold, 2002,
2003), are amongst the reference methodologies which perform
well in low n (subjects), high p (observations) datasets (where
n refers to the sample size and p to the number of dimensions,
as in Figure 1A) through the projection of multivariate data
onto a reduced subspace (Richards et al., 2010). PLS methods
adapt well to linear and non-linear relationships, but require
a validation process to assess whether they apply in a more
general way and to minimize overfitting (Westerhuis et al., 2008).
Moreover, since PLS assumes a given variable distribution and
the linearity of the model, there is an additional need for a
careful validation of these features (Montoliu, 2015). Variants of
these methodologies are employed when the response variable
is categorical (Westerhuis et al., 2010). These approaches are
referred to as Linear Discriminant Analysis (LDA), e.g., Partial
Least Squares Discriminant Analysis (PLS-DA) (Barker and
Rayens, 2003) and Orthogonal Projection on Latent Structures
Discriminant Analysis (OPLS-DA) (Bylesjö et al., 2006).

Several other classification algorithms focused on solving
low “n to p” ratio issues (Figure 1A) have been developed,
but objective criteria to assess performance and conditions
of use remain undefined. It is unlikely that a universal
classifier/regressor can satisfy all conditions, and therefore
applications of the different methodologies are driven by the
research question (Montoliu, 2015). As extensively discussed by
Gomez-Cabrero et al., the analysis of large and heterogeneous
data sets encourage researchers to develop novel data integration

methodologies (Gomez-Cabrero et al., 2014). Amongst these
methodologies, machine learning approaches or regularized
statistical methods provide a wealth of tools that can learn from
and make predictions on data (classification and regression),
including Support Vector Machines (SVMs), Random Forests
(RFs) and Multilayer perceptrons on the one side; and SPLS,
Lasso or Elastic Nets (ENs) on the other side. However, the use of
kernels and weight connection layers in Multilayer perceptrons
removes any traceability of the role of the individual variables in
the model (Montoliu, 2015).

In the context of childhood research, such approaches remain
very relevant, allowing to compare groups of subjects, similarly
to what is applied when studying obesity, overweight, diabetes,
impaired insulin, and glucose control in adults, as exemplified by
Wahl et al. (2012). Moreover, methodologies like RFs or PLS, are
extremely useful to predict the influence of early metabolic status
on later outcomes. However their application in the context
of time resolved data remains more challenging as discussed
hereafter.

Longitudinal Multivariate Omics Data
When it comes to longitudinal omics data, i.e., one or more
type of omics data measured over time (see also Figure 1B

where the same matrix of measurements is repeated at different
time points, depicted using an increase in intensity of color),
the statistical analysis becomes even more challenging (Dean
et al., 2009; Stanberry et al., 2013; Cominetti et al., 2014).
However, longitudinal studies are key to understand the global
evolution of biological processes. Such studies aim typically
at following populations of subjects over time. Resulting time
profiles can be clustered to identify subgroups or can be used
for monitoring, forecasting and diagnostic purposes (Albert
and Schisterman, 2012; Liquet et al., 2012). In addition, the
time dimension is important and often specific to the type
of data and clinical endpoints in human trials, ranging from
minutes and hours, to months and even years. Indeed, the
biological processes described by the omics data show specific
time-dependent modulation, amplitude of change and regulatory
mechanisms; for instance, gene expression and metabolites
involved in gluconeogenesis show very different and specific
time scale but contribute to the same biochemical processes.
Moreover, repeated measurements are often unequally-spaced in
time (in our pictorial representation of Figure 1B, this would
mean that the colors of the cells of the matrices do not change in
a linear manner) and it is important to account for this difference
in the model (Albert and Schisterman, 2012) as well as for delays
in time-to-event such as disease onset or phenotypic change.
Additional challenges when dealing with longitudinal data are
auto-correlation of repeated measurements of the same variables,
random effects, missing data, and dropouts, which are being
discussed hereafter (Dean et al., 2009; Carin et al., 2012). Auto-
correlation can be both a limitation and an advantage depending
on the type of analysis. For instance, it is a limitation when trying
to use certain techniques such as projection-based methods (e.g.,
PCA, PLS) which are well suited to tackle high-dimensional
datasets but that do not take into account subjects’ trajectories.
With respect to missing data and dropouts it is important to
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assess if the reason for the data missing is related to the process
under observation or not (Albert and Schisterman, 2012). One
approach to deal with missing data could be to impute it while
avoiding biased results.

Despite all the challenges mentioned above, the analysis of
longitudinal omics datasets typically provides major advantages,
not only in terms of gain in information, but also through (i)
an increase in the statistical power of the studies (Zeger and
Liang, 1992), (ii) a decrease in noise (if correlations of repeated
measurements and inter individual variability are properly
accounted for) (Liquet et al., 2012; Cominetti et al., 2014), as well
as (iii) an increase in the robustness to model specification (Zeger
and Liang, 1992).

A range of solutions have been proposed, including
Generalized Linear Mixed Models (GLMM), Generalized
Estimating Equations (GEE), Markov models, non-parametric
or semi-parametric models or Bayesian models, factor analysis,
dictionary learning, dynamical pathway analysis, latent growth
curves, amongst others (Carin et al., 2012; Stanberry et al.,
2013; Cominetti et al., 2014). Alternatively to those parametric
methods, non-parametric or semi-parametric statistical models
remain widely employed, being more flexible than parametric
models, to model the complex curves of longitudinal trajectories
(Dean et al., 2009), especially when the variations in the omics
variables are large or are induced by major biological events (e.g.,
changes in metabolism and requirements during the growth of
the child, puberty and the onset and/or remission of a disease).
However, considering the vast array of techniques and their
specific advantages and limitations, it will often depend on the
overall objective of the study, and constraints imposed by the
data, when choosing the best adapted modeling tools. Up to this
point we were considering one data set generated over time. This
can be further extended to multiple omics datasets, like the ones
represented in Figure 1C.

Combined Analysis of Multiple Multivariate
Datasets
In addition to modeling temporal omics data, combined analysis
of different omics data sets is still in its infancy (Gomez-
Cabrero et al., 2014). As clearly presented by Gomez-Cabrero
et al., the term of data integration refers to the integrative
study of different sources and types of data from a given
system (Gomez-Cabrero et al., 2014). In this context, identifying
shared or common information among two or more sets of
data from a biological process under study can help us to
better describe underlyingmolecular events. However, these large
heterogeneous data sets result in some significant challenges
(Gomez-Cabrero et al., 2014). First, the fundamental differences
in the data types need to be considered, including the difference
in their variance-covariance structure, the multi-scale nature
of omics data and differences in sizes of omics datasets (see
also Figure 1C showing two matrices with sizes n by p and n
by q respectively, where p and q are the different number of
analytes measured), which brings the issue of having to weight
groups of variables differently. Richards et al. have previously
summarized key approaches for intra- and inter-omic fusion
strategies in a metabonomics-driven context (Richards et al.,
2010). Their work highlighted some promising methods for

inter-instrument, inter-sample type and inter-omics integration,
namely multiblock hierarchical PCA, consensus PCA, Parallel
Factor Analysis (PARAFAC), Multivariate Curve Resolution-
Alternative Least Squares (MCR-ALS) and O2PLS techniques.
MCR-ALS and PARAFAC are well adapted to assess functional
relationships across matrices and to enable the characterization
of compartment-specific metabolic signatures (Montoliu et al.,
2009; Martin et al., 2010). Eventually, such approaches are
also relevant for stepwise variable and data-block selection
for further multivariate and longitudinal analysis. From other
related fields, such as ecology and multi-species genomics, a
variety of methodologies are being used to enable various
data integration strategies, including Generalized Singular
Value Decomposition (GSVD), Latent Variable Multivariate
Regression (LVMR), Simultaneous Component Analysis (SCA),
Canonical Correlation Analysis (CCA) (Hotelling, 1936), Co-
Inertia Analysis (COIA), Integrative Bi-Clustering or Multiple
Factor Analysis (MFA). These approaches may also offer
novel opportunities in the field of clinical metabonomics.
Moreover, with the aim of identifying common and data-specific
information for a given omics data set, methods based on two-
block latent variable regressionwith an integral OSC filter, such as
O2PLS (Trygg and Wold, 2002, 2003) are being used (especially
in the field of Metabonomics), but Joint and Individual Variation
Explained (JIVE) (Lock et al., 2013) and DIStinct COmmon
SCA (DISCO-SCA) (Schouteden et al., 2013) may offer some
advantages in terms of analytical strategies. JIVE represents an
extension of PCA, it works by decomposing data into three
elements, one of which captures the joint structure between data
types, another captures structure individual to each data type and
a third element which captures the residual noise (Lock et al.,
2013). JIVE may offer advantages compared to CCA and PLS
approaches and it could offer some promising capabilities for
the integrated analysis of omics data (Lock et al., 2013). SCA
methods are well adapted to study linked data and model a small
number of simultaneous components that maximally account
for the variations in the data sets (Schouteden et al., 2013).
While SCA reflects a mix of common and distinct information,
the DISCO-SCA approach aims at solving this problem in
multi-block data analysis, by enabling both the modeling of
relationships across all the data types under consideration, but
also to explore the relationships within a single or a few selected
blocks at the same time (Schouteden et al., 2013). Schouteden
et al. presented an example where children from different age
groups are given the same personality questionnaire, which
results in a set of child-by-item data blocks, with each data block
pertaining to a specific age group and with the different data
blocks having the questionnaire items in common. DISCO-SCA
could enable the analysis of both general personality dimensions
and dimensions that are specific for a certain developmental
stage. In the context of metabolic phenotype in childhood, such a
method could thus allow the study of molecular processes related
to growth, and the simultaneous exploration of age-specific
phenotype.

The integrative personal omics profile (iPOP) analysis (Chen
et al., 2012) tries to go one step further, namely combining
multiple time-resolved multivariate datasets, such as genomics,
transcriptomics, proteomics, and metabolomics profiles from
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a single individual measured over a 14-month period. The
datasets were first transformed using a Lomb–Scargle (Lomb,
1976; Scargle, 1982, 1989) [Fourier] transformation in order to
remove the effect of uneven data sampling in time. Based on
this transformed data, the original time-series were reconstructed
using an inverse Fourier transform and evenly resampling
frequencies/times (for more details see also Chen et al., 2012 and
references therein). This allowed the use of standard time-series
analysis methods and the clustering of the combined datasets. As
a proof-of-concept, the longitudinal iPOP study has shown the
potential to interpret healthy and disease status by connecting
genomic information with additional dynamic omics activity.
These methodologies could offer unprecedented opportunities
to further explore the functional relationships between omics
biological data and growth and development, and subsequently
to allow novel characterizations of factors contributing to a
healthy or unhealthy childhood trajectory.

However, these methods provide quantitative descriptions
of patterns in the data and do not attempt to describe
underlying processes or the mechanisms involved. In this respect
mechanistic models are an important addition to empirical data
analysis providing a framework to mathematically represent
current biological knowledge as well as data interpretation and
clinical translation of the multiple cellular processes captured by
the omics approaches.

Mechanistic and Biological Interpretation of
Models Based on Omics Data
In the last couple of years mechanistic modeling has become
more and more popular as approach to model phenotypes under
different conditions and therefore to expand the understanding
of complex biological systems. In contrast to the previously
discussed methods that try to develop models based on the
given data, mechanistic models are knowledge–based models
and are therefore independent of the data. At the lower end
of the modeling hierarchy, in terms of biological organization,
we have the cell. Their phenotype is mainly controlled at
the following three levels: (i) metabolism: enzyme-catalyzed
chemical transformations taking place in a cell that either
consumes metabolites for energy production or generates small
molecules that serve as building blocks, (ii) gene regulation:
control of increase or decrease of transcripts (mRNA) and
their translation into proteins, and (iii) signaling: complex
communication system that combines proteins, lipids, and small
molecules in various ways allowing cells to sense the environment
and respond correctly. These three levels are linked through
diverse types of interactions but with respect to modeling they
are still mostly treated separately using mathematical formalisms
that are specific to the level that is modeled and that reflect the
molecules and the processes involved. Combined models are still
rare, since there is currently no single modeling formalism that
can deal with the different biological aspects.

Ordinary differential equations (ODEs) are frequently used to
describe metabolic pathways. However, the challenge with ODEs
is that it is often difficult to obtain the parameters required for
the model. Consequently, when it comes to genome-scale models
and simulations they quickly become unfeasible. Alternatively,

for larger networks, genome-scale metabolic models (GEMs)
or Boolean networks are widely used (Goncalves et al., 2013).
In particular, constraint-based GEMs are well suited to handle
the complexity of the cellular metabolism leading to a better
understanding of the full cellular metabolism at the systems
level (Figure 1D depicts metabolic pathways with the nodes
representing metabolites and solid edges representing enzymatic
reactions). Therefore GEMs are very useful to study disorders
that have a strong metabolic component.

Currently most GEMs are based on steady-state analysis. Only
recently different groups have started with the construction of
kinetic models (Chakrabarti et al., 2013; Stanford et al., 2013).
However, in absence of real data, estimation of the kinetic
parameters remains a challenge. Consequently they are not yet
used for higher eukaryotes.

The starting point for the generation of GEMs for human
cells are essentially two generic literature-based GEMs, Recon
1 (Duarte et al., 2007) and the Edinburgh Human Metabolic
Network (EHMN) (Ma et al., 2007), which have been developed
by different research groups with the aim to study human
metabolism. These generic GEMs were later merged into one
database, the Human Metabolic Reaction (HMR) database
(Agren et al., 2012), together with reactions related to human
metabolism from KEGG (Kanehisa et al., 2010). Recently the
HMR database has been updated with data from Reactome (Croft
et al., 2011), HepatoNet1 (Gille et al., 2010), Lipidomics Gateway
(Harkewicz and Dennis, 2011) and the HumanCyc database
(Romero et al., 2005).

Currently, several cell/tissue-specific GEMs for liver
(hepatocytes) (Gille et al., 2010; Jerby et al., 2010), kidney
(Chang et al., 2010), brain (3 neuron types and astrocytes)
(Lewis et al., 2010), alveolar macrophage (Bordbar et al., 2010),
cardiomyocyte (Karlstadt et al., 2012), adipocyte (Mardinoglu
et al., 2013), multi-tissue models (hepatocytes, myocytes, and
adipocytes) (Bordbar et al., 2011) or whole organelles, such as
mitochondria (Aimar-Beurton et al., 2002; Thiele et al., 2005) are
publicly available.

In the last couple of years the cost of large-scale omics data
generation has considerably decreased but analyzing and more
specifically the interpretation of such data remains a challenge.
This is mainly due to the complexity of the underlying cellular
processes which involve the regulation of multiple genes that
are not fully understood in terms of function and interactions
amongst them (Palsson and Zengler, 2010). In an attempt to
overcome these challenges, several groups introduced the use
of GEMs to place omics data in the context of the cellular
metabolism (Palsson, 2009; Yizhak et al., 2010; Ideker and
Krogan, 2012). GEMs can be reconstructed based on high-
throughput omics data, but they also serve as a computational
framework to analyze and interpret such data as a network where
the nodes represent the substrates/products and the edges the
reactions, like the schematic representation in Figure 1D. These
networks are then transformed into stoichiometric matrices
which serve as the base for constraint-based modeling (Famili
et al., 2003), into which numerical omics data can be effectively
plugged. Moreover, personalized GEMs can be reconstructed
in the same way as cell/tissue-specific models are generated.
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In this case one would start from omics data obtained from a
single patient and earlier studies on inborn errors of metabolism
(Shlomi et al., 2009) and metastatic breast cancer (Jerby et al.,
2012) show that GEMs are of potential use in the discovery of
biomarkers.

A multi-cellular/multi-tissue type GEM was elegantly
described by Bordbar et al. (2011). They developed a model that
connects GEMs that represent human adipocytes, hepatocytes
and myocytes and hence allows connecting the metabolic
pathways of the three cell types. They used the resulting model to
study diabetes and in this respect they simulated the behavior of
known cross-cell metabolic cycles. In order to study differences
in the metabolic activity between obese and obese type II patients
that underwent a gastric bypass surgery high-throughput
data was integrated with the multi-cellular/multi-tissue type
GEM. This approach allowed the authors to link known
physiological changes seen in these patients with a mechanistic
understanding. These findings can be described as emergent
properties, since they could only be observed using the multi-
tissue modeling approach. It would not have been possible to
make these observations from transcription data only. This
example illustrates how such approaches could be used to
obtain a mechanistic understanding of the phenotypic evolution
during childhood by linking the phenotype with the underlying
metabolism.

The multi-cellular/multi-tissue study described above
essentially connects GEMs that represent different cell types.
Such multiscale models are ideal to model biological systems,
since biological systems are intrinsically complex; composed of
multiple functional networks, which operate across different
temporal and spatial levels tomaintain growth, development, and
reproduction. Multiscale models are combinations of continuous
and discrete modeling strategies either deterministic or
stochastic. Such computational models are uniquely positioned
to capture the connectivity between these divergent scales of
biological function, as they can bridge the gap in understanding
between isolated in vitro experiments and whole-organism
in vivo models. Starting at the cell level, the next step would be
to combine GEMs using an agent based modeling approach to
represent cell networks and tissues. These tissues would then
need to be combined into larger, whole-organ models, typically
using finite element approaches (Moreno et al., 2011). However,
no single comprehensive gene-to-organism multiscale model has
been developed so far but remains subject to intensive research
(Walpole et al., 2013).

Successful applications of GEMs may lead to the generation
of testable hypotheses with strong mechanistic interpretations
and identification of knowledge gaps. Moreover GEMs may
lead to the prediction of proteins and/or metabolites that are
key in the evolution of a disease and provide a context-
dependent framework for the analysis of disease specific omics
data. Consequently GEMs can be used to better understand the

relationship between genotype and phenotype and generate new
biological knowledge (Patil and Nielsen, 2005; Lewis et al., 2012),
possibly leading to the discovery of biomarkers; drug targets and
new therapeutic agents (Jerby and Ruppin, 2012; Mardinoglu and
Nielsen, 2012).

Conclusion

Systems biology methodologies will help better understanding
the molecular mechanisms involved in growth and development
through childhood, and consequently will result in new insights
about metabolic and nutritional requirements of infants, children
and adults. To achieve this, a better deciphering of the
physiological processes at an anthropometric, cellular and
molecular level for any given individual is needed. In this respect,
novel omics technologies in combination with sophisticated
data modeling techniques are key, as summarized in Table 1.
Amongst the major challenges when integrating longitudinal
omics data are the high dimensional nature of the omics data,
the longitudinal aspect of multivariate omics data and integrating
multiple datasets, as well as the mechanistic interpretation of
the omics data. Projection methodologies such as PCA and PLS
work well for low n, high p datasets, but not for longitudinal
data. Therefore, methodologies able to adapt to the complexity
of individual trajectories are needed, such as non-parametric
statistical models, GEE, Markov models, Factor analysis and
Bayesian models that have appeared as good tools for modeling
longitudinal data. Furthermore, the integration of different omics
datasets could be achieved via techniques including CCA, COIA,
multiple factor analysis and integrative biclustering. Some of
these tools utilize a multi-block approach and/or study the
covariance between the different matrices. In contrast to these
empirical approaches mechanistic modeling has become a key
methodology to better understand biological systems. In the
last couple of years, these methods have made big progresses
and can be used as framework to interpret omics data. Also,
such models serve as knowledge bases that combine the current
understanding in a mathematical form and allow to make
phenotypic predictions under different conditions and to identify
gaps. However, due to the high complexity of the network of
influential factors determining individual trajectories, the field is
still in its infancy and it becomes imperative to develop proper
tools and solutions that will comprehensively model biological
information related to growth and maturation of our body
functions.
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