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Abstract: 
Prediction of functional peptide motifs from sequences is an important problem in bioinformatics. Experimental discovery of functional 
sequences is laborious. Searches for specific motifs within the increasing number of proteins available in public databases often involve extensive 
computer calculations. Short peptide motifs are especially hard to identify via currently available methods. Presented here is a simple and 
effective procedure to identify a short functional motif. The procedure is based on devising a scoring function using sequence properties. The 
procedure was applied on short engrailed homology-1 (eh1)-like motif. Eh1-like motif provides repressive functions by binding to the WD 
domain of the Gro/TLE transcriptional corepressors. Interactions of known eh1-like variants and the WD domain were modeled and studied. 
Sequence features crucial for the interactions, and thus the motif's functionality, were identified. A scoring function was devised based on the 
observed sequence features. The ability of the scoring function to discriminate between functional and nonfunctional sequences was tested on 
known eh1-like sequences, random sequences, and eh1-like sequences predicted by others using various bioinformatics tools. The scoring 
function expressed well a general relationship between sequences and their functionalities. It gave about 20% false positive findings. However, 
the scoring function reliably identified sequences that were not functional eh1-like motif. The procedure presented here may prove useful for 
predicting functional sequences of other short motifs. Given the importance of transcriptional regulation, this study on identification and 
evaluation of functional eh1-like sequences should facilitate further research on their transcriptional roles.  
 
Background: 
Development of dependable computational methods to identify 
functional peptide motifs is an important quest in bioinformatics. 
Experimental discovery of functional peptide sequences is often 
arduous. High-throughput methods give a large number of false 
positive and false negative results. Extensive computer calculations are 
often needed to search for specific motifs within protein databases. 
Identification of short motifs using currently available methods is 
especially difficult. Multiple sequence alignments are tools used in 
several motif-searching programs. One of them is a powerful program 
Clustal W [1]. However, aligning sequences by Clustal W requires 
significant computational resources. It can take hours of sequential 
computing to align a few hundred sequences. 
 
BLAST [2] is widely used for matching a peptide sequence with 
database sequences and reporting results above a specified threshold. 
Stressing speed over sensitivity, BLAST looks only for significant 
patterns within the sequences. Another program, MEME [3], is used to 
search for new motifs in user-supplied protein sequences. Various 
online databases store a few hundred currently known peptide motifs. 
Examples are ELM [4] and SCANSITE [5]. To decrease the number 
of false-positive results, the ELM filter hides protein sections in which 
motifs are unlikely to be present. SCANSITE employs position-
specific scoring matrices to evaluate functionality of putative motifs. 
However, the matrices can be created only for motifs for which many 
sequences have been experimentally confirmed as functional. When 
searching for motifs less than 10 residues long, these techniques 
usually give a large number of false-positive results. 
 
Presented here is a procedure to identify short functional sequences 
using the sequences' amino acid residues. The method is simple, yet 
effective, and requires minimal computer power and programming 
skills. The method can help reduce a pool of putative motif candidates 
that warrant further experimental or theoretical investigations. It also 
provides an additional tool to validate functionality of sequences found 
by other bioinformatics methods. In this work, engrailed homology-1 
(eh1)-like motif was investigated. The motif's transcriptional role, its 
short length, and a relatively small number of sequences that have 
been experimentally confirmed as functional, were some of the main 
reasons the motif was chosen for the study. 
 

Transcription factors help control transcription of genetic information 
from DNA to RNA. Gro/TLE proteins are corepressors for various 
transcription factors. Many of these factors interact with Gro/TLE 
through eh1-like motif [6]. During the interaction, eh1-like motif binds 
to the Gro/TLE via its WD domain. The WD domain is a highly 
conserved C-terminal region of Gro/TLE. As demonstrated by X-ray 
studies [6], the WD domain forms a β-propeller structure. Specific 
transcription factors are recognized by specific propeller's binding 
sites. Eh1-like motif conforms to the consensus pattern FΣBXXBBX 
[7]. Here, F is phenylalanine; Σ = S or T; B = branched hydrophobic 
residue (I, L, or V); and X = nonpolar residue (A, D, E, F, G, H, I, K, 
L, M, P, R, V, or W). Substitutions with 'non-consensus residues' are 
allowed up to a point and can lead to functional sequences [8, 9]. 
 
Literature searches identified fifty experimentally-confirmed eh1-like 
sequences [8-12]. Copley [13] predicted 109 eh1-like sequences using 
BLAST database searches. Yaklichkin et al. [7] searched for novel 
motifs among 458 metazoan proteins using Clustal W and MEME 
programs. They predicted 95 new eh1-like sequences. All of the above 
sequences were used to train or test the prediction method described 
here. A task addressed in this paper may be summarized in the 
following way. Given a set of peptide sequences, develop a method to 
determine whether each sequence is a functional or nonfunctional eh1-
like motif. A simple, yet effective procedure will be described, which 
identifies functional eh1-like motif variants from their sequences with 
high reliability. 
 
Methodology: 
Dataset: 
About 1000 sequences were used to train and test the scoring function. 
The training set consisted of twenty experimentally known eh1-like 
sequences [9-12] and forty random eight-amino-acid long sequences. 
The random sequences were checked against protein databases to 
make sure they were not functional. Four sets of sequences were used 
to test the scoring function. The first set included 30 experimentally 
known eh1-like variants [9-12], none of which was in the training set. 
The second set contained about 800 random eight-amino-acid long 
sequences. The third had 109 eh1-like sequences predicted by Copley 
[13] and the fourth, 95 eh1-like sequences predicted by Yaklichkin et 
al. [7]. 
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Procedure employed: 
The scoring function: 
The objective was to devise a scoring function that would discriminate 
between functional and nonfunctional sequences using sequence 
features. The scoring function of the form F = Σwi•fi was used. Here, 
wi were weighing coefficients and fi’s quantified relevant sequence 
properties. The procedure for determining wi's and fi’s is described 
below. A starting assumption was that residues at positions in 
agreement with the consensus sequence had a positive influence on the 
sequence’s functionality. These will be referred to as ‘positive-
influence’ (PI) residues. The training sequences were scored using fi = 
1 when a PI residue was present and fi = 0 when it was absent from a 
given position. 
 
Determination of sequence properties: 
The next step was to determine sequence properties relevant to motif's 
interactions with the WD domain, and thus to motif's functionality. 
Experimentally determined three-dimensional (3D) models of 
interactions between the WD domain and the 20 functional training 
sequences were not available in protein databases. Therefore, the 
models were created and optimized via Deep View program and the 
Swiss Model [14]. Experimentally known 3D structure of an eh1-like 
sequence bound to the WD domain (PDB ID: 2CE8) was used as a 
template. The sequence's residues were mutated in Deep View to 
obtain, in turn, models of interactions for each of the 20 sequences. 
The models were optimized in Deep View and submitted to the Swiss 
Model. Final models were built and returned to Deep View. The 
models of functional sequences helped identify both essential and 
nonessential binding sites for the WD-eh1 interactions. Residues at 
each position were systematically mutated in each model to see 
whether the interactions with the WD domain were eliminated. 
Residues at particular positions that abolished WD-eh1 interactions 
will be referred to as 'negative-influence' (NI) residues. 
 
Tuning of the scoring function: 
The scoring function was then amended to include information on 
sequence properties found to be crucial for the functionality. The 
training sequences were scored using fi = -1 when an NI residue was 
present. When an NI was absent, fi was 1 for that position, since the 
absence of an NI residue increased the sequence's chance of being 
functional. To assess the influence of each term on the scores, the 
weights were systematically changed for each position. If the change 
had a similar effect on both functional and nonfunctional sequences, 
and the modeling indicated the position to be nonessential, that term 
was removed from the scoring function. 
 
Evaluation of the scoring function: 
The scoring function's performance was assessed using the four sets of 
test sequences. The performance was also compared to that of an 
online server EasyPred [15]. 
 
Discussion: 
Computer modeling indicated that WD residues D617, R534, and 
E550 interacted, respectively, with residues 1, 2, and 3 in most 
functional eh1-like sequences. Most sequence positions could be 
occupied by a limited number of residues with similar hydrophobicity, 
charge, etc., and still preserve functionality. Findings on positional 
distributions of the residues were summarized in Table 1 (see 
supplementary material) below. Residues not listed did not 
significantly contribute and were omitted from the scoring function. 
 
As shown in Table 1 (see supplementary material), the WD-binding 
positions 1, 2, and 3 did not accept charged residues D, R, E, and K. 
Also, residue H was forbidden in positions 1, 3, 6, and 7. Most 
residues, except I, L, and V, were not allowed in the 6th position. 
Position 8, which did not interact with the WD domain, could accept 
any amino acid, as could position 4. Flexibility of position 4 may be 

related to its residue serving to ensure proper spacing between key 
amino acids. 
The clearest distinction between functional and nonfunctional 
sequences was achieved with this scoring function: 
 
F = 1•(PI or NI in position 1) + 1•(PI or NI in position 2) + 0.8•(PI in 
positions 3, 4, or 6) + 0.7•(PI in position 5) + 0.5•(PI in positions 7 or 
8) + 0.8•(NI in position 5) + 0.1•(NI in positions 3, 6, or 7) 
 
where PI = {1 or 0} corresponded to 'positive influence' terms and NI 
= {-1 or 1} to 'negative'. All weights were normalized to position 1 
coefficient. There were 14 term in the formula. Since each position 
was occupied by only one residue at a time, only 8 addends 
contributed to the final score. 
 
The scoring function agreed with findings from the computer 
modeling. Positions 1 and 2 were important for the scores, as can be 
seen from their weights. If non-consensus residues were in these 
positions, the sequence was likely nonfunctional. Also important were 
PI residues in positions 3 and 6, and to a lesser extent in position 5. 
Positions 4 and 8 did not have any NI terms, which is consistent with 
Table 1 (see supplementary material). 
 
The scoring function captured a general correspondence between the 
likelihood that the sequence was functional and sequence's 
characteristics. The scoring function gave no false negative results. 
That is, 100% of the experimental eh1-like sequences [8-12] received 
'functional' scores. About 91% of sequences predicted by Copley [13] 
and about 95% of those predicted by Yaklichkin et al. [7] were 
identified as functional by the scoring function. Most random 
sequences received nonfunctional scores. The scoring function gave 
about 20% false positive results, identifying about 20% of random 
sequences as functional. When checked against protein databases most 
of these sequences were not found, indicating that they were not 
known to be functional. Several false positive sequences that were 
found in the databases were present inside proteins' DNA-binding 
domains. Due to steric constraints, a functional eh1-like motif is 
expected to be outside the DNA-binding domain. Indeed, previously 
identified functional sequences [8-12] were all found outside this 
domain. It was concluded that these false positives were not functional 
sequences. 
 
The model's performance was compared to that of EasyPred server 
[15]. EasyPred was trained with the same set of 20 functional 
sequences. It predicted all sequences identified by Copley [13] and 
Yaklichkin et al. [7] as functional. This is not surprising, since they 
used similar prediction methods and online resources. Although 
EasyPred correctly predicted functionality of all experimental 
sequences, it gave 35% false positives among random sequences. This 
is compared to 20% obtained with the method presented here. About 
93% of scoring terms used in this method agreed with corresponding 
terms in EasyPred scoring matrix. In addition, this model is simpler 
since it uses 14 weight coefficients, compared to 160 in EasyPred 
matrix. 
 
A ROC plot was used to further evaluate the model's performance 
(Figure 1). In the plot, a sensitivity increase corresponds to a 
specificity decrease. The sensitivity is the fraction of correctly scored 
known positives (true positive rate or TPR). The specificity is 1- FPR, 
where FPR (false positive rate) is the fraction of incorrectly scored 
known negatives. 
 
The closer the ROC curve comes to the y-axis and to the top of the 
plot, the more accurate the model is. An ideal model would give TPR 
= 1 and FPR = 0. The optimal threshold, which maximizes both the 
model's sensitivity and specificity, corresponds to the beginning of the 
plateau of the curve. For this model, the optimal threshold was about 
FPR = 0.2. 
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Figure 1: The ROC plot showing the performance of the model described in the paper. The curve represents the portion of correctly scored 
known positives (true positive rate, TPR) vs. the portion of incorrectly scored known negatives (false positive rate, FPR). 
 
Conclusions: 
An important problem of determining functionality of peptide 
sequences from their amino acids is addressed here. Interactions of 
functional eh1-like variants with the WD domain were modeled. A 
scoring function was devised and tested on known, predicted, and 
randomly generated sequences. The scoring function was able to 
discriminate between functional and nonfunctional sequences. 
Although it gave about 20% false positive findings, the function 
reliably identified nonfunctional sequences. The model was more 
successful than an online server in reducing the number of false 
positives. At least 91% of sequences previously predicted to be 
functional by other bioinformatics methods were identified as 
functional using this model. 
 
The strength of the model is its simplicity and effectiveness. One of 
the main advantages is that good results can be obtained using modest 
computer power and minimal programming skills. The model was 
developed using a relatively small number of functional training 
sequences. Also, the 3D models of sequences were obtained 
computationally, without experimental confirmation. These may have 
lead to missing some NI or PI residues and to inaccuracies when 
determining the weights. However, the success of the model suggests 
that it can be valuable for other short motifs with small number of 
experimentally available sequences and structures. 

 
Further studies of selective protein recognition building on this method 
are planned. Given the importance of transcriptional regulation, this 
study on functionality of eh1-like sequences should facilitate further 
research on their transcriptional roles. 
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Supplementary material:  
 

       Table 1: Positional distribution of residues within eh1-like motif. Residues that did not significantly contribute to the scoring function are not      
                      listed. 

Position within the sequence PI residues NI residues 
1 F E, D, G, H, K, P, R 
2 S, T D, E, K, R 
3 I, L, V D, E, G, H, K, R 
4 D, E, K  
5 A, D, E T 
6 I, L, V A, C, D, E, G, H, K, M, N, P, Q, R, S, T, Y 
7 L, V N, H, Q, R, S, T 
8 D, R  
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