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A widespread length-dependent splicing dysregulation 
in cancer
Sirui Zhang1, Miaowei Mao1, Yuesheng Lv2, Yingqun Yang1,3, Weijing He4,5, Yongmei Song6, 
Yongbo Wang7, Yun Yang1, Muthana Al Abo8, Jennifer A. Freedman8,9, Steven R. Patierno8,9, 
Yang Wang2*, Zefeng Wang1*

Dysregulation of alternative splicing is a key molecular hallmark of cancer. However, the common features and 
underlying mechanisms remain unclear. Here, we report an intriguing length-dependent splicing regulation in 
cancers. By systematically analyzing the transcriptome of thousands of cancer patients, we found that short exons 
are more likely to be mis-spliced and preferentially excluded in cancers. Compared to other exons, cancer-associated 
short exons (CASEs) are more conserved and likely to encode in-frame low-complexity peptides, with functional 
enrichment in GTPase regulators and cell adhesion. We developed a CASE-based panel as reliable cancer stratifi-
cation markers and strong predictors for survival, which is clinically useful because the detection of short exon 
splicing is practical. Mechanistically, mis-splicing of CASEs is regulated by elevated transcription and alteration of 
certain RNA binding proteins in cancers. Our findings uncover a common feature of cancer-specific splicing 
dysregulation with important clinical implications in cancer diagnosis and therapies.

INTRODUCTION
Over 95% of human genes undergo alternative splicing (AS) (1, 2), 
generating multiple mRNA isoforms with distinct functions from a 
single gene (3). AS is tightly regulated by multiple cis-elements and 
trans-acting factors (4, 5), and mis-regulation of AS is a common 
cause of human diseases (6). Particularly, the widespread splicing 
dysregulation is one of the molecular hallmarks of cancer, and the 
increasing evidence has suggested that the mutations in spliceoso-
mal genes or dysregulations of splicing factors can drive various 
cancers (7–9). Because the aberrant splicing often affects functions 
of cancer-associated genes (10, 11), targeting the mis-spliced genes 
(i.e., the genes whose splicing is significantly altered in cancer) be-
comes a powerful therapeutic strategy for cancers (7, 12). In addi-
tion, cancer-associated AS events can serve as diagnostic biomarkers 
for cancer classification or prognosis (10, 12). Therefore, a system-
atic study of AS in cancer is critical for cancer precision medicine.

Recently, the advances in high-throughput sequencing make it 
possible to systematically investigate the global change of AS and its 
regulation in cancers. In particular, the tremendous amounts of 
transcriptome data from thousands of cancer patients have been 
collected, providing a unique opportunity for systematic analyses of 
cancer-associated splicing alterations as well as their mechanisms 
and functional consequences. Several groups have analyzed the 

large-scale omics data from The Cancer Genome Atlas (TCGA) 
project for splicing changes in cancers (13–15). While these studies 
provided useful information, there is still a lack of general trend for 
cancer-associated splicing dysregulation, probably due to the cancer 
heterogeneity and complex mechanisms of splicing regulation (16, 17). 
In addition, the mechanistic understanding of cancer-associated 
splicing dysregulation is inadequate, although several mutated or 
mis-regulated splicing factors were identified as oncogenes or tumor 
suppressors (8, 9, 18).

In this study, we conducted comprehensive analyses of AS 
changes using transcriptome data from thousands of patients in 
18 types of cancers and found an unexpected length dependency in 
cancer-associated exons. Compared to typical exons, the short ex-
ons are more likely to be mis-spliced and preferentially excluded in 
almost all cancers. We further developed machine learning algo-
rithms with these cancer-associated short exons (CASEs) as diag-
nostic markers and defined a CASE-based risk factor to accurately 
predict the prognosis of cancer patients. Last, we determined the 
possible mechanisms for such length-dependent regulation. Collec-
tively, our results provide a deeper understanding and potential ap-
plication of complex AS regulation in cancers.

RESULTS
Significant length biases in cancer-associated 
alternative exons
To systematically study AS in cancers, we analyzed the RNA-sequencing 
(RNA-seq) data from 6788 patients in TCGA project consisting of 
18 cancer types. The PSI (percent-spliced-in) values of each anno-
tated AS event across all samples were calculated, from which we 
identified potential events significantly altered in tumor versus matched 
normal tissues (Fig. 1A). The most common type of AS, known as 
the skipped exons (SEs), was selected for an in-depth analysis. In all 
types of cancers analyzed, the cancer-associated SEs tended to be 
shorter compared to all human exons or all SEs (Fig. 1B). Consist-
ently, the length distributions of the cancer-associated exons versus all 
exons and all SEs also showed a more significant difference within 
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Fig. 1. The length dependency of cancer-associated exons. (A) Schematic diagram to identify cancer-associated ASEs. PSI values were calculated for all AS events in 
18 types of cancers from TCGA project based on the junction reads. (B) Boxplot showing exon lengths of all human exons, all annotated SEs, and the cancer-associated 
SEs in each cancer type. (C) Cumulative distribution curves of all human exons, all annotated SEs, and all cancer-associated SEs in the public data of TCGA. The P values 
were calculated with Student’s t test by comparing cancer-associated SEs with two other types of exons. The inset shows the distribution of exons no greater than 100 nt 
in length. (D) Cumulative distribution curves of all annotated human SEs and the cancer-associated SEs for the LUAD and ESCC from Chinese patients. The P values were 
calculated with Student’s t test by comparing all SEs with ESCC-associated SEs or LUAD-associated SEs. The inset shows the distribution of exons with length no greater 
than 100 nt. (E) Length distribution of all human exon and cancer-associated exons in each cancer type. The dotted line represents the 60-nt length cutoff. (F) Numbers 
of CASEs and CALEs identified in different numbers of cancer types. (G) Distribution of CASEs and CALEs in each cancer type. (H) Proportion of short and long exons in all 
human exons, all alternative exons, and cancer-associated exons. (I) RT-PCR validation of the splicing of several CASEs in LUAD tumor samples and adjacent normal tissues 
(primer sequences listed in table S1). The experiments were carried out in 12 paired samples, with median and SD plotted above the representative gel.
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the 0- to 100-nucleotide (nt) length window, suggesting that the 
short exons are more likely to be mis-spliced in cancer (fig. S1A).

To independently verify this phenomenon, we reanalyzed the 
cancer-associated SEs identified by other groups using different 
computational pipelines on TCGA data (19) and found similar 
length-dependent bias toward short exons (Fig. 1C). Because most 
patients in TCGA dataset are from Western countries, we also ex-
amined the RNA-seq samples collected from Chinese patients of 
lung adenocarcinoma (LUAD) and esophageal squamous cell carci-
noma (ESCC) (20, 21), and again, the similar length-dependent 
splicing changes were found in both sets of samples (Fig. 1D). 
Moreover, the cancer-specific SEs identified by long-read sequenc-
ing in breast cancer also showed the same length bias (fig. S1B), 
further confirming the length-dependent splicing changes in cancer 
(22). Together, our results revealed a previously unnoticed feature 
of splicing alteration in cancer, in which the short exons are more 
sensitive to be dysregulated regardless of the cancer types, analytic 
pipelines, and patient populations.

On the basis of the length difference between the cancer-associated 
SEs and all SEs, we defined the CASEs with a cutoff of 60 nt (equivalent 
to 20 amino acids) in which the difference of probability densities 
between cancer-associated exons and all exons reached the maximum 
(Fig. 1E). Using this cutoff, we identified a total of 494 CASEs (table S2), 
269 of which were changed in multiple cancer types (Fig. 1, F and G), 
with exon 7 of MBNL1 and exon 6 of RPS24 being the most frequently 
changed across multiple cancers (in 14 and 13 cancer types, respec-
tively; fig. S2A). Among all cancer-associated exons, 24% are short 
exons, whereas only 9% of all human exons and 11% of all alterna-
tive exons are short, indicating that short exons are more likely to be 
mis-spliced in cancers (Fig. 1H). We further validated the splicing 
of several CASEs using semiquantitative polymerase chain reaction 
(PCR) in 12 LUAD patients (Fig. 1I and fig. S2B), where most 
CASEs showed significant splicing changes in tumors compared 
to the matched normal tissues. Together, our large-scale data 
analyses identified CASEs as primary targets of splicing dysregu-
lation in human cancers.

CASEs are more conserved and tend to encode in-frame 
short peptides, with enrichment of certain short 
regulatory motifs
To further determine the general characteristics of the CASEs, we 
first calculated the ratio of exons with increased inclusion rate (in-
creased PSI) versus decreased PSI in cancers. Compared with the 
cancer-associated long exons (CALEs; length > 60 nt), the CASEs 
displayed a higher probability to be excluded in 15 of 18 tumors ana-
lyzed in TCGA database [except PAAD (Pancreatic adenocarcinoma), 
THCA (Thyroid cancer), and COAD (Colon adenocarcinoma)] (Fig. 2A) 
and in both cohorts of Chinese LUAD (Lung adenocarcinoma) and 
ESCC (Esophageal cancer) patients (Fig. 2A, in asterisks).

We then sought to further identify the specific features of the 
CASE-containing pre-mRNAs. We classified all alternative exons 
into four categories—CASEs, other short exons, CALEs, and other 
long exons (Fig. 2B, left)—and conducted a series of detailed com-
parisons. In general, the PSI values of all cancer-associated exons 
are lower than other exons, especially for CASEs (Fig.  2B, right). 
Compared to the other exons, the upstream and downstream introns 
adjacent to the cancer-associated exons were significantly longer, with 
the introns adjacent to CASEs even slightly longer than those adjacent 
to CALEs (Fig. 2C). Moreover, the splice sites of cancer- associated 

exons are significantly weaker than the other exons (Fig.  2D), 
which may partially underlie the increased exclusion of CASEs in 
cancers. The CASEs and their adjacent intronic sequences were sig-
nificantly more conserved compared to other three types of exons 
(Fig. 2E), suggesting additional selective pressure for splicing regu-
latory elements.

To explore the regulation of CASE splicing, we used a statistical 
enrichment analysis (23–25) to identify short motifs enriched in the 
CASEs or adjacent introns that potentially function as regulatory 
cis-elements to control CASE splicing. This analysis showed that 
the CASEs are enriched with exonic AG-rich motifs (Fig. 2F), which 
are known to function as ESEs (Exonic splicing enhancers) by re-
cruiting SR (Serine and arginine-rich) proteins that promote splic-
ing of weak exons (23, 26, 27). The adjacent introns of CASEs were 
also enriched with many pyrimidine-rich elements that may bind to 
PTB proteins to generally inhibit splicing in many genes (28, 29). A 
(T)GCATG motif, which has been reported to bind RBFox proteins 
(30–33), was strongly enriched at the downstream introns of CASEs 
(Fig.  2F). Enrichment of the intronic (T)GCATG motif was also 
identified by comparing CASEs versus CALEs and CASEs versus 
other short exons but not identified in CALEs versus other exons 
(Fig. 2F and fig. S2C), suggesting that RBFox proteins  may play a 
previously unknown role in specifically regulating short exons in 
cancers. This motif is unlikely a general feature for all short exons, 
as it could not be identified by comparing short exons versus long 
exons (fig. S2C).

Another interesting feature of CASEs is that, compared to the 
other types of exons, CASEs are substantially enriched for exons 
that maintain the original reading frame (i.e., exon length is the 
multiples of 3 nt) (Fig. 2G). Therefore, the mis-splicing of CASEs is 
more likely to change the ratios of alternative protein isoforms con-
taining or lacking an optional short peptide rather than to produce 
a truncated protein or cause the nonsense-mediated decay (34). 
Further analyses showed that the CASE-encoded peptides are en-
riched for hydrophilic residues like Lys, Ser, and Arg but depleted 
for hydrophobic residues like Leu, Ile, and Val (fig. S2D). Moreover, 
the CASE-encoded peptides were significantly enriched for intrin-
sic disordered regions as predicted by IUPred (Fig. 2H) (35). Be-
cause the intrinsic disordered regions often mediate protein-protein 
interactions during phase separation (36, 37), the splicing of CASEs 
may affect important cell signaling pathways involving phase sepa-
ration. In support of this notion, gene ontology (GO) analysis re-
vealed that the CASE-containing genes are significantly enriched 
for functions related to guanosine triphosphatase (GTPase) regula-
tor activity and cell adhesion (Fig. 2I and fig. S2E), implying that the 
CASE splicing may affect the cell proliferation and migration 
during cancer progression and metastasis.

CASEs can serve as diagnostic molecular markers of cancers
Because the alternative inclusion of short exons is easier to measure 
and the results are more reliable compared to the other alternative 
exons, we next seek to explore the predictive power of CASEs as 
potential molecular markers of cancers. Using the PSI values of 
CASEs as inputs, we applied two different machine learning meth-
ods [the principal components analysis (PCA) and the partial least 
squares discrimination analysis (PLS-DA)] to make a clear distinc-
tion between the tumors versus adjacent normal tissues (Fig.  3A 
and fig. S3). These separations were observed in either grouping all 
cancer types (Fig. 3A) or using each individual cancer type (fig. S3), 
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Fig. 2. Sequence features and functional implication for CASEs. (A) Changes of PSI for cancer-associated exons within different length groups. In each cancer type, the 
ratio of the SEs with increased PSI versus decreased PSI between the tumors and normal tissues was plotted. The short and long exons (in 60-nt cutoff) were plotted dif-
ferently. The asterisks indicate data from Chinese patients, while the rests are from TCGA data. (B) Workflow to classify all human exons into four categories according to 
the exon length and the association with cancers (left), and distribution of PSI values for each type of exons (right). (C) Length of the upstream and downstream introns 
surrounding four types of exons. The length of CASEs (i.e., short cancer) was compared to the other three types of exons, and P values were calculated by Student’s t test. 
(D) Splice site strength of four types of exons. P values between CASEs and other groups were calculated by Student’s t test, with the significant differences (P < 0.05) 
being indicated. (E) Conservation of the sequences around the four types of exons as indicated by average phastCons scores. (F) Enriched motifs in CASEs and their adja-
cent introns presented by pictograph. For each motif, the heatmaps of the enriched site were also included at above. (G) The effects on the reading frame by exon 
inclusion/exclusion for different exon types were plotted. P values were calculated with Fisher’s exact test. (H) The fractions of peptides encoded by each type of exons 
with a high (>0.67), mid-range (0.33 to 0.67), and low (<0.33) disorder rate were plotted using IUPred scores. (I) GO analysis for the CASE-containing genes, with the signifi-
cantly enriched functional terms as the hubs of the gene network.
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suggesting a strong predictive power of CASEs. Furthermore, we 
developed a random forest model to directly predict cancers using 
the PSI of CASEs (Fig. 3B and Materials and Methods). With a four-
fold cross-validation in 100 randomly trails, the model achieved 
accurate prediction with the area under the curve (AUC) of 0.913 
(Fig. 3C, left). This molecular diagnosis model also performed rea-
sonably well for individual cancer type, except in pancreatic adeno-
carcinoma where the sample size was too small (Fig. 3C, right).

To further validate the CASE-based model, we used indepen-
dent datasets from independent patient populations in the train-
ing and testing stages. Specifically, we trained the model using the 
LUAD datasets from TCGA that contains mostly patients of 
Western descendants or the ESCC dataset from Chinese patients, 

and tested the results with the Chinese LUAD patients or the ESCA 
dataset from TCGA. Our CASE-based random forest model 
achieved an AUC of 0.881 and 0.875, respectively (Fig. 3D), indicat-
ing that the CASEs may serve as reliable markers for molecular di-
agnosis of cancers.

We next examined the relative contribution of each CASE to 
cancer prediction by removing individual CASE from the model 
and calculated the reduction of accuracy. Using two independent 
algorithms, we identified top 10 CASEs that contributed the most to 
the prediction accuracy (Fig. 3E). Both algorithms identified the 
same set of top four CASEs, including exon 30 of FLNA, exon 16 of 
MARK3, exon 7 of MBNL1, and exon 6 of RPS24. The splicing of 
these four exons was all closely associated with patient survival 

A B C
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E

F

Fig. 3. Cancer prediction with CASEs. (A) PCA (top) and PLS-DA (bottom) analyses to separate cancers versus normal tissues based on PSI values of CASEs. The sam-
ples from all cancer types were merged for the analyses. (B) Training a random forest model to predict cancer using PSI values of CASEs as the features. A fourfold 
cross-validation in 100 randomly trails was used, where 75% of the samples were randomly selected for training and the remaining 25% for testing. (C) ROC curve of 
the random forest model (left) and AUC of the random forest model in each cancer type (right). (D) Performance of two additional random forest models using TCGA 
LUAD data as the training set and Chinese LUAD data as the testing set (left) or using Chinese ESCC data for training and TCGA ESCA data for testing (right). (E) Variable 
importance plot of the top CASEs with most impacts on the random forest model in (B). (F) Kaplan-Meier survival curves of all cancer patients stratified by PSI values 
of the top four CASEs in (E).
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(Fig. 3F), raising the possibility of using CASEs as new prognostic 
indicators for survival of cancer patients.

Splicing of CASEs serves as a strong predictor 
for cancer survival
To further evaluate the potential of CASEs as predictive factors of 
patient survival, we combined the patients from all cancer types and 
performed a series of Kaplan-Meier analyses by grouping patients 
based on the splicing of each CASE. We found that splicing of 24% 
of CASEs is significantly correlated with survival with P < 0.01 in 
Cox regression (table S3), and that of 16% of CASEs (79 CASEs) is 
strongly associated with patient survival with P < 0.0001 (Fig. 4A). 
In comparison, a significantly smaller fraction of CALEs were asso-
ciated with cancer prognosis (P < 0.05 by Fisher’s exact test). Al-
though both types of cancer-associated splicing events have some 
prognostic values, measuring the splicing of short exons is easier 
and more reliable, and thus, the CASEs may be a more practical 
choice than the CALEs as the prognosis markers. The genes con-
taining the prognostic CASEs are functionally enriched for cell sig-
naling pathways such as endocytosis and tight junction (Fig. 4B).

We further plotted the hazard ratios of the CASEs with the high-
est predictive power (Fig. 4C), among which the top four were also 
presented in Kaplan-Meier curves (Fig. 4D). Our results suggested 
that these CASEs can serve as individual prognostic marker. A ma-
jor limitation in predicting patient survival of all types of cancers 
with an individual CASE is the “missing data problem,” in which 
only a small number of patients can be reliably grouped and pre-
dicted using a given CASE. This problem is common to most prog-
nostic predictions using a small set of molecular markers. To deal 
with this problem, we combined eight CASEs (top CASEs in Figs. 3E 
and 4D) into a predictive panel and defined a risk factor based on 
the relative PSI of these CASEs (Fig. 4E and Materials and Meth-
ods). Using this panel, it is possible to make a prediction for most 
patients, except for those with missing data in all the eight CASEs. 
We first defined this CASE-based risk factor in each individual can-
cer type and found an accurate prediction of patient survival in all 
cancer types tested (fig. S4), suggesting that CASEs may be useful as 
prognostic markers. Encouraged by this result, we further tested 
whether the CASE-based factor is robust enough to show a predic-
tive power even when all different cancer types are combined to-
gether, which was very difficult because of the large variations 
between different cancer types (Fig. 4F). We grouped the patients of 
all cancer types according to the risk factor defined by the CASE 
panel and found a significant separation of the survival time for dif-
ferent patient groups (Fig. 4F), indicating that the CASE panel can 
serve as a strong pan-cancer prognostic predictor. Moreover, we 
also applied the CASE-based risk factor on an independent cohort 
of ESCC from Chinese patients and confirmed that the patients 
grouped according to CASE splicing have significantly different 
survival times (Fig.  4G). Collectively, these results indicated that 
CASEs could serve as a strong predictor for cancer survival.

To explore the molecular features responsible for the differential 
survival in cancer patients grouped by the CASE-based risk factor, 
we used CIBERSORT (38) to determine the immune cell infiltration 
in each cancer sample (Fig. 4H). We found that the patient group 
with better prognostic outcome (group 1) showed a significant re-
duction in the population of naïve and plasma B cells but had in-
creased numbers of memory B cells. In addition, the T helper cells 
that promote B cell activation were relatively enriched in these 

patients, and regulatory T cells (Tregs) that suppress adaptive immu-
nity are reduced (Fig. 4H). The group 1 patients also showed a re-
duced ratio of activated mast cells versus resting mast cells, which was 
found to inhibit Tregs (39). On the other hand, although the group 1 
patients have more CD4+ T memory cells that are responsible for 
long-term immune memory, the activation of T memory cells was 
not significant between these two groups (Fig. 4H, right). Collec-
tively, these results showed an intriguing correlation between CASE 
splicing and cancer immune microenvironment, which may shed light 
on the functional implication of CASE splicing. It should be noted 
that such difference in tumor immune microenvironment is quite 
small and cannot be translated into an effective prognostic factor; 
however, it probably reflects a previously unknown clinical feature 
in patients with significant splicing alterations.

Splicing of CASEs is affected by elevated 
transcription in cancer
We further seek to determine the molecular mechanisms responsi-
ble for the mis-splicing of CASEs in cancer. Previous studies reported 
that most genes are spliced cotranscriptionally (40, 41), and thus, 
the transcription rate may affect splicing by changing its time window 
(42, 43). It is generally accepted that cancer cells have an elevated 
transcription due to their rapid proliferation, especially in cancers 
with MYC mutations (44). According to a simple kinetic model, fast 
transcription reduces the time window for splice site recognition 
and thus may promote skipping of short exons (42, 43, 45). There-
fore, we speculate that the elevated transcription in cancer may con-
tribute to CASE splicing.

To test this hypothesis, we analyzed the RNA-seq data from cells 
harboring the mutated RNA polymerase II (Pol II) with fast and 
slow transcription rate (Fig. 5A) (46). The average elongation rate 
of wild-type (WT) Pol II is 1.7 kb/min, whereas the R749H muta-
tion reduced the rate to ~0.5 kb/min and the E1126G mutation in-
creased the rate to ~1.9 kb/min (46). Using the RNA-seq data from 
cells with WT or mutated Pol II, we identified 5439 and 3041 SEs 
significantly affected by these two mutants, respectively (Fig. 5B). 
The splicing changes of SEs are highly correlated between fast and 
slow mutations (fig. S5A), suggesting that altered transcription 
elongation rates have a profound effect on alternative exon inclu-
sion, which is consistent with a previous report (46). The short 
exons were more likely to be excluded (i.e., PSI decreased) than the 
long exons by altered elongation rates (Fig. 5C and fig. S5B), sug-
gesting that the short exons are especially vulnerable to the tran-
scriptional rate changes. Because the transcription is generally 
elevated in cancers, such increased sensitivity to transcription elon-
gation might explain why the short exons are more easily to be 
skipped in cancer cells. Consistently, there is a significant overlap 
between CASEs and the short exons altered by fast Pol II mutation, 
suggesting that the CASE splicing is easily disrupted by increased 
transcription elongation (Fig. 5D). These results are consistent with 
a simple kinetic model, where the fast transcription reduces time 
windows for splice site recognition and thus may promote skipping 
of short exons (47).

To further test whether the elevated transcription in cancer con-
tributes to CASE splicing, we examined the relationship between 
the transcription and CASE splicing by reanalyzing the chromatin 
immunoprecipitation–sequencing (ChIP-seq) data from multiple 
cancer cells (MCF-7, K562, HepG2, and A549) in ENCODE to ex-
amine different histone markers that reflect the transcription rates 
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Fig. 4. Prediction of patient survival using splicing changes of CASEs. (A) Proportion of CASEs and CALEs that are significantly correlated with patient survival at 
various cutoffs (P values from Cox regression). The difference between the proportion of CASE and CALE was evaluated with Fisher’s exact test. (B) KEGG (Kyoto Encyclo-
pedia of Genes and Genomes) pathway enrichment of the genes contained CASEs that correlated with patient survival with P < 0.01. (C) Forest plot of top CASEs signifi-
cantly correlated with patient survival in all cancers (P < 10−10, Cox regression). HR, hazard ratio. (D) Kaplan-Meier curves of all cancer patients stratified by PSI values of 
four individual CASEs with the highest predictive power in (C). The top and bottom quartiles of patients ranked by the PSI values of each CASE are grouped as PSI high 
and PSI low. (E) Pipeline to calculate the risk factor based on the PSI values of eight CASEs (see Materials and Methods). The patients with the top and bottom quartiles 
ranked by the risk factor were defined as group 1 and group 2. (F) Kaplan-Meier curve of patients grouped by the CASE-based risk factor. The P value was calculated by 
Cox regression. (G) Survival time distribution of two groups of patients, which was grouped using the method in (D) in Chinese ESCC cohort. The P value was calculated 
by Student’s t test. (H) Immune cell infiltration defined by the relative fractions of different types of immune cells estimated using CIBERSORT in two groups of cancer 
patients (***P < 0.001 and ****P < 0.0001; ns, not significant, by Student’s t test).
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(Fig. 5E and fig. S5B). We found that the CASE-containing genes 
had an increased level of monomethylation on H4K20 (H4K20me1) 
(Fig.  5E and fig. S5C), which marks an increased transcriptional 
elongation rate in these genes (48). Conversely, the transcription repres-
sion marker H3K27me3 (49, 50) was significantly reduced in the genes 

containing cancer-associated exons (especially CASEs), again suggesting 
that the genes containing CASEs are transcribed in an elevated rate. 
Moreover, the histone modifications associated with increased tran-
scription initiation (i.e., markers of active promotor), such as H3K4me3 
and H3K9ac, also showed stronger signals in genes containing either 
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Fig. 5. Elevated transcription profoundly affects CASE splicing. (A) Computational pipeline to identify AS events affected by the changes of fast and slow Pol II muta-
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CASEs or CALEs across multiple cancer cells (Fig. 5E and fig. S5C). This 
result implied that, in addition to fast elongation, a higher transcription 
activity in cancer may affect CASE splicing in general.

To directly measure the effect of elevated transcription on CASE 
splicing, we analyzed the Pol II occupancy around different types of 
exons (see Materials and Methods). As expected, we found significantly 
more Pol II signals around the CASEs than other types of exons 
(Fig. 5F). Consistently, the analysis of TT-seq (transient transcriptome–
sequencing) data (51) showed that the cancer-associated exons 
(CASE and CALE) have high levels of nascent RNAs (Fig. 5G), 
implying that the elevated transcription may cause mis-splicing 
of CASEs.

To experimentally validate the effect of altered transcription on 
CASE splicing, we generated Flp-In T-REx 293 cells stably integrated 
with WT or E1126G Pol II mutant with increased transcription rate 
(WT versus fast Pol II). We induced the expression of WT and 
E1126G Pol II mutant with doxycycline and inhibited the endoge-
nous Pol II with -amanitin. Subsequently, the splicing of CASEs 
was examined with semiquantitative reverse transcription PCR 
(RT-PCR) (Fig. 5H and fig. S5D). We found that cells with fast 
Pol II showed significant reduction of CASE inclusion in most CASEs 
tested (except exon 7 of MBNL1, which also has increased PSI in most 
cancers) (Fig. 5H and fig. S5E). This result directly supported our 
conclusion from computational analyses and further confirmed that 
the transcription rate plays a key role in regulating CASE splicing.

Identify the RNA binding proteins that regulate 
CASE splicing
The above results suggested that short exons are preferably affected 
by elevated transcription; however, it is still unclear why a certain 
fraction of short exons (i.e., CASEs) are mis-regulated by the in-
creased transcription in cancer. In addition to the transcription 
rate, AS can generally be regulated by various trans-acting factors 
that specifically bind pre-mRNAs (4), and thus, these factors probably 
also contribute to the mis-splicing of specific short exons in cancers. 
To identify RNA binding proteins (RBPs) that potentially regulate 
CASE splicing, we analyzed the existing large-scale RNA-seq datasets 
from ENCODE consortium with knockdown of 227 RBPs. For each RBP, 
we identified SEs that are significantly altered upon RBP knockdown 
and focused on the CASEs among these identified targets (Fig. 6A).

We performed an unsupervised clustering of all CASEs accord-
ing to how they were affected by RBPs and found that many CASEs 
were tightly correlated with each other (fig. S6A), suggesting that 
they are probably regulated by the same set of factors. To explore 
the common factors that regulate CASEs, we grouped the CASEs 
into three major clusters according to their splicing patterns across 
all cancer samples in TCGA (fig. S6B). The CASEs within the same 
cluster were tightly correlated in their splicing profiles (i.e., syner-
gistically regulated) and thus were merged together for further study. 
We next examined the potential interactions between each RBP and 
its potential target RNAs using the eCLIP-seq data. For the candidate 
RBPs, we identified their binding sites within the cognate exons and 
the adjacent introns (schematic diagram in Fig. 6A). By combining 
all evidences from RNA interference sequencing (RNAi-seq) and 
eCLIP-seq, we identified RBPs that may directly regulate each cluster 
of CASEs, resulting in a tightly connected regulation network be-
tween RBPs and CASEs (Fig. 6B).

We next focused on the 18 RBPs that regulate all three clusters of 
CASEs and examined how they might affect CASE splicing in cancers. 

By conducting a mutation analysis of the 18 RBPs using TCGA dataset, 
we found that, in general, these RBP genes are not frequently mutated 
in cancers. In total, there are ~13% of patients with detected muta-
tions in at least one of these genes, and the mutational status of most 
RBPs was not significantly correlated with CASE splicing (fig. S7A). 
The only exception is the core spliceosomal gene SF3B1 that is one 
of the most frequently mutated splicing factors (mutated in 3% of 
patients from the 18 cancer types analyzed). The cancers with SF3B1 
mutations have significant increase of CASE skipping (fig. S7B), 
suggesting a minor role of RBP mutations in affecting CASE splicing. 
On the other hand, compared to the control RBPs, the expression of 
9 of the 18 identified RBP genes is significantly more correlated 
with CASE splicing in TCGA samples (fig. S7C), suggesting that the 
altered expression of these RBPs in cancer plays a more general role 
in control CASE splicing.

We further focused on several RBPs that affect splicing in a 
length-dependent fashion (fig. S8, A to D). One of the RBPs, RNA 
binding fox-1 homolog 2 (RBFox2), is known to bind the (T)GCATG 
motif that is enriched in the downstream introns of CASEs (Fig. 2F). 
Knockdown of RBFox2 showed different impacts on splicing of short 
and long exons, and the RBFox2-sensitive short exons were signifi-
cantly overlapped with CASEs (fig. S8A). RBFox2 was reported to 
generally promote exon inclusion when binding to the downstream 
introns (52, 53), and the expression of RBFox2 was generally de-
creased in most cancers (fig. S8A), suggesting that the decrease of 
RBFox2 in cancers may be responsible for the skipping of many 
CASEs. Consistently, the CASEs with downstream (T)GCATG motif 
are more correlated with the RBFox2 levels than the CASEs without 
this motif, supporting the activity of RBFox2 to promote CASE in-
clusion by binding to the downstream (T)GCATG motif. As a con-
trol, in the correlation analysis using all SEs, the difference between 
SEs with or without this motif is very small (Fig. 6C).

In addition to RBFox2, many core components of the spliceo-
some, including AQR and U2AF2, were found to affect multiple clus-
ters of CASEs. Specifically, Aquarius (AQR), a helicase-like protein 
that binds introns in a sequence-independent fashion (54), also regu-
lates splicing in a length-dependent fashion and the AQR-regulated 
exons are significantly overlapped with CASEs (fig. S8B). PTBP1 and 
U2AF2, both preferentially binding to pyrimidine-rich sequences that 
are enriched around the CASEs (Fig. 2F), also affect short and long 
exons differentially with a significant overlap between CASEs and 
their targets (fig. S8, C and D). We also found that the SEs regulated 
by these RBPs generally have weaker splice sites (fig. S8E), which is 
similar to splice sites of CASEs (Fig. 2D). Because weaker exons are 
generally shorter, this result also suggested that the factors regulating 
weak exons may also play a role in regulating CASE splicing.

Last, we experimentally validated the regulation of several CAS-
Es by these RBPs (AQR, PTBP1, RBFox2, and U2AF2) using short 
hairpin RNA (shRNA) knockdowns (fig. S9) and found that they 
played key roles in affecting CASE splicing (Fig. 6D). Together, our 
findings demonstrate that certain RBPs are actively involved in reg-
ulating CASE splicing in cancers, among which the activity of RBFox2, 
AQR, PTBP1, and U2AF2 was experimentally validated.

DISCUSSION
Splicing dysregulation in cancers has been widely regarded as a key 
molecular feature that plays critical roles in cancer biogenesis and 
progression. By systematically analyzing the big data of transcriptome 
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sequencing, we uncovered a general trend of length-dependent 
splicing dysregulation, where the short exons are more likely to be 
mis-spliced and preferably skipped in most cancers. These CASEs 
are more conserved and tend to preserve reading frames, and the 
CASE-encoded peptides are more likely to contain intrinsic dis-
ordered regions that are known to affect protein phase separation, cellu-
lar signal transduction, and RNA metabolisms (55, 56). Previously, 
a group of microexons (3 to 15 nt) was found to be specifically in-
cluded in neuronal cells (57), and our finding of CASEs represents 
a more general type of length-dependent splicing regulation that is 
common to most tissues. Some examples of the CASE have been 
independently reported to have important functions in cancer 
pathogenesis (20, 58), suggesting that this length-dependent splicing 
dysregulation has functional relevance in cancers. Here, we explored 
the clinical application of CASEs by developing a new computation-
al pipeline to successfully predict cancer survival and also identified 
two potential mechanisms that affect the length-dependent splicing 
in cancer. Collectively, our study not only found a common feature 
of cancer-associated splicing dysregulation but also highlighted the 
clinical importance of these CASEs as prognostic markers and/or 
therapeutic targets.

Our findings have several important clinical implications. The 
powerful machine learning model we developed on the basis of 
CASE splicing is able to achieve >90% accuracy in predicting can-
cers versus normal tissues, and the CASE-based risk factor can serve 
as a strong prognostic predictor of cancer survival (Figs. 3 and 4). 
Compared to other methods that required large amount of RNA-
seq data, our model only needs the splicing readouts from dozens of 
short exons, which are feasible and reliable in clinical measurement. 
By combining eight CASEs into a predictive panel, we were able to 
generate a predictive score for 90% of cancer patients. The large 
variations of survival and treatment scheme for different cancers 
usually make it very difficult for the prognostic prediction using a 
simple molecular marker. However, we found that the CASE-based 
score is very robust and can even generate statistically meaningful 
survival prediction in either individual cancer type or combined can-
cers. The altered splicing of an individual CASE may not make enough 
functional difference to affect the outcome of cancer, and thus, it is 
quite unexpected that a single CASE showed a strong prediction power. 
We speculate that the overall impact of the coordinated splicing chang-
es in many CASE-containing genes may functionally affect the cancer 
survival. Consistently, we find that many CASE- containing genes are 
enriched for cancer-related functions (Fig. 2I). In addition, it is also 
possible that the preferential skipping of short exons is a result of 
elevated transcription rate, and thus, the aberrant splicing of a single 
CASE can serve as a good molecular marker by reflecting the change 
of transcription rate. It is likely that both the mis-splicing of CASE- 
containing genes and the elevation of general transcription proba-
bly affect cancer cell growth in a nonexclusive fashion.

Moreover, we found that the different CASE-defined cancer groups 
have distinct profiles of immune cell composition, implying that 
these groups may need to be treated with different regimens of chemo-
therapy or immunotherapy. It is worth mentioning that this results 
on immune infiltrates only provided a suggestive clue rather than the 
definitive evidence. The association of CASE-defined cancer groups 
with distinct immune cell infiltrates only presents a possible explana-
tion on why the two groups showed different chances of survival, as 
well as some clues to guide immunotherapy. However, future tests are 
needed to confirm this hypothesis on precision immunotherapy.

The finding that CASEs are sensitive to altered transcription rate 
in cancers is very intriguing. Because most pre-mRNAs are spliced 
cotranscriptionally, AS can generally be affected by the transcrip-
tion rate (40, 41). According to a simple kinetic model, fast tran-
scription reduces the competitive advantage of upstream splice sites 
and thus promotes skipping of weak exons, while a slow elongation 
usually promotes exon inclusion by providing a larger time window 
for spliceosome assembly (42, 43, 45). Therefore, an optimal tran-
scriptional elongation rate may be required for the proper splicing 
of different genes (46). In this study, we found that the splicing of 
short exons is more sensitive to the transcription changes. We spec-
ulate that the change of transcription rate affects the time window 
by which the RBPs recognize pre-mRNAs, and thus altering the 
binding of certain trans-acting splicing factors like RBFox2. The el-
evated cancer cell proliferation requires rapid mRNA synthesis, 
which is usually controlled by epigenetic modifications that in-
crease transcription efficiency. Consistent with this idea, the his-
tone modification markers associated with transcription activation 
showed an enrichment in the CASE-containing genes, whereas the 
histone modification that correlated with transcription repression 
is relatively depleted in these genes (Fig. 5E and fig. S5B). However, 
we must acknowledge that the correlation between histone modifi-
cations and transcription elongation is a little weak [Spearman’s 
rank correlation ~0.3 (59)], despite being statistically significant 
(48, 49, 60, 61). This weak correlation is probably due to the large 
noise from big data; however, a weak correlation is still informative 
and can serve as a piece of indirect evidence. Future studies are 
needed to dissect the detailed interaction between epigenetic modi-
fications and CASE skipping in cancers. Another caveat is the lim-
itation from data availability: The histone modification data we 
used were from human cancer cells that are incomplete reflection of 
patient sample. Currently, the reliable datasets from patient sam-
ples are insufficient for a thorough analysis, probably due to techni-
cal difficulties in the experiments and the sample acquisition, and 
future studies with patient samples should provide a clearer picture.

This study also identified several RBPs that play an important 
role in specific regulation of CASE splicing. Our integrative analysis 
across various transcriptome-wide datasets was performed on three 
major CASE clusters rather than each individual CASE, which re-
duced the noises from sample heterogeneity and increase the ro-
bustness of the analysis. This analysis suggested new roles of some 
core spliceosomal components in regulating AS in a length-dependent 
fashion, such as AQR, SF3B4, PRPF8, U2AF2, and SF3B1. Because 
the alteration in transcription rate usually affects AS by changing 
the splicing time window, the specific binding and regulation by 
these factors may explain why some short exons are especially sen-
sitive to changes of transcription rate. In particular, we found that 
RBFox2, a canonical splicing factor reduced in most cancers, plays 
a key role in promoting CASE inclusion. This finding may provide 
a possible route to restore CASE splicing in cancer. In addition, several 
core splicing factors were found to affect short and long exons dif-
ferentially (fig. S7), probably due to the weak splice sites of CASEs, 
making them more sensitive to the perturbance of core splicing fac-
tors. For example, the SEs regulated by U2AF2 are generally weaker 
than control exons, which are similar to CASEs. The enriched motifs 
surrounding CASEs may also selectively bind to certain core splicing 
factors. For example, the poly T sequences enriched in the upstream 
of CASEs (Fig. 2F) were also known to specifically bind U2AF2 
(62). It is possible that different core splicing factors may conduct 
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length-dependent splicing regulation with different mechanisms. 
Additional study on the mechanisms of length-dependent splicing will 
open a new window to the unknown regulatory complexity of AS.

Collectively, this study reveals a general rule for AS dysregula-
tion in cancers, provides a simple and practical route for cancer 
stratification with AS, and uncovers the potential underlying mech-
anisms. Because the splicing dysregulation was recently found to 
associate with cancer immunotherapy and drug assistance (63, 64), 
our study provides valuable information for cancer prediction with 
clinical implications.

MATERIALS AND METHODS
Computational pipeline to identify cancer-associated  
AS events
To identify cancer-related AS events, we downloaded the level 3 
RNA-seq data from 6788 patients in TCGA project (https://gdac.
broadinstitute.org/) consisting of 18 types of solid tumors with paired 
adjacent normal tissues. We combined two annotations of SEs from 
MISO (65) and vast-tools (57) and calculated PSI values of the SEs 
in the annotation in all samples using the reads number of each 
junction according to the following formula

  PSI =   0.5( J  1   +  J  2  ) ─  0.5( J  1   +  J  2   ) +  J  3      

where J1 and J2 are the read counts of two adjacent junctions of the 
SE that support exon inclusion, while J3 is the junction read count 
supporting exon exclusion (Fig.  1A). In each cancer type, we as-
sume that the PSI values of a particular SE follow normal distribu-
tion, and identified cancer-associated exons (or mis-spliced exons) 
that are significantly altered in tumor versus normal tissues using 
the cutoff |∆PSIavg| > 0.1 and P < 0.05 by Student’s t test.

Analysis of general features of CASEs
All alternative exons were divided into four categories: 494 CASEs, 
1571 CALEs, 13,265 other short exons, and 130,875 other long exons 
based on the exon length and the relative changes in cancers. The se-
quence and functional characteristics in each group were compared. 
The splice site scores were calculated using the maximal entropy mod-
els (66). The enriched motifs of CASEs were identified based on the 
frequencies of each hexamer in the set of CASEs versus the control set 
of exons using a statistic pipeline (23). Two control sets, all human 
exons or CALEs, were used. The enriched hexamers were identified in 
three different regions: two intronic regions adjacent to the SEs (−300 
to −20 nt in the upstream intron and 10 to 300 nt in the downstream 
intron) and the exonic region within SEs. All hexamers with enrich-
ment z scores > 4 were clustered in Clustal Omega, and the motif logos 
of each cluster were plotted using R package “ggseqlogo.”

To determine the conservation of exonic sequences and their 
flanking intronic regions, we used human phastCons data from 
alignments of 46 placental mammal, which was downloaded from 
UCSC (http://genome.ucsc.edu/). The average phastCons score of 
each site within the 100-nt intron region surrounding the exons was 
calculated and plotted (Fig.  2E). The GO analysis for the human 
genes harboring CASEs was built using R package “clusterProfiler.”

To investigate features of the peptides encoded by each class 
of exons, we translated exons in all three frames and aligned the 
products to the canonical UniProt sequences to obtain the correct 

amino acid sequence. The intrinsic disorder region of each peptide 
was predicted using IUPred (67).

The effect of transcription elongation rate on CASEs
We downloaded the RNA-seq data of the human embryonic kidney 
(HEK) 293 cell line that expresses the RNA Pol II mutants with fast 
elongation rate from Gene Expression Omnibus (GEO) (accession 
number GSE63375). The elongation rate of cells with Pol II fast mu-
tation was estimated by GRO (Global run-on sequencing)-seq in 
Fong et al.’s (46) study using the positions relative to the transcrip-
tion start site (TSS) of three time points. Briefly, doxycycline- 
induced, -amanitin–treated cells were treated with 100 mM DRB 
(d-ribofuranosylbenzimidazole) for 3 hours. DRB was subsequently 
washed away by phosphate-buffered saline three times, and the cell 
nuclei were harvested at t = 0, 10, and 20 min after washing for the 
GRO-seq experiments using BrUTP (Bromouridine-triphosphate) 
labeling. For the GRO-seq reads, genes were aligned at TSSs, and 
RPKM (reads per kilobase million) was calculated for the control 
sample without DRB treatment. The positions of Pol II wave rela-
tive to the TSS for the three time points were calculated and linearly 
fitted to estimate the elongation rate. The RNA-seq reads were aligned 
to the human genome (hg19) using STAR with the standard param-
eters, and the PSI values were calculated using rMATS (68). The SEs 
associated with altered rates of transcription elongation were defined 
with the cutoff |∆PSIavg | > 0.1 and P < 0.05 by comparing Pol II 
mutation versus WT.

Plasmid construction and generation of Flp-In cell lines
The WT and mutated forms of B10-tagged human Rpb1 were 
amplified from pAT7h1Amr (69) and subcloned into the Bam HI–
Not I site of pcDNA5/FRT/TO. The resulting plasmids were cotrans-
fected with pOG44 into Flp-In T-REx 293 cells with a 1:9 ratio. 
Forty-eight hours after the transfection, the cells were washed and 
split into fresh medium, incubated at 37°C overnight, and then 
changed with fresh medium containing hygromycin (100 g/ml). 
The cells were cultured in the selective medium until the monoclo-
nal colonies formed (fresh medium was changed every 3 days). 
Three to four monoclonal cells were picked and expanded for further 
use, and the insert sequences were confirmed by Sanger sequencing. 
The expression of Rpb1 was induced by adding doxycycline to a fi-
nal concentration of 1 g/ml for 2 days. All experiments were per-
formed after treatment with -amanitin (2.5 mg/ml) for a further 
42 hours, at which time all cell lines were viable despite the fact that 
the endogenous Pol II was inactive.

RNA extraction and semiquantitative RT-PCR
The RNAs were extracted with the TRIzol Reagent (#15596026, 
Thermo Fisher Scientific) following the manufacturer’s instruc-
tions. RNA (1 g) was reverse-transcribed by the PrimeScript RT 
Reagent Kit with gDNA Eraser (RR047A, Takara). One-tenth of the 
RT production was used as the template for PCR amplification 
[28 cycles, labeled with trace amount of Cy5-Dctp (PA55021, GE 
Healthcare)], with primers corresponding to the exons of the selected 
genes (table S1). The PCR products were separated by 10% TBE 
(tris borate EDTA) polyacrylamide gel electrophoresis (PAGE) 
gel and stained with SYBR Safe (S33102, Invitrogen). The gels 
were scanned with the ChemiDoc Touch Imaging System (Im-
age Lab, Bio-Rad). The quantification of the bands was performed 
by the ImageJ software described previously (70).

https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
http://genome.ucsc.edu/
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Histone modification analysis
The processed signal files (in bigwig format) from ChIP-seq of sev-
eral histone modifications (H4K20me1, H3K27me3, H3K9ac, and 
H3K4me2) were downloaded from ENCODE consortium (https://
encodeproject.org). To examine whether the genes containing cancer- 
associated exons have different transcription rates, we divided all 
human genes into four classes based on whether the genes contain 
CASEs, CALEs, other short exons, or none of these three types. The 
genomic region encompassing 3000 nt before the TSS and 3000 nt 
after the TES (transcription end site) of all genes was used in the 
analysis. The average ChIP-seq signal in each region was obtained 
with the script of deepTools ComputeMatrix, and the figures were 
plotted using deepTools plotProfile.

Analysis of Pol II occupancy and nascent RNAs
The processed Pol II signal file (in bed format) from ChIP-seq of 
Pol II was downloaded from ENCODE consortium (https://enco-
deproject.org). We normalized the peak signals to examine the Pol 
II occupancy in each type of exon. The average peak signals encom-
passing 500 nt before exon and 500 nt after exon were calculated to 
compare among these four types of exons.

The TT-seq data are downloaded from GEO (accession number 
GSE148433) (51), and the raw reads were aligned to the human ge-
nome (hg19) using hisat2. The level of four types of exons in TT-seq 
was further calculated using featureCounts.

RBP analysis
RNA-seq data from the knockdown of 227 RBPs and the eCLIP data 
(both in K562 cell line) were downloaded from ENCODE consor-
tium. The sequencing reads were aligned to the human genome 
(hg19) using STAR with the standard parameters, and PSI values were 
calculated using rMATS (68). For each RBP, we compared the changes 
between RBP knockdown and paired control samples to identify 
the SEs with significant changes (with cutoff of  |∆PSIavg| > 0.1 and 
P < 0.05), which were defined as RBP-associated SEs. We focused on 
the RBP-associated CASEs for further studies.

For the candidate RBPs that affect CASE splicing based on the knock-
down data, we searched their binding sites within the CASEs and their 
adjacent introns (1000 nt) and identified the RBPs that directly regulate 
CASEs. A tightly connected regulation network between RBPs and CASEs 
was obtained from the integrated analysis and built using Cytoscape.

Knockdown of RBPs with shRNAs
Human lung cancer NCI-H1299 cell lines were obtained from the 
American Type Culture Collection (Manassas, VA, USA). To stably 
knock down certain RBPs in H1299 cells, lentiviral vectors were used. 
We transfected 293T cells with pLKO.1-RBP (pLKO.1 empty vector 
as control) together with PAX2 and PMD2 according to the manu-
facturer’s protocols. The supernatant media containing virus were 
collected by centrifugation to remove any cellular contaminant. Fur-
ther, H1299 cells were infected with the viral particles, and the stably 
integrated cells were selected with puromycin (5 g/ml) for 5 days. 
Then, cells were maintained in medium containing puromycin (2 g/
ml) at 37°C in a humidified incubator with 5% CO2. All the stable cell 
lines were confirmed by quantitative PCR before further analysis.

PCA, PLS-DA, and the random forest model
To use CASEs as molecular markers for cancer prediction, we com-
bined all types of cancers into a training set of 6788 tumors and 705 

normal samples. We considered the 60 CASEs that are detected in 
at least 5500 tumor samples and 450 normal samples, and the sam-
ples with at least 20 CASEs detected were used for our analyses. The 
PSI values of CASEs in each sample were used as input for PCA and 
PLS-DA with R package “mixOmics.”

We further trained a random forest model based on the PSI values 
of the 60 CASEs to classify tumor and normal samples, which was 
trained using the “randomforest” R package. We performed a four-
fold cross-validation in 100 randomly trails to evaluate the prediction 
accuracy, where 75% of the samples were randomly selected for train-
ing and the remaining 25% for testing. We also evaluated the perform-
ance using a cross-validation between the RNA-seq data from 
Chinese LUAD and ESCC patients and the Western patients of 
TCGA. Briefly, we trained the model using LUAD samples from 
TCGA and tested the performance with data from Chinese LUAD 
patients, or trained the model based on Chinese ESCC patients and 
tested using ESCA samples from TCGA. The receiver operating char-
acteristic (ROC) curve was plotted using R package “pROC.”

Survival analysis using CASEs
We combined the patients of all cancer types in TCGA and down-
loaded the clinical data from Genomic Data Commons (https://
portal.gdc.cancer.gov). For each CASE, we ranked the PSI values in 
all patients and grouped the patients in the top and bottom quartiles 
into “PSI high” and “PSI low” groups. The comparison of the over-
all survival between these two groups was performed using Cox re-
gression in the R package “survival” and “survminer.”

To increase the sensitivity in our prediction, eight CASEs were 
selected to compute a risk factor for each patient sample. We ranked 
the PSI values of each CASE and assign a relative score from [1,2,3,4] 
for each PSI quartile. A CASE-based risk factor for each sample was 
then defined by the mean of this relative score for the eight CASEs 
selected. We used the rank of this risk factor to classify the top and 
bottom quartiles of patients into two groups and compared the sur-
vival time and immune cell infiltration between the two groups.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn9232

View/request a protocol for this paper from Bio-protocol.
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