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Abstract: A novel class of quinolinol-based dimeric indium complexes (1–6) was synthesized and
characterized using 1H and 13C(1H) NMR spectroscopy and elemental analysis. Compounds 1–6
exhibited typical low-energy absorption bands assignable to quinolinol-centered π–π* charge transfer
(CT) transition. The emission spectra of 1–6 exhibited slight bathochromic shifts with increasing
solvent polarity (p-xylene < tetrahydrofuran (THF) < dichloromethane (DCM)). The emission bands
also showed a gradual redshift, with an increase in the electron-donating effect of substituents at the
C5 position of the quinoline groups. The absolute emission quantum yields (ΦPL) of compounds 1
(11.2% in THF and 17.2% in film) and 4 (17.8% in THF and 36.2% in film) with methyl substituents
at the C5 position of the quinoline moieties were higher than those of the indium complexes with
other substituents.

Keywords: indium quinolinates; charge transfer; quantum yield; radiative decay constant; non-
radiative constant

1. Introduction

The creation of tris(8-hydroxyquinolinato)aluminum (Alq3) by Tang and Van Slyke
pioneered a new era of group 13-based organometallic luminescent materials that can
be used in versatile optoelectronic fields [1]. Numerous efforts and approaches have
been used to modulate the quinolinate ligands and expand their applications in organic
light-emitting diodes (OLEDs) [2–6]. In this context, particular emphasis has been placed
on the development of tris-incorporated metal complexes (Mq3). Owing to the ease of
introducing various substituents at the C2 and C5 positions of the quinolinolate moiety,
studies of various tris-organometallic complexes based on quinolinate derivatives have
also been conducted [7,8]. These complexes are endowed with photophysical properties
that originate from the control of the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO) energy levels. Specifically, the systematic
variation in the substituents at the C5 position of the quinolinolate groups led to excellent
optical properties such as emission-color tuning and enhanced quantum efficiencies [9–18].
However, most of the previous studies primarily focused on tris-complexes.

Recently, our group reported a series of quinolinol-based indium complexes in which
the sequential introduction of quinolinate ligands to the indium center could control both
the emission color and quantum efficiency (Figure 1) [19]. Importantly, the dimeric indium
complex (InMeq1) with a quinolinate ligand exhibited the highest quantum efficiency
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(ΦPL = 59% in the poly(methyl methacrylate) (PMMA) film) compared to all the indium
luminophores reported to date.
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MHz for 1H and 100.62 MHz for 13C) (Bruker Corporation, Billerica, MA, USA) at the la-
boratory’s ambient temperature. The chemical shifts are given in ppm and are referenced 
against external Me4Si (1H and 13C NMR). The elemental analyses were performed on an 
EA3000 spectrometer (Eurovector, Pavia, Italy) in the Central Laboratory of Kangwon Na-
tional University. The UV−vis absorption and PL spectra were recorded on Jasco V-530 
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time-correlated single-photon-counting spectrometer (Edinburgh Instruments, Living-
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In this study, we designed a series of dimeric indium quinolinates with different
substituents (Me, Br, and Ph) at the C5 position of two types of quinolinate ligands (q and
Meq) to prove the substitution effects for developing potential indium-based luminescent
materials. The detailed synthetic procedures and optical properties of these complexes
were investigated.

2. Materials and Methods
2.1. General Considerations

All manipulations were carried out under an inert N2 atmosphere using the stan-
dard Schlenk and glovebox techniques. All anhydrous-grade solvents (n-hexane, diethyl
ether, and toluene) were purchased from Alfa Aesar (Ward Hill, MA, USA) and dried
by passing them through an activated alumina column and storing them over activated
molecular sieves (5 Å). The spectrophotometric-grade solvents (p-xylene, tetrahydrofu-
ran (THF), dichloromethane (DCM), and acetonitrile (MeCN)) were used as received
from Merck (Darmstadt, Germany). All the commercially available reagents (2-amino-4-
bromophenol, 2-amino-4-methylphenol, and 2-amino-4-phenylphenol) were purchased
from Alfa Aesar (Ward Hill, MA, USA)and used without any further purification. The
trimethylindium (InMe3) was analogously prepared according to the literature [19–23].
Because InMe3 is highly reactive and pyrophoric, it should be stored in a glovebox and used
carefully. The quinolinol compounds 5-bromoquinolin-8-ol (2a) [24], 5-methylquinolin-
8-ol (3a) [25], 5-phenylquinolin-8-ol (5a) [26], 5-bromo-2-methylquinolin-8-ol (6a) [27],
2,5-dimethylquinolin-8-ol (7a) [28], and 5-phenyl-2-methylquinolin-8-ol (8a) [29] were
synthesized using previously reported methods. The deuterated solvent (CDCl3) from
Cambridge Isotope Laboratories (Tewksbury, MA, USA) was used after drying it over
activated molecular sieves (5 Å). The NMR spectra were recorded on a Bruker Avance
400 spectrometer (400.13 MHz for 1H and 100.62 MHz for 13C) (Bruker Corporation, Biller-
ica, MA, USA) at the laboratory’s ambient temperature. The chemical shifts are given in
ppm and are referenced against external Me4Si (1H and 13C NMR). The elemental analy-
ses were performed on an EA3000 spectrometer (Eurovector, Pavia, Italy) in the Central
Laboratory of Kangwon National University. The UV−vis absorption and PL spectra were
recorded on Jasco V-530 (Jasco, Easton, MD, USA) and Fluoromax-4P spectrophotometers
(HORIBA, Edison, NJ, USA), respectively. The fluorescence decay lifetimes were mea-
sured using an FLS920 time-correlated single-photon-counting spectrometer (Edinburgh
Instruments, Livingston, UK) in the Central Laboratory of Kangwon National University,
which was equipped with a picosecond pulsed diode laser (EPL 375-ps) pulsed semicon-
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ductor diode laser as an excitation source and a microchannel plate photomultiplier tube
(200−850 nm) as a detector at 298 K.

2.2. Synthesis of [5-methyl-8-quinolinolate In(III)–Me2]2 (1)

A toluene solution (10 mL) of InMe3 (0.080 g, 0.50 mmol) was added to a toluene
solution (20 mL) of 1a (0.088 g, 0.55 mmol) at room temperature. The reaction mixture was
stirred for 12 h, and the insoluble parts were collected by filtration. The remained solid
was washed with n-hexane (3 × 20 mL) and dried in vacuo to obtain 1 as a pale-yellow
solid (0.090 g, 62%). 1H NMR (CDCl3): δ 8.51 (dd, J = 1.2 and 4.0 Hz, 2H), 8.34 (m, 2H),
7.47 (m, 2H), 7.26 (dd, J = 1.4 and 3.6 Hz, 2H), 6.94 (d, J = 6.8 Hz, 2H), 2.55 (s, 6H), −0.13
(s, 12H, In−CH3). 13C{1H} NMR (CDCl3): δ 156.43, 143.58, 140.17, 134.97, 129.57, 128.92,
120.86, 119.58, 112.44, 17.62, −5.49. Anal. Calcd for C24H28In2N2O2: C, 47.56; H, 4.66; N,
4.62. Found: C, 47.38; H, 4.59; N, 4.57.

2.3. Synthesis of [5-bromo-8-quinolinolate In(III)–Me2]2 (2)

This compound was prepared in a manner analogous to the synthesis of 1 using 2a
(0.12 g, 0.55 mmol). The desired compound 2 was obtained as a yellow solid (0.12 g, 65%).
1H NMR (CDCl3): δ 8.58 (dd, J = 1.0 and 4.2 Hz, 2H), 8.54 (m, 2H), 7.69 (d, J = 8.4 Hz, 2H),
7.56 (m, 2H), 6.91 (d, J = 6.8 Hz, 2H), −0.11 (s, 12H, In−CH3). 13C{1H} NMR (CDCl3): δ
158.10, 144.60, 140.72, 137.95, 132.82, 128.80, 122.43, 113.72, 104.63, −5.19. Anal. Calcd for
C22H22Br2In2N2O2: C, 35.91; H, 3.01; N, 3.81. Found: C, 36.31; H, 3.06; N, 3.74.

2.4. Synthesis of [5-phenyl-8-quinolinolate In(III)–Me2]2 (3)

This compound was prepared in a manner analogous to the synthesis of 1 using 3a
(0.12 g, 0.55 mmol). The desired compound 3 was obtained as a yellow solid (0.11 g, 60%).
1H NMR (CDCl3): δ 8.23 (d, J = 6.4 Hz, 2H), 7.84 (d, J = 6.8 Hz, 2H), 7.46–7.42(m, 6H),
7.40–7.37 (m, 2H), 7.34–7.33 (m, 4H), 7.16 (dd, J = 1.2 and 4.2 Hz, 2H), 7.08 (d, J = 7.2 Hz,
2H), −0.10 (s, 12H, In−CH3). 13C{1H} NMR (CDCl3): δ 161.23, 153.28, 147.73. 143.85,
141.08, 135.94, 132.03, 131.93, 125.56, 121.17, 118.04, 116.85, 107.75, −5.06. Anal. Calcd for
C34H32In2N2O2: C, 55.92; H, 4.42; N, 3.84. Found: C, 55.81; H, 4.41; N, 3.74.

2.5. Synthesis of [2-methyl-5-methyl-8-quinolinolate In(III)–Me2]2 (4)

A toluene solution (10 mL) of InMe3 (0.080 g, 0.50 mmol) was added to a toluene
solution (20 mL) of 4a (0.095 g, 0.55 mmol) at room temperature. The reaction mixture was
stirred for 12 h, and the insoluble parts were collected by filtration. The remained solid
was washed with diethyl ether (3 × 20 mL) and dried in vacuo to obtain 4 as a pale-yellow
solid (0.098 g, 62%). 1H NMR (CDCl3): δ 8.56 (dd, J = 1.4 and 4.2 Hz, 2H), 7.53 (dd, J = 1.2
and 3.8 Hz, 2H), 7.33 (d, J = 7.2 Hz, 2H), 7.00 (d, J = 7.8 Hz, 2H), 2.86 (s, 6H), 2.59 (s, 6H),
−0.18 (s, 12H, In−CH3). 13C{1H} NMR (CDCl3): δ 158.93, 156.78, 140.52, 135.33, 129.93,
129.27, 121.21, 119.94, 112.80, 24.13, 17.97, −5.13. Anal. Calcd for C26H32In2N2O2: C, 49.24;
H, 5.09; N, 4.42. Found: C, 49.20; H, 5.00; N, 4.38.

2.6. Synthesis of [2-methyl-5-bromo-8-quinolinolate In(III)–Me2]2 (5)

This compound was prepared in a manner analogous to the synthesis of 4 using 5a
(0.095 g, 0.55 mmol). The desired compound 5 was obtained as a dark yellow solid (0.11 g,
58%). 1H NMR (CDCl3): δ 8.56 (dd, J = 1.4 and 4.0 Hz, 2H), 7.52 (m, 2H), 7.33 (dd, J = 1.6
and 3.4 Hz, 2H), 7.00 (d, J = 7.8 Hz, 2H), 2.60 (s, 6H), −0.08 (s, 12H, In−CH3). 13C{1H}
NMR (CDCl3): δ 157.88, 154.39, 140.50, 137.74, 132.60, 128.58, 122.21, 113.51, 104.41, 24.39,
−5.40. Anal. Calcd for C24H26Br2In2N2O2: C, 37.73; H, 3.43; N, 3.67. Found: C, 37.68; H,
3.49; N, 3.63.

2.7. Synthesis of [2-methyl-5-phenyl-8-quinolinolate In(III)–Me2]2 (6)

This compound was prepared in a manner analogous to the synthesis of 4 using 6a
(0.13 g, 0.55 mmol). The desired compound 6 was obtained as a yellow solid (0.13 g, 67%).
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1H NMR (CDCl3): δ 8.25 (d, J = 7.2 Hz, 2H), 7.46–7.44 (m, 6H), 7.42–7.40 (m, 2H), 7.35
(dd, J = 1.4 and 3.2 Hz, 4H), 7.18–7.17 (m, 2H), 7.10 (d, J = 6.8 Hz, 2H), 2.73 (s, 6H, CH3),
−0.07 (s, 12H, In−CH3). 13C{1H} NMR (CDCl3): δ 160.94, 158.71, 149.14, 146.74, 142.52,
141.72, 136.40, 132.14, 127.64, 127.22, 121.21, 119.99, 113.69, 25.21, −5.16. Anal. Calcd for
C36H36In2N2O2: C, 57.02; H, 4.79; N, 3.69. Found: C, 56.98; H, 4.66; N, 3.59.

2.8. Cyclic Voltammetry

The cyclic voltammetry (CV) measurements were performed in a deoxygenized MeCN
(0.5 mM) solution with a three-electrode cell configuration (platinum working and counter
electrodes and an Ag/AgNO3 reference electrode (0.1 M in MeCN)) using an AUTO-
LAB/PGSTAT12 system at room temperature. Tetra-n-butylammonium hexafluorophos-
phate (n-Bu4PF6) in MeCN (0.1 M) was used as the supporting electrolyte. The redox
potentials were investigated at a scan rate of 100 mV/s and determined with respect to the
ferrocene/ferrocenium (Fc/Fc+) redox couple.

2.9. Photophysical Properties

The samples for the UV–vis absorption and photoluminescence (PL) measurements
were prepared using degassed solvents (p-xylene, THF, and DCM) in 1 cm quartz cuvettes
(50 µM) at 298 K. The absolute PL quantum yields (ΦPL) of indium complexes 1–6 in THF
solution were obtained using a Horiba Fluoromax-4P spectrophotometer equipped with a
3.2 inch integrating sphere (HORIBA, Edison, NJ, USA) at 298 K. The fluorescence decay
lifetimes (τ) were measured using a FLS920 fluorescence spectrophotometer (Edinburgh
Instruments, Livingston, UK) in time-correlated single-photon-counting (TCSPC) mode
with a picosecond pulsed diode laser (EPL 375-ps) as a light source and a microchannel
plate photomultiplier tube (MCP-PMT, 200–850 nm) as a detector at room temperature.

3. Results and Discussion
3.1. Synthesis and Characterization

Scheme 1 shows the routes for the synthesis of dimeric quinoline-based indium
complexes 1–6, which were easily produced in moderate yields (58–67%) by the reaction
of 1.1 equivalent of the corresponding quinolines (1a–6a) with InMe3 in toluene at room
temperature. Based on previously reported results, all the complexes were expected to
exist as dimeric species in solution [20]. All the complexes were found to possess good
solubility in common organic solvents. The formation of 1–6 was confirmed by 1H and
13C{1H} NMR spectroscopy (Figures S1–S6) and elemental analysis. In particular, specific
singlet signals assignable to the In–Me bonds were clearly observed in both the 1H (ca.
0.1 ppm) and 13C(1H) NMR (ca. −5.0 ppm) spectra of all the indium complexes.
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3.2. Photophysical and Electrochemical Properties

To examine the photophysical properties of the dimeric indium complexes, UV−vis
absorption and PL experiments were performed (Figure 2 and Table 1) in a diluted THF
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(50 µM) solution at 298 K. All the complexes 1–6 exhibited typical low-energy absorp-
tion bands in the range of 380 to 406 nm. The absorption bands can be ascribed to the
quinolinol-centered π−π* charge transfer (CT) transition. The absorption maximum (λabs)
of these complexes gradually redshifted on increasing the electron-donating ability of the
substituents at the C5 position of the quinolinate groups. The emission spectra of 1–6
displayed broad peaks in the range of 507 (green) to 523 (yellow) nm in THF, corresponding
to a typical CT transition. The emission bands featured a gradual redshift phenomenon
with an increase in the electron-donating effect of the substituents at the C5 position of
the quinoline group (Figure 2 and Table 1). These results are not well-matched with the
Hammett σ constants [30]. However, the observation indicated that the introduction of
substituents with a high electron-donating effect at the C5 position of the quinolinolate
group caused an increase in the HOMO energy levels in all the indium complexes. Further-
more, the emission maxima (λem) of 1–6 exhibited slight bathochromic shifts in response to
an increase in solvent polarity (p-xylene < THF < DCM) (Table 1; Figures S7 and S8). Such
emission behavior indicated that all the dimeric indium complexes possessed polarized
excited states. The solvatochromic nature of the broad emission bands confirmed that the
PL spectra of compounds 1–6 correspond to the quinoline-based intramolecular charge
transfer (ICT) transitions. The PL spectra of the compounds in the film (10 wt% doped with
PMMA) displayed trends similar to those in the THF solution (Figure S9). The emission
lifetime (τ) of 1–6 was measured to be in the range of nanoseconds in both the THF solution
and the film state, indicating fluorescence (Table 1; Figures S10–S13).

The absolute emission quantum yields (ΦPL) of these complexes were investigated in
both the THF solution and the film state at room temperature (Table 1). The ΦPL values of
1 (11.2% in THF and 17.2% in film) and 4 (17.8% in THF and 36.2% in film) with Me sub-
stituents at the C5 position of the quinoline moiety were determined to be higher than those
of the indium complexes with other substituents in both the THF solution and the film state.
The ΦPL values gradually decreased as the electron-donating effect of substituents bound
to the C5 position of the quinoline group increased (1→ 2→ 3: 11.2%→ 6.6%→ 0.05% in
THF and 17.2%→ 5.9%→ 0.4% in film; 4→ 5→ 6: 17.8%→ 14.0%→ 0.05% in THF and
36.2%→ 18.0%→ 0.4% in film). These results were elucidated by comparing the radiative
decay constant (kr) with the non-radiative decay (knr) constant for 1–6 in THF solution
and the film state. As the electron-donating effect of C5 substituents increased, the kr val-
ues gradually decreased (1 (1.1 × 107 s−1) > 2 (0.9 × 107 s−1) > 3 (0.4 × 107 s−1) in THF; 1
(1.2 × 107 s−1) > 2 (0.9× 107 s−1) > 3 (0.9 × 107 s−1) in film), while the knr values rapidly in-
creased (1 (8.6 × 107 s−1) < 2 (13.3 × 107 s−1 < 3 (719.6 × 107 s−1) in THF; 1 (5.7 × 107 s−1)
< 2 (14.7 × 107 s−1 < 3 (249.1 × 107 s−1) in film). Importantly, the indium complexes 4–6
based on the Meq ligand possessed higher quantum efficiencies than those of the corre-
sponding q ligand-based complexes 1–3, similar to other dimeric indium quinolinates [20].
This feature is supported by the comparison of the kr (4 (1.8 × 107 s−1) > 1 (1.2 × 107 s−1),
5 (1.5 × 107 s−1) > 2 (0.9 × 107 s−1), and 6 (1.4 × 107 s−1) > 3 (0.9 × 107 s−1) in film) and
knr values (4 (3.2 × 107 s−1) < 1 (5.7 × 107 s−1), 5 (7.0 × 107 s−1) < 2 (14.7 × 107 s−1), and
6 (382.4 × 107 s−1) < 3 (249.1 × 107 s−1) in film) between the corresponding indium com-
plexes in the THF solution and in the film state. These results imply that dimeric indium
quinolinates based on the Meq ligand are more efficient luminophores.

Based on the electrochemical data obtained from CV measurements in MeCN, 1–6
showed totally irreversible oxidation processes (Figure 3 and Table 1). The HOMO energy
levels and bandgaps (Eg) of all the complexes were calculated using the measured onset
oxidation potentials with the absorption edges (λabs,edge). Contrary to the expectation,
the calculated HOMO levels were found to decrease when the electron-donating effect of
substituents at the C5 position of the quinoline groups increased. However, the calculated
Eg values gradually decreased, which is consistent with the photophysical results.
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Table 1. Photophysical and electrochemical results of 1–6.

Compd λabs
1/nm (ε × 10−3 M−1 cm−1) λex/nm

λem/nm Φem
4/%

p-xylene 2 THF 2 DCM 2 film 3 THF film

1 388 (5.1) 396 508 515 518 505 11.2 17.2
2 395 (9.1) 395 495 510 503 500 6.6 5.9
3 406 (23.6) 406 519 518 521 515 0.05 0.4
4 380 (5.8) 365 503 507 511 498 17.8 36.2
5 396 (1.7) 396 489 523 502 492 14.0 18.0
6 405 (37.1) 405 522 520 521 519 0.05 0.4

Compd
τ/ns kr

5/× 107 s−1 knr
6/× 107 s−1

VOX
7/V HOMO 8/eV Eg

9/eV
THF 2 Film 3 THF 2 film 2 THF 2 film

1 10.3 14.5 1.1 1.2 8.6 5.7 0.30 −5.10 2.55
2 7.0 6.4 0.9 0.9 13.3 14.7 0.37 −5.17 2.48
3 0.2 0.2 0.4 0.9 719.6 249.1 0.53 −5.33 2.44
4 12.7 20.0 1.4 1.8 6.5 3.2 0.31 −5.11 2.57
5 10.2 11.7 1.4 1.5 8.4 7.0 0.40 −5.20 2.67
6 0.2 0.3 0.2 1.4 479.8 382.4 0.55 −5.35 2.38
1 c = 50 µM in THF. 2 c = 50 µM, observed at 298 K. 3 Measured in the film state (10 wt% doped on poly(methy methacrylate), PMMA) at
298 K. 4 Absolute PL quantum yields. 5 kr = Φem/τ. 6 knr = kr(1/Φem−1). 7 Oxidation onset potentials in DMSO (c = 50 mM, scan rate
100 mV s−1) with reference to the ferrocene/ferrocenium (Fc/Fc+) redox couple. 8 Highest occupied molecular orbital (HOMO) energy
level calculated from Vox. 9 Calculated from λabs,edge.
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