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ABSTRACT: While the metathesis reaction between alkynes and
thiocarbonyl compounds has been thoroughly studied, the
reactivity of alkynes with isoelectronic main group R2E=S
compounds is rarely reported and unknown for [R2P=S]

+

analogues. We show that thiophosphonium ions, which are the
isoelectronic phosphorus congeners to thiocarbonyl compounds,
undergo [2 + 2]-cycloaddition reactions with different alkynes to
generate 1,2-thiaphosphete ions. The four-membered ring species
are in an equilibrium state with the corresponding P=C−C=S
heterodiene structure and thus undergo hetero-Diels−Alder
reactions with acetonitrile. Heteroatom and substituent effects
on the energy profile of the 1,2-thiaphosphete formation were elucidated by means of quantum chemical methods.

■ INTRODUCTION
Heavy analogues of carbonyl compounds are generally highly
reactive and prone to spontaneous oligomerization owing to
the energetic preference of heavy p-block elements in forming
σ bonds instead of (p−p)π bonds.1−4 In this respect, the
thiocarbonyl group (C=S) is an exception, but it reacts, due to
its rather weak C=S bond and the aptitude of sulfur to stabilize
an adjacent charge or radical center, more easily in nucleophilic
reactions and sigmatropic rearrangements than carbonyls.5

Both carbonyls and thiocarbonyls undergo (thio)carbonyl−
alkyne metathesis reactions, involving the [2 + 2]-cyclo-
addition reaction of a (thio)carbonyl with an alkyne. These
reactions have been extensively utilized in synthetic chemistry.6

The carbonyl−alkyne metathesis proceeds via a four-
membered oxete intermediate, which is usually directly
transformed into the α,β-unsaturated ketone,7−12 unless it is
stabilized by strongly electron-withdrawing groups.13−15 Due
to the lower tendency of sulfur to form double bonds, thietes
are more stable than oxetes,16−21 and a dynamic equilibrium
between the “closed” thiete and “open” α,β-unsaturated
thioketone form was observed with thioether substituents.22,23

Given these differences between oxetes and thietes, we became
curious to explore how the introduction of another heavy main
group element would affect the stability of the four-membered
ring species. Although numerous examples for heavy main
group carbonyls R2E=O and thiocarbonyls R2E=S have been
synthesized,24−34 the reactivity with alkynes is little developed.
Stannanethiones undergo [2 + 2]-cycloaddition reactions with
the particularly electron-poor alkyne dimethyl acetylenedicar-
boxylate in a stepwise mechanism to give 1,2-thiastannete.35,36

The reaction mode of stannaneselone and stannanetellone was
found to be similar, but ring-opening and formation of the

corresponding stannabutadiene was not observed.35,37 Sim-
ilarly, in transition metal chemistry, the elusive zirconasulfide
[Cp*2Zr=S] (Cp* = pentamethylcyclopentadienyl) was
trapped via [2 + 2]-cycloadditions with alkynes yielding 1,2-
thiazirconabutenes.38,39 Recently, we explored the cyclo-
addition reaction between oxophosphonium cations and
alkynes and showed that by using strong π-donor substituents
instead of alkyl groups at the phosphorus atom, the “closed”
oxaphosphete and the “open” 1-phospha-4-oxa-butadiene get
closer in energy.40 Enabled by our recent success in isolating
the first Lewis-base-free thiophosphonium ion [R2P=S]

+,41 we
herein report on [2 + 2]-cycloaddition reactions of
thiophosphonium salts with alkynes, yielding 1,2-thiaphos-
phete cations (Scheme 1b). The first neutral PV 1,2-
thiaphosphete was synthesized by Kawashima and co-workers
containing a P-center stabilized by the Martin ligand (Scheme
1, I).42 More recently, Ragogna and co-workers prepared the
neutral PIII 1,2-thiaphosphete II via transfer of a phosphinidene
sulfide intermediate to an alkyne.43

■ RESULTS AND DISCUSSION

We began our studies by reacting thiophosphonium salts
[1][X] (X = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate
[BArF24]

−, trifluoromethanesulfonate [OTf]−) with alkynes.
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Heating a fluorobenzene solution containing [1][BArF24] and
phenylacetylene to 120 °C gave the [2 + 2]-cycloaddition
product [2a][BArF24] as a beige, moisture-sensitive solid in
quantitative yield (Scheme 2). The thiaphosphete salt

[2a][BArF24] shows a characteristic doublet at −36.1 ppm
(2JPH = 19 Hz) in the 31P NMR spectrum, which appears at
lower frequency than the 31P NMR resonance of the
thiophosphonium ion [1]+ (116.6 ppm).41 The reaction of
the triflate salt [1][OTf] with phenylacetylene is less selective
(see chapter 1.4 in the SI for details). Therefore, [1][BArF24]
was used in the present study.
The formation of the four-membered heterocycle [2a]+ is

further confirmed by the 13C{1H} NMR spectrum, revealing a
doublet at 120.3 ppm (1JPC = 106 Hz) for the phosphorus-
bound carbon atom and a doublet at 153.4 ppm (2JPC = 5 Hz)
of the adjacent carbon atom, which is deshielded by the sulfur
atom. The 1H NMR resonance of the thiaphosphete ring
proton appears at 3.80 ppm and is significantly shifted to lower
frequency compared to that of the parent thiete C4H4S (6.50
ppm).44 The effect can be explained by an enhanced
polarization of the C=C bond of the thiaphosphete hetero-
cycle, resulting from the negative hyperconjugation of π-
electron density from the carbon atom into low-lying σ*

orbitals of the phosphorus atom. The 31P NMR resonance of
the thiaphosphete salt [2a][BArF24] appears at lower
frequency than that of the analogous oxaphosphete salt
(−14.6 ppm).40 PV thiaphosphete I contains a pentavalent
phosphorus atom and exhibits a similar 31P NMR chemical
shift (−40.7 ppm) to [2a]+,42 whereas the resonance of the PIII

thiaphosphete II appears at 37.5 ppm.43

In order to explore possible substituent effects on the [2 +
2]-cycloaddition reaction, acetylene derivatives with electron-
donating groups were reacted with thiophosphonium salt
[1][BArF24] (Scheme 2 and Table 1), which gave the

thiaphosphete salts [2b−e][BArF24] in excellent yields. The
cycloaddition reaction with electron-rich alkynes, e.g., para-
(dimethylamino)phenylacetylene (entry 3) and ethoxyacety-
lene (entry 4), is significantly faster than that with phenyl-
acetylene. The electron-poor alkyne 1-ethynyl-3,5-bis-
(trifluoromethyl)benzene (entry 6) reacted with [2a][BArF24]
very slowly, even with prolonged heating at 180 °C. After 16 h,
only 12% conversion was observed. This accelerated cyclo-
addition reaction between [2a][BArF24] and electron-rich
alkynes can be explained by the high electrophilicity of the
thiophosphonium cation and is contrary to the reactivity trend
of neutral stannanethiones.35 The same regioselectivity was
observed for all [2 + 2]-cycloaddition reactions, which agrees
with that of the 1,2-thiaphosphete II.43

Single crystals of [2a][BArF24] were obtained by layering a
saturated CH2Cl2 solution with n-pentane. [2d][BArF24] was
crystallized by storing a saturated CH2Cl2 solution at −40 °C.
A single-crystal X-ray diffraction (XRD) study (Figure 1)
revealed that the four-membered rings of both thiaphosphete
salts are perfectly planar (sum of angles: 360°). The P−S bond
length of [2a]+ (2.154 Å) is shorter than that in the PIII 1,2-
thiaphosphete II (2.161 Å),43 as expected for the more
electrophilic cationic PV center. Accordingly, the elongated P−
S bond (2.167 Å) in [2d]+ indicates a weaker S−P interaction
than in [2a]+, which is supported by our computational results
(vide infra).

■ COMPUTATIONAL STUDIES
We performed DLPNO−CCSD(T)/def2-TZVPP45−52 calculations
using the simplified thiophosphonium cation [(RMe)2PS]

+, which
contains methyl groups at the imidazole N atoms instead of the bulky
Dipp substituents. Three different model reactions involving phenyl-

Scheme 1. (a) Reaction of Thiocarbonyls with Alkynes, (b)
Reaction of Thiophosphonium Ions with Alkynes to Give
1,2-Thiaphosphete Cations Presented in This Work, and (c)
Neutral PV 1,2-Thiaphosphete by Kawashima (I) and PIII

1,2-Thiaphosphete by Ragogna (II).

Scheme 2. Synthesis of Thiaphosphete Salts [2a−
f][BArF24]

a

aR = aryl, ethoxy, or methyl(p-toluenesulfonyl)amide (see Table 1).
Dipp = 2,6-diisopropylphenyl.

Table 1. Scope of Terminal Alkynes in [2 + 2]-
Cycloaddition Reactions with Thiophosphonium Salt
[1][BArF24]

a

entry compd. R cond. yield δ(31P) [2JPH]

1 [2a]+ Ph− 120 °C,
16 h

99% −36.1 ppm
[19 Hz]

2 [2b]+ p-MeO−
C6H4−

60 °C, 3 h 99% −35.2 ppm
[19 Hz]

3 [2c]+ p-Me2N−
C6H4−

21 °C, 2 h 99% −32.2 ppm
[20 Hz]

4 [2d]+ EtO− 21 °C, 2 h 99% −35.7 ppm
[15 Hz]

5 [2e]+ TsMeN− 21 °C, 2 h 97% −36.4 ppm
[15 Hz]

6 [2f]+ 3,5-CF3−
C6H3−

180 °C,
16 h

12%b −40.6 ppmc

[18 Hz]
aThe NMR data were obtained from CD2Cl2 solutions. Ts = p-
toluenesulfonyl. bConversion according to 31P NMR spectroscopy
after 16 h when the reaction was stopped. cNMR in fluorobenzene.
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acetylene, ethoxyacetylene, and (trifluoromethyl)acetylene were
considered as to gain insight into electronic effects on the energy
profile (Figure 2). The computed energy barriers of the [2 + 2]-

cycloaddition reactions are in line with the experimental observations
(cf. Table 1) and show the trend that the electron-rich alkyne
ethoxyacetylene reacts much faster than phenylacetylene or
(trifluoromethyl)acetylene. The latter has the first transition state of
almost 30 kcal/mol, meaning that the cycloaddition reaction would
require very harsh conditions. Regardless of the electronic nature of
the alkyne, the closed form (CF) is thermodynamically favored over
the open form (OF).
Since we have used the same model substituents RMe in our

previous study of the reaction of the oxophosphonium cation
[(RMe)2PO]

+ with phenylacetylene,40 this gives us the opportunity
to evaluate how replacing the O atom with the S atom would

influence the energy profile. In fact, the first barrier (TS1) and the
second barrier (TS2) are both only ∼1 kcal/mol lower in energy for
the thiophosphonium case (cf. Figure 2 and ref 40). The most notable
deviation between the oxo- and thio systems is the energy difference
between CF and OF. In the case of oxophosphonium, the closed form
was more stable by 13.3 kcal/mol, while in the case of the
thiophosphonium, the closed form was more stable by 18.4 kcal/
mol, putting the open form slightly above the transition state.

The heavy atom α,β-unsaturated ketones contain reactive double
bonds and thus provide a platform for rich follow-up chemistry.
Phosphabutadiene derivatives have been extensively used in cyclo-
addition reactions for the construction of phosphorus-containing
heterocycles,53−61 and many examples of P=C−C=O compounds
reacting in hetero-Diels−Alder reactions were reported.62,63 Since the
analogous reactivity with a P=C−C=S moiety is unexplored, we
attempted to identify substituent effects that would stabilize this
acyclic structure. The rather low transition state with ethoxyacetylene
indicates that electron-donating groups might be beneficial in this
respect. Hence, the cyclization step was computed for the reaction of
oxo- and thiophosphonium ions with acetylene derivatives carrying
phenyl, ethoxy, and dimethylamino substituents (Figure 3). The

comparison of the relative energy levels of CF and OF structures
indicates that with an increasing number of heavy atoms in the
system, the four-membered ring gets stabilized over the α,β-
unsaturated ketone structure, which is consistent with the double-
bond rule, as heavy atom (p−p)π bonds are formed upon
electrocyclic ring-opening. Remarkably, the ethoxy substituent is
most effective in facilitating the ring-opening reaction, leading to a
thermoneutral reaction for the oxaphosphete system.

■ [4 + 2]-HETERO-DIELS−ALDER REACTIONS
The low energy barrier of 12.9 kcal/mol for the ring-opening
reaction of [2d]+ suggests the possibility of employing the
acyclic P=C−C=S platform in hetero-Diels-alder reactions. In
fact, dissolving [2d][BArF24] in acetonitrile gave a clear
solution from which the [2 + 4] cycloaddition product
[3d][BArF24] precipitates within 5 min (Scheme 3).

Figure 1. Solid-state structure of [2a][BArF24] (left) and [2d]-
[BArF24] (right). Hydrogen atoms (except H1), solvent molecules,
and the BArF24

− anions are omitted for clarity. Ellipsoids are drawn at
50% probability. Dipp groups are shown in wireframe. Selected bond
lengths [Å] and angles [°]: [2a][BArF24]: P−S 2.1541(7), S−C2
1.797(2), C1−C2 1.349(3), P−C1 1.768(2), N1−P 1.576(2), N4−P
1.571(2), P−S−C2 73.61(7), S−C2−C1 107.17(14), C2−C1−P
98.93(14), C1−P−S 80.28(7). [2d][BArF24]: P−S 2.1665(6), S−C2
1.765(2), C1−C2 1.376(2), P−C1 1.816(2), N1−P 1.5735(14),
N4−P 1.6742(13), C2−O 1.327(2), P−S−C2 72.62(6), S−C2−C1
112.03(13), C2−C1−P 93.81(12), C1−P−S 81.52(6).

Figure 2. DLPNO−CCSD(T)/def2-TZVPP results including correc-
tions to Gibbs free energy for different reactions of [(RMe)2PS]

+ (RMe

= 1,3-dimethylimidazolin-2-ylidenamino) with the corresponding
alkyne (see legend). Separated reactants (SR) have been used as a
reference.

Figure 3. DLPNO−CCSD(T)/def2-TZVPP results including correc-
tions to Gibbs free energy for ring-opening reactions of model oxa-
and thiaphosphetes (RMe = 1,3-dimethylimidazolin-2-ylidenamino).
The closed forms (CF) have been used as a reference.
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The formation of the six-membered thiazaphosphinine ring
in [3d]+ is confirmed by the deshielded doublet of the S−C−
N carbon atom at 164.6 ppm (2JCP = 6 Hz) in the 13C NMR
spectrum. The 31P resonance (−22.2 ppm) appears at higher
frequency compared to the precursor [2d]+ (−35.7 ppm). The
thiaphosphete salt [2a][BArF24] shows no reaction with
acetonitrile below 60 °C and only very slow conversion at
100 °C. Heating the mixture to 170 °C for 16 h gave
[3a][BArF24] in quantitative yield. The 31P NMR resonance of
the heterocycle appears at −34.0 ppm. The different reaction
conditions for the ring expansion reactions indicate that ring-
opening of the thiaphosphetes is required prior to the hetero-
Diels−Alder reactions, which, in agreement with the computa-
tional results, is more easily accessible for [2d]+ than for [2a]+.
The analogous ring expansion reaction with oxaphosphetes
proceeds at lower temperature than that with thiaphosphetes,40

which again is consistent with the energy barrier of the
electrocyclic ring-opening reaction.
Single-crystal XRD studies of [3a][BArF24] and [3d]-

[BArF24] revealed planar thiazaphosphinine rings (sum of
angles: 720°) flanked by the bulky substituents at the
phosphorus atom (Figure 4). Both structures have very similar
geometrical parameters. The C−N bonds ([3a]+: 1.268 Å,
[3d]+: 1.264 Å) and the C−C bonds ([3a]+: 1.338 Å, [3d]+:
1.336 Å) of the six-membered rings are in the range of double
bonds.64 The hexagonal shape of the heterocycles is

significantly distorted due to the small bond angles centered
around the sulfur ([3a]+: 105°, [3d]+: 104°) and phosphorus
([3a]+: 107°, [3d]+: 108°) atoms.

■ CONCLUSIONS
The P=S double bond of a Lewis-base-free thiophosphonium
ion undergoes [2 + 2]-cycloadditions with terminal alkynes to
generate thiaphosphete cations [2a−f]+. The four-membered
rings undergo electrocyclic ring-opening reactions to the
acyclic 1-phospha-4-thia-butadiene structure, which was used
to generate the six-membered heterocycles [3a]+ and [3d]+ via
[4 + 2]-hetero-Diels−Alder reactions. Quantum chemical
calculations reveal that electron-donating substituents at the
alkyne facilitate both the [2 + 2]-cycloaddition reaction and
the ring-opening reaction, while an increasing number of heavy
atoms generally stabilizes the four-membered ring structure.
The presented heavy congener of a thioketone−alkyne

metathesis is an appealing example for the diagonal relation-
ship between carbon and phosphorus in the periodic table. The
great potential of the R2P

+ fragment to act in a thermoneutral
fashion in bond metathesis reactions is indicated by the ring-
opening reaction of the ethoxy substituted oxaphosphete.
Further studies into this direction will be reported in due
course.
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