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Introduction: Low muscle mass is a common condition in the critically ill population and is associated
with adverse clinical outcomes. The primary aim of this study was to analyze the prognostic significance
of low muscle mass using computed tomography (CT) scans in COVID-19 critically ill patients. A second
objective was to determine the accuracy and agreement in low muscle mass identification using diverse
markers compared to CT as the gold standard.
Methods: This was a prospective cohort study of COVID-19 critically ill patients. Skeletal muscle area at
the third lumbar vertebra was measured. Clinical outcomes (intensive care unit [ICU] and hospital length
of stay [LOS], tracheostomy, days on mechanical ventilation [MV], and in-hospital mortality) were
assessed. Phase angle, estimated fat-free mass index, calf circumference, and mid-upper arm circum-
ference were measured as surrogate markers of muscle mass.
Results: Eighty-six patients were included (mean age ± SD: 48.6 ± 12.9; 74% males). Patients with low
muscle mass (48%) had a higher rate of tracheostomy (50 vs 20%, p ¼ 0.01), prolonged ICU (adjusted HR
0.53, 95%CI 0.30e0.92, p ¼ 0.024) and hospital LOS (adjusted HR 0.50, 95% CI 0.29e0.86, p ¼ 0.014).
Bedside markers of muscle mass showed poor to fair agreement and accuracy compared to CT-assessed
low muscle mass.
Conclusion: Low muscle mass at admission was associated with prolonged length of ICU and hospital
stays. Further studies are needed to establish targeted nutritional interventions to halt and correct the
catabolic impact of COVID-19 in critically ill patients, based on standardized and reliable measurements
of body composition.

© 2022 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
1. Introduction

Over 250 million patients worldwide have been affected by
Coronavirus Disease 2019 (COVID-19) caused by severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) [1]. Studies have
shown that ~30% of the hospitalized patients require ventilatory
support and admission to Intensive Care Units (ICUs) [2].
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The acute phase of critical illness, immobilization, and drug
administration (sedatives and neuromuscular blocking agents) re-
sults in disturbed metabolism, with a catabolic state characterized
by increased protein breakdown and decreased protein synthesis,
leading to a rapid wasting of skeletal muscle mass [3e5].

Muscle mass assessment at hospital admission can be useful to
identify patients with higher nutritional risk, while its monitoring
could offer important opportunities to guide nutritional therapy
adjustments during ICU stay [6]. Magnetic resonance imaging and
computed tomography (CT) are gold standard techniques for the
assessment of body composition in clinical populations [7,8]. CT
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employs a beam of X-rays that produces signals, that once pro-
cessed by a computer, can generate cross-sectional images of the
body. Using specialized software, skeletal muscle mass can be
measured at the third lumbar vertebra (L3), which correlates well
with whole-body skeletal muscle mass, being the preferred land-
mark for the estimation of whole-body muscle mass [9,10]. Skeletal
muscle cross-sectional area is then used to calculate skeletal
muscle index (SMI, cm2/m2) and compared to one of the available
diagnostic criteria.

Although not optimal, other landmarks and isolated muscle
groups have been used in clinical settings, including pectoralis
muscle area, psoas muscle area or thigh muscles [11,12]. Low
muscle mass is associated with clinical outcomes in COVID-19 pa-
tients; according to Besutti et al., higher pectoralis muscle cross-
sectional area, measured by chest CT images, showed a protective
effect on hospitalization, mechanical ventilation (MV) and death
[13]. Similar findings were reported by Ufuk et al. using chest im-
ages for pectoralis SMI assessment in 130 patients [14]. Further-
more, limited data is available regarding the clinical prognosis of
low muscle mass in critically ill patients.

Despite the usefulness of imaging methods for SMI quantifica-
tion, they are rarely available in hospital settings. As such, bedside
techniques can be used as a marker of muscle mass; these include
anthropometric measurements [mid-upper arm circumference
(MUAC), and calf circumference (CC)], and bioelectrical impedance
analysis (BIA). Nevertheless, they lack accuracy, especially consid-
ering IV infusion therapy and fluid overload, which are treatments
commonly observed in critically ill patients [15e17]. Despite its
limitations, BIA also allows for the assessment of phase angle (PhA),
which has been proposed as an indirect marker of muscle mass and
quality, and a predictor of clinical outcomes [18,19].

Considering the potential importance of body composition to
COVID-19 patients, and the need for surrogate markers of low
muscle mass assessment, the primary aim of the study was to
assess muscle mass at the L3 using CT-assessed SMI to evaluate its
prognostic significance in predicting clinical outcomes. Secondly,
we aimed to assess agreement and accuracy of markers of muscle
mass compared to SMI, including CC, MUAC, estimated fat-free
mass index, and PhA in COVID-19 critically ill patients.
2. Methods

This was a prospective cohort of consecutive patients admitted
to the ICU of the National Institute of Respiratory Diseases, in
Mexico City, from November 2020 to March 2021. Adults (age �18
years) diagnosed with COVID-19 (confirmed by both reverse
transcription-polymerase chain reaction (RT PCR) for SARS-CoV-2
and suggestive tomographic findings) under MV were included.
Only patients with CT scans performed in the first 24e48 hours
after admission were included. This study was reviewed and
approved by the Institutional Review Board of the National Institute
of Respiratory Diseases (Register #C16-21) and the University of
Alberta Research Ethics Office (Pro00111147).
2.1. Nutritional assessment

Nutritional status was assessed in all patients at the first 24e48
hours after ICU admission. Nutritional risk was calculated using the
modified NUTRIC-Score during the first 24 hours of initiating me-
chanical ventilation. This assessment tool includes age, Sequential
Organ Failure Assessment (SOFA) score, Acute Physiology And
Chronic Health Evaluation II (APACHE II) score at admission, the
number of comorbidities, and pre-ICU hospital length of stay (LOS).
High nutritional risk was established at a score �5 [20].
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2.2. Anthropometric assessment

Anthropometric assessment included MUAC, CC, waist circum-
ference, and half-arm span; measurements were done using a tape
graduated in centimeters with 0.1 cm precision (SECA 201, Ger-
many). Anthropometry was assessed using the standard proced-
ures described by Lohman et al. [21]. MUAC was measured at the
mid-point between the tip of acromion process and the tip of the
olecranon process. CC was measured by wrapping the tape around
the widest part of the calf. Body weight and height were estimated
using validated equations [22]. Body mass index (BMI) was calcu-
lated and was classified using World Health Organization criteria
[23].

2.3. Body composition assessment

Body composition was assessed by both BIA and CT scans.
Regarding BIA assessment, a multi-frequency device was used
(InBody S10®, InBody Co., Ltd., Seoul, Korea). Measurements were
performed with the patient in a supine position. Eight adhesive
electrodes were used: one on each wrist, one on the distal part of
the third metacarpal bone of each hand, one on the central part of
each ankle, and one on the distal part of the secondmetatarsal bone
in each foot. Estimated body weight and height were inputted into
the device. PhA and estimated fat free mass (FFM) were recorded
from the machine output. Fat-free mass index (FFMI) was calcu-
lated as FFM/height (kg/m2).

Regarding CT images, a SIEMENS brand multidetector CT
(SOMATON Sensations model) with 64 detectors was used; the
studies were performed with a volumetric acquisition in the supine
position during maximum inspiration in the pulmonary and
mediastinal windows. The main scanning parameters were as fol-
lows: tube voltage ¼ 100 kVp, automatic modulation of the electric
current tube (70e120 mAs), pitch ¼ 1, slice thickness ¼ 1 mm and
reconstruction matrix ¼ 512 � 512. All images were reconstructed
with a high spatial resolution algorithm and a B70 lung filter with a
window amplitude of �600/1200; for the mediastinum, a B30 filter
with a window width of 50/350 was applied. On each CT scan, the
L3 slice was located by two experts’ radiologists and was exported
as DICOM files. Specific tissue demarcation using predefined
thresholds in Hounsfield Units (HU) was performed at the Human
Nutrition Research Unit (University of Alberta, Canada), as previ-
ously described [24,25]. CT images were processed with the Sli-
ceOmatic v5.0 (TomoVision, Montreal, Canada) software, and
manually corrected as necessary. Cross-sectional area of skeletal
muscle (i.e., skeletal muscle area [SMA]), intermuscular adipose
tissue (IMAT), subcutaneous adipose tissue, visceral adipose tissue
and lowattenuationmuscle areawere determined using thresholds
described elsewhere [25]. SMAwas adjusted for height in meters to
determine SMI (cm2/m2). Skeletal muscle density was generated by
the software as the mean radiation attenuation value of the whole
muscle area at L3 [26]. Low muscle radiodensity was defined as an
SMD lower than 35.5 HU and lower than 32.5 HU for men and
women, respectively [27].

2.4. CT- assessed low muscle mass and surrogate markers

Lowmuscle mass was identified using previously published cut-
off points based on sex and BMI categories [27]. For patients with a
BMI <30 kg/m2, lowmuscle mass was defined as an SMI�52.3 cm2/
m2 for men and �38.6 cm2/m2 for women. For those with a BMI
�30 kg/m2, an SMI �54.3 cm2/m2 for men and �46.6 cm2/m2 for
women was considered. The following surrogate markers were
used for low mass identification: a) FFMI <17 kg/m2 for males or
<15 kg/m2 in females [28,29], endorsed by the Global Leadership
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Initiative on Malnutrition (GLIM) consensus statement [30]; b) low
sex-specific, BMI-adjusted CC was defined using Gonzalez et al.
references for males and females using 1 SDs below each mean
[31]; c) low MUAC (<5th percentile) was defined based on an
Mexican-American population (25.7 cm for females, 28 cm for
males) [32], d) and low PhA values (<3.85� in females and <5.25� in
males), as reported for COVID-19 critically ill patients [19].

2.5. Clinical data

Days under invasive MV, ICU LOS (calculated as days from ICU
admission to ICU discharge, and hospital LOS (days from hospital
admission to discharge dates), tracheostomy placement, diabetes
and hypertension diagnosis, acute kidney injury (AKI) diagnosis
during LOS, and all-cause hospital mortality were recorded.

2.6. Nutritional therapy

Nutritional therapy was prescribed by ICU dietitians. Energy and
protein requirements were calculated according to recommenda-
tions by the American Society of Parenteral and Enteral Nutrition
(ASPEN) and European Society for Clinical Nutrition and Meta-
bolism (ESPEN), with a general target of 25 kcal/kg and 1.3 g/kg,
respectively [33,34]. Adjusted body weight was used for patients
with obesity (BMI >30 kg/m2) [35]. Calories derived from non-
nutritional sources such as propofol and glucose IV infusion were
factored into the nutrition prescriptions to avoid overfeeding.

2.7. Statistical analysis

All statistical analyses were performed using Stata Intercooled
(Version 14, STATA Corporation, College Station, TX, USA) and
graphics were elaborated in GraphPad Prism (GraphPad Software,
Inc). Normality was verified with the Shapiro Wilk test. Descriptive
statistics were used to analyze categorical variables (absolute and
relative frequency) and quantitative variables (mean and standard
deviation [SD] or median and interquartile range [IQR]). Differences
between normal and low muscle mass were compared using Stu-
dent's t-test, ManneWhitney U-test, or c2 test. Univariate logistic
regression and Kaplan Meier survival analysis with log-rank test
and the Cox proportional hazards model were performed to assess
the association between low muscle mass and tracheostomy
placement, MV days, and ICU and hospital LOS in survival patients.
Multivariate regression models were performed and fitted to the
data using backward stepwise selection. Analyzed variables (cate-
gorized age [20e30, 31e40, 41e50, 51e60, 61e70, >71 years], SOFA
and APACHE II scales, NUTRIC-Score, IMAT, subcutaneous adipose
tissue, visceral adipose tissue, diabetes diagnosis [yes or no], hy-
pertension [yes or no] and acute kidney injury [yes or no]) were
retained in the model if they had a p-value that was less or equal to
the maximum p-value selection criteria of 0.1. Pearson's correlation
(rho) and linear regression were used to assess the relationship
between SMI and MUAC, CC, FFM, and PhA derived from BIA.
Agreement between lowmuscle mass and markers of muscle mass
were analyzed by the kappa (k) statistic; values < 0.2 indicating
poor, 0.2e0.4 indicating fair, 0.4e0.6 indicating moderate, 0.6e0.8
indicating substantial, and >0.8 indicating almost perfect concor-
dance [36]. The accuracy of each marker of muscle mass to predict
CT-assessed low muscle mass was analyzed by sensitivity, speci-
ficity, and area under the receiver operating characteristic curve.
The area under the curve (AUC) was interpreted as follows: no
discrimination AUC � 0.5, fail discrimination 0.5 to 0.6, poor
discrimination 0.6 to 0.7, fair discrimination 0.7 to 0.8, good
discrimination 0.8 to 0.9 and excellent discrimination � 0.9 [37].
Statistical significance was defined as p < 0.05.
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3. Results

A total of 98 patients with available abdominal CT scans at
admission were screened. Of these, 12 had CT scans with streak
artifacts from metallic hardware or limited field of view. Finally, 86
critically ill patients with COVID-19 were included. Detailed clinical
and body composition characteristics of all samples and by muscle
mass status are summarized in Table 1. Mean age was 48.6 ± 12.9
years, most patients were males (73%). A total of 41 patients (48%)
were classified as having low muscle mass. Patients with normal
muscle mass had higher muscle radiodensity (p ¼ 0.003), lower
IMAT (p ¼ 0.02) and higher values of MUAC (p ¼ 0.02), CC
(p ¼ 0.02), PhA (p¼<0.001) and FFMI (p ¼ 0.003).

3.1. Prognostic significance of low muscle mass

No difference in mortality rate was observed between patients
with low and normal muscle mass (22 vs 27%, p ¼ 0.61). From 21
patients who died during ICU LOS, 12 had normal and 9 had low
muscle mass. Patients with low muscle mass who survived during
hospital stay had higher MV days (25 days vs 15 days, p¼ 0.06), ICU
(27 vs 18 days, p ¼ 0.02) and hospital (35 vs 23 days, p ¼ 0.02) LOS,
and higher tracheostomy requirement (50 vs 21%, p ¼ 0.01),
compared to their counterparts (Table 2).

The result of the KaplaneMeier and Cox analysis showed sig-
nificant associations between low muscle mass and ICU (HR 0.56,
95% CI 0.33e0.94, p ¼ 0.028) and hospital (HR 0.56, 95% CI
0.34e0.95, p ¼ 0.03) LOS but not with MV days (HR 0.61, 95% CI
0.37e1.02, p ¼ 0.06). Alternatively, we also considered age (cate-
gorized), hypertension diagnosis, APACHE II score and IMAT as
covariates for adjusted HR models for ICU (adjusted HR 0.53, 95% CI
0.30e0.92, p ¼ 0.024) and hospital (adjusted HR 0.50, 95% CI
0.29e0.86, p ¼ 0.014) LOS (Fig. 1).

Univariate logistic regression showed a significant association
between low muscle mass and higher tracheostomy placement
events in crude (OR 4.0, 95% CI 1.35e11.7, p ¼ 0.012) and adjusted
model (OR 7.3, 95% CI 1.82e29.4, p ¼ 0.005) (Table 3).

3.2. Performance of markers of muscle mass

Correlations between surrogate muscle markers and SMA were
performed. Statistical significance differences were observed with
MUAC, CC, PhA, and FFM (Table 4). Poor concordance was observed
for MUAC (k 0.15, p ¼ 0.009) and fair concordance for FFMI (k 0.20,
p < 0.001). PhA showed fair concordance (k 0.34, p < 0.001) and
poor accuracy (AUC 0.67, 95% CI 0.57e0.77) for low muscle mass
identification, with a sensitivity of 56% and specificity of 78%
(Table 5).

4. Discussion

Low skeletal muscle mass is a common condition in the ICU
population. Our observational study showed an association be-
tween low muscle mass and prolonged ICU and hospital LOS, and a
higher rate of tracheostomy.

The identification of lowmuscle mass at an early stage of critical
illness may improve risk stratification, although little is known of
this association in the context of COVID-19 patients on MV. To our
knowledge, this is the first study that analyzed low muscle mass as
a predictor for increased risk of prolonged LOS in a Mexican cohort
of critical patients with COVID-19.

We were able to identify lowmuscle mass using CT scans in 48%
of our population, which is a lower frequency compared to the 65%
reported in an Italian cohort using different cut-off values for low
muscle identification (45.4 cm2/m2 for males and 34.4 cm2/m2 for



Table 1
Clinical characteristics and body composition data of COVID-19 critically ill patients.

Characteristics All patients (n ¼ 86) Normal muscle mass (n ¼ 45) Low muscle mass (n ¼ 41) p value

Age, years mean (SD) 48.6 ± 12.9 46.4 ± 12.4 51.0 ± 13 0.08
20e30 y n (%) 8 (9%) 5 (11%) 3 (7%)
31e40 y n (%) 16 (18%) 9 (20%) 7 (17%)
41e50 y n (%) 25 (29%) 15 (33%) 10 (24%) 0.77
51e60 y n (%) 21 (25%) 10 (22%) 11 (27%)
61e70 y n (%) 13 (15%) 5 (12%) 8 (20%)
>71 y n (%) 3 (4%) 1 (2%) 2 (5%)

Sex, n (%)
Males 63 (73%) 37 (82%) 26 (64%) 0.04*

Comorbidities
Diabetes 33 (39%) 11 (25%) 22 (54%) 0.005*
Hypertension 33 (39%) 14 (31%) 19 (46%) 0.14
Acute kidney injury 34 (39%) 22 (49%) 12 (29%) 0.06

BMI, kg/m2, mean (SD) 29.2 ± 5.5 29.4 ± 4.3 29.1 ± 6.5 0.79
18.5e24.9, n (%) 16 (19%) 6 (14%) 10 (24%)
25e29.9.9, n (%) 33 (38%) 20 (44%) 13 (32%) 0.49
�30e34.9, n (%) 24 (28%) 12 (27%) 12 (29%)
�35, n (%) 13 (15%) 7 (15%) 6 (15%)

Weight, kg, mean (SD) 83.5 ± 16.5 84.7 ± 14.3 82.1 ± 18.7 0.46
Males 85.1 ± 17.1 86.3 ± 13.4 83.4 ± 21.4 0.50
Females 78.9 ± 14.2 77.3 ± 16.9 79.8 ± 13.2 0.69

Height, cm, mean (SD) 167.5 ± 9.3 168.8 ± 7.9 166.1 ± 10.6 0.18
Males 171.5 ± 6.4 171.0 ± 6.5 172.3 ± 6.3 0.43
Females 156.6 ± 7.3 158.8 ± 6.2 155.5 ± 7.8 0.30

Mid-upper arm circumference, cm, mean (SD) 31.7 ± 3.7 32.6 ± 3.1 30.8 ± 4.2 0.02*
Males 31.8 ± 4.0 32.6 ± 3.0 30.6 ± 4.9 0.04*
Females 31.6 ± 3.0 32.3 ± 3.4 31.2 ± 2.8 0.40

Calf circumferencea, cm, mean (SD) 35.4 ± 3.6 36.2 ± 2.8 34.5 ± 3.8 0.02*
Males 35.6 ± 3.4 36.4 ± 2.7 34.6 ± 4.0 0.04*
Females 34.8 ± 3.6 35.6 ± 3.2 34.3 ± 3.7 0.42

Phase angle (�), mean (SD) 5.1 ± 1.1 5.6 ± 1.0 4.6 ± 0.9 <0.001*
Males 5.2 ± 1.2 5.7 ± 1.1 4.5 ± 0.9 <0.001*
Females 4.8 ± 0.7 5.3 ± 0.6 4.6 ± 0.7 0.02*

Fat free mass index (kg/m2), mean (SD) 19.7 ± 3.1 20.8 ± 3.1 18.7 ± 2.8 0.001*
Males 20.2 ± 3.4 21.3 ± 3.2 19.0 ± 3.2 0.008*
Females 18.4 ± 1.8 18.8 ± 1.6 18.3 ± 1.8 0.49

NUTRIC-Score, mean (SD) 4 (3e5) 4 (3e5) 4 (3e5) 0.60
High risk (%) 36 (41%) 17 (38%) 19 (46%) 0.42

Skeletal Muscle Area (cm2), mean (SD) 144.5 ± 39.2 167.3 ± 33.0 118.6 ± 28.4 <0.001*
Males 159.9 ± 31.0 177.7 ± 25.0 130.8 ± 15.9 <0.001*
Females 100.7 ± 23.7 119.6 ± 21.8 90.6 ± 18.2 0.002*

Skeletal Muscle Index (cm2/m2), mean (SD) 50.8 ± 11.0 58.2 ± 8.3 42.3 ± 6.7 <0.001*
Males 54.3 ± 9.7 60.6 ± 6.5 45.3 ± 5.5 <0.001*
Females 40.7 ± 7.5 47.3 ± 6.6 37.2 ± 5.5 0.001*

Muscle radiodensity (HU), mean (SD) 30.4 ± 7.2 32.9 ± 6.0 27.5 ± 7.6 <0.001*
Males 32.3 ± 6.7 33.7 ± 6.1 30.4 ± 7.1 0.04*
Females 25.1 ± 6.2 29.5 ± 4.1 22.7 ± 6.0 0.01*

Muscle Radiodensity
Normal muscle radiodensity 26 (30%) 19 (42%) 7 (17%) 0.01
Low muscle radiodensity 60 (70%) 26 (58%) 34 (83%)

Visceral adiposity (cm2), median (IQR) 186 (148e249) 143 (109e267) 184 (154e230) 0.81
Males 206 (161e273) 214 (153e274) 191 (176e268) 0.80
Females 148 (119e184) 120 (116e154) 154 (132e213) 0.052

Subcutaneous adiposity (cm2), median (IQR) 228 (166e297) 228 (188e289) 234 (144e307) 0.66
Males 212 (164e274) 214 (173e277) 166 (130e274) 0.12
Females 289 (235e362) 259 (210e362) 303 (249e459) 0.61

Intermuscular adipose tissue (cm2), median (IQR) 11 (7e17) 9 (7e16) 12 (9e22) 0.02*
Males 10 (7e16) 8 (7e16) 12 (8e19) 0.19
Females 16 (10e26) 10 (8e19) 17 (12e27) 0.13

Total adipose tissue (cm2), median (IQR) 450 (362e540) 455 (374e540) 448 (349e539) 0.57
Males 450 (362e540) 469 (393e541) 410 (336e535) 0.17
Females 453 (402e497) 414 (356e486) 482 (414e625) 0.22

SOFA Score, mean (SD) 9.7 ± 2.9 9.5 ± 2.7 9.9 ± 3.2 0.56
APACHE II Score, mean (SD) 19 ± 6 19 ± 6 19 ± 5 0.94

SD: Standard Deviation, IQR: Interquartile Range, BMI: Body Mass Index.
*Significant results (P < 0.05).

a After BMI-adjusted HU: Hounsfield Unit, SOFA: Sequential Organ Failure Assessment, APACHE: Acute Physiology And Chronic Health Evaluation II.

I.A. Osuna-Padilla, N.C. Rodríguez-Moguel, S. Rodríguez-Llamazares et al. Clinical Nutrition xxx (xxxx) xxx
females) [38]. In critically-ill septic patients, Cox Mc et al., reported
a prevalence of baseline low muscle mass in 50% of patients [39].
Another study in hospitalized patients with COVID-19 showed that
muscle mass was related to the need for ICU admission (17%),
4

longer hospital LOS (mean, 10.8 days), and mortality (6.6%) [40].
Although their results are not comparable to our population of
critically ill patients as muscle mass was assessed using ultrasound,
their findings corroborate with ours by highlighting low muscle



Table 2
Differences in clinical outcomes between normal and low muscle mass in survival patients.

Characteristics All patients Normal muscle mass Low muscle mass p value

Mechanical ventilation, days
Survived 17 (11e39) 15 (9e26) 25 (13e41) 0.06

Tracheostomy placement
Survived 7 (21%) 9 (60%) 16 (50%) 0.01*

Intensive care unit length of stay, days
Survived 21 (14e40) 18 (12e29) 27 (18e46) 0.02*
Died 18 (10e35) 19 (11e35) 18 (9e29) 0.61

Hospital length of stay, days
Survived 28 (19e47) 23 (17e35) 35 (20e56) 0.02*

*Significant results (P < 0.05). median (IQR), n (%).
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mass as an independent predictor of negative clinical outcomes
[37], including higher rates of extubation failure, defined as rein-
tubation within 48 hours after extubation following long-term MV
for >7 days [41]. Notably, our lack of association with mortality can
be simply due to our limited sample size to explore this specific
question. In our sample, we observed a trend toward more MV days
in patients with low muscle mass.

One important difference often observed across CT-based
studies is the choice of thresholds to define low muscle mass
[42,43]. Some studies in patients with COVID used references
derived fromhealthy populations [44,45]. In this study, we used sex
and BMI-adjusted thresholds proposed by Caan et al. [27] in the
Fig. 1. A) Intensive care unit (ICU) length of stay and B) Hospital

5

absence of data for Mexican patients with COVID. We acknowledge
this cutpoint is not cohort-specific, as they were derived from
oncology patients. Despite differences across populations, these
thresholds showed a good prognosis capacity.

In our sample, 39% of patients had low muscle mass and low
muscle radiodensity. The latter, also called myosteatosis is indic-
ative of abnormal muscle “quality” (i.e., depicting fat infiltration
into muscle) [46]. Although we have not explored the clinical
implications of myosteatosis or a combined condition with low
muscle mass in our study due to sample size limitations, this
condition has been previously linked to extubation success [38],
less ventilator-free and ICU-free days [47], poor survival and
length of stay in patients with normal or low muscle mass.



Table 3
Cox regression analysis of low muscle mass and clinical outcomes in COVID-19 Critically ill patients.

Variable Univariate analysis Multivariate analysisa

HR 95% CI P value HR 95% CI P value

Mechanical ventilation, days 0.61 0.37e1.02 0.06 0.60 0.35e1.05 0.07
Intensive care unit length of stay, days 0.56 0.33e0.94 0.028* 0.53 0.30e0.92 0.024*
Hospital length of stay, days 0.56 0.34e0.95 0.03* 0.50 0.29e0.86 0.014*

*Significant results (P < 0.05). HR: Hazard ratio, CI: Confidence interval.
a Model adjusted to age (categorized), hypertension diagnosis, APACHE II score and intermuscular adipose tissue.

Table 4
Relationships between computerized tomography-assessed skeletal muscle area (cm2) and markers of muscle mass.

Rhoa b (95% CI)b R2

Mid-upper arm circumference, cm r: 0.44, p < 0.001* 4.5 (2.5e6.5), p 0.001* 0.18
Calf circumference, cm r: 0.45, p < 0.001* 5.1 (2.9e7.3), p 0.001* 0.20
Fat free mass (kg) r: 0.70, p < 0.001* 2.1 (1.7e2.6), p 0.001* 0.49
Phase angle (�) r: 0.39, p < 0.001* 13.5 (6.5e20.4), p 0.001* 0.14

*Significant results (P < 0.05).
a Pearson test.
b Univariate linear regression.

Table 5
Concordance of markers of muscle mass for low muscle mass identification.

Calf circumference Mid-upper arm circumference Fat free mass index Phase angle

Concordance k 0.05, p 0.27 k 0.15, p 0.009* k 0.20, p 0.004* k 0.34, p < 0.001*
Agreement 51.8% 58.8% 60.7% 67%
Sensitivity 80.5% 17% 24.4% 56%
Specificity 25% 98% 95.3% 78%
Area under the curve 0.52 (0.43e0.61) 0.57 (0.51e0.63) 0.59 (0.52e0.67) 0.67 (0.57e0.77)

*Significant results (P < 0.05).
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higher mortality in mechanically ventilated patients [48e51]. The
mechanism explaining the association of myosteatosis and worse
outcomes is unclear, but insulin resistance, oxidative stress and
inflammation responses may be implicated [52]. Notably,
although we did not fully explore the consequences of myo-
steatosis in our study, IMAT was included in regression analysis,
which improved model adjustment.

Additionally, we also explored the impact of high adiposity and
of high adiposity with lowmuscle mass (sarcopenic obesity) on the
studied clinical outcomes, also using the definition per Caan J et al.
[27]. No differences between groups were detected for mortality,
hospital or ICU LOS, likely due to the small sample size (data not
shown).

Most of the studies carried out to date in patients with COVID-19
have not described the impact of muscle mass and the number of
tracheostomies as a negative clinical result. In our analysis, we
identified a 50% increase in the number of tracheostomies per-
formed in the group of patients with low muscle mass prior to a
successful withdrawal from mechanical ventilation, which may in
turn impact LOS, morbidity, and mortality.

CT scan is considered a gold standard technique for body
composition assessment, with the disadvantage that it is not
available in all clinical settings, and not all critical patients had a CT
scan for diagnosis purpose. Notably, body composition assessment
is not an indication for CT scan due to its high radiation exposure.
Therefore, the identification of bedside surrogate markers for the
diagnosis of low muscle mass is important when CT scans are not
available. In our study, anthropometric and FFMI/BIA-derived in-
dicators showed insufficient accuracy and agreement with SMA by
CT. Despite the evidence of CC as a marker of muscle mass, the lack
of accuracy between abnormal CC and CT values may be due to how
6

cut-off points were derived, the former using DXA data from
healthy subjects, the latter using CT data from patients with cancer.
Similar results were obtained using the BIA-derived FFM, as our
cut-off points were not device and population specific.

PhA obtained from BIA is an indicator of cell mass and mem-
brane integrity that is adversely affected by inflammation, disease,
and immobilization due to decreased electrical properties of tissues
[53]. PhA has been proposed as a surrogate marker for muscle mass
in different clinical settings such as patients with cirrhosis [38,54].
In our study, cut-off values of PhA showed a fair agreement and
poor accuracy. Our findings highlight the need for simple and non-
invasive tools for muscle mass evaluation and monitoring.

Our study has several limitations: 1) our cohort was enrolled at a
single center; 2) the number of female participants was limited; 3)
we did not include a non-COVID-19 control group which would
allow us to distinguish potential differences associatedwith COVID-
19 or with low muscle mass per se; 4) thresholds for low muscle
mass identification were derived from another clinical population,
in absence of a Mexican references population or a stablished cut-
off for critically-ill patients; 5) Long-term survivorship was not
accessible due to the impact of COVID-19 on the workload of the
nutrition department, and 6) analysis of additional body compo-
sition phenotypes was limited by our small sample size. However,
clinical data obtained in this study supports the use of CT a safe
non-invasive and reliable technique to detect low muscle mass in
critical care patients with COVID-19.

5. Conclusion

Low muscle mass was associated with prolonged ICU and hos-
pital LOS. Further studies are needed to establish nutritional
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interventions to ameliorate the catabolic impact of COVID-19 in
critically ill patients, based on standardized and reliable measure-
ments of body composition.
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