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Recombination is a main source of genetic variability. However, the potential role of the variation generated by recombi-

nation in phenotypic traits, including diseases, remains unexplored because there is currently no method to infer chromo-

somal subpopulations based on recombination pattern differences. We developed recombClust, a method that uses SNP-

phased data to detect differences in historic recombination in a chromosome population. We validated our method by per-

forming simulations and by using real data to accurately predict the alleles of well-known recombination modifiers, includ-

ing common inversions in Drosophila melanogaster and human, and the chromosomes under selective pressure at the lactase

locus in humans. We then applied recombClust to the complex human 1q21.1 region, where nonallelic homologous recombi-

nation produces deleterious phenotypes. We discovered and validated the presence of two different recombination histories

in these regions that significantly associated with the differential expression of ANKRD35 in whole blood and that were in high
linkage with variants previously associated with hypertension. By detecting differences in historic recombination, our meth-

od opens a way to assess the influence of recombination variation in phenotypic traits.

[Supplemental material is available for this article.]

Recombination plays a central role in adaptation and evolution,
and its influence in human disease is becoming increasingly clear
(Alves et al. 2017). During the last decade, our understanding of ge-
nome-wide recombination rates and landscapehas been greatly in-
creased by the resolution and power of high-throughput data and
analysis methods on population samples. Methods that extract re-
combination signals using linkage between SNPs have been instru-
mental (Stumpf andMcVean 2003;McVean et al. 2004; Kong et al.
2010; Auton and McVean 2012; Alves et al. 2014). However, de-
spite these great advances, the outstanding question on how
recombination variability influences phenotypes has lagged
behind because there has not been a method to measure recombi-
nation variation among individuals in large association studies. A
large body of theoretical work, initiated by Nei (1967), has ex-
plored the conditions under which the variability of general re-
combination modifiers evolve (Feldman et al. 1996; Kirkpatrick
and Barton 2006), yet empirical studies that link recombination
variability in a genomic region with phenotypic traits and fitness
are restricted to already known specific modifiers, such as inver-
sions or specific polymorphisms (Stefansson et al. 2005; Hussin
et al. 2013; Puig et al. 2015). In this context, we developed
recombClust, a pioneering method to detect recombination vari-
ability between chromosomes by inferring the differences in re-
combination histories within a genomic region.

Recombination produces offspring chromosomes with new
combinations of maternal and paternal DNA material at each
side of a recombination event (Thacker and Keeney 2016). As
such, recombination is a main source of novel genetic diversity.
At the population level, when multiple recombination events
have occurred between two genomicmarkers, the linkage between
them decreases and a random association is then observed.
Historic recombination patterns were thus successfully extracted
from the linkage between dense SNP markers, strongly matching
direct observations on recombination events in sperm samples
(Myers et al. 2005). Because linkagemethods are population-based
estimates, they have been intensely used to compute accurate re-
combination rates and landscapes in large population samples
but, at the same time, have also been disregarded in their ability
to detect recombination variation among individuals (Coop and
Przeworski 2007), that is, used to infer groups of chromosomes
with different recombination histories in a genomic region.
However, latent variable mixture models can be incorporated to
linkagemethods to detect the underlying mixture of chromosome
subpopulations, characterized by different recombination pat-
terns. We therefore hypothesized that in a genomic region where
the recombination frequency and location are modified in a sub-
population of chromosomes, the chromosomes can be grouped ac-
cording to consistent recombination histories within that region.
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The detected chromosome groups could
then be tested for association with phe-
notypes, allowing the use of large co-
horts to study the phenotypic effects of
recombination variability in a given ge-
nomic region.

Here, we propose a method that le-
verages chromosomal differences in link-
age patterns in a target genomic region to
classify the chromosomes of a popula-
tion into groups with different recombi-
nation histories. The method, named
recombClust, comprises three steps. First,
it classifies chromosomes into those
with a history of high recombination or
with a history of high linkage at a recom-
bination point. The classification is
based on the linkage structure between
two SNP-blocks flanking the recombina-
tion point. A SNP-block is a combination
of two contiguous SNPs. Several recombi-
nation points are then used to cover the
targeted genomic region, each of them
flanked by a SNP-block pair producing
a chromosome classification. Second,
recombClust searches for groups of chro-
mosomes with consistent classifications
across all the recombination points, fur-
ther clustering the chromosomes into
subpopulations with common histories
of recombination across the region. And
third, recombClust reconstructs the spa-
tial recombination pattern for each chro-
mosome subpopulation.

We tested the performance and ade-
quacy of the method using numerous
simulated scenarios and showed its abili-
ty to detect the correct recombination
patterns of known recombination modi-
fiers using real data for Drosophila mela-
nogaster and humans. Finally, we used
the method to (1) detect and validate
chromosome subpopulationswith differ-
ent historic recombination at 1q21.1, a
genomic region at risk of deleterious rear-
rangements leading to the thrombocyto-
penia-absent radius (TAR) syndrome
(Mefford et al. 2008; Rosenfeld et al.
2012); and (2) to associate the obtained
chromosome groups with changes in
gene expression in blood. The method
is implemented in a computationally
efficient tool, compatible with Biocon-
ductor’s packages and the Variant Call
Format (VCF).

Results

We propose recombClust, a method to
classify chromosomes into groups with
different recombination histories across a predefined target region
(Fig. 1). Themethod is based on phased SNP data; therefore, it clas-

sifies chromosomes. The target region is tiled by SNP-blocks made
of multiple contiguous SNPs. The classification of chromosomes

B

A

C

Figure 1. recombClust scheme. recombClust is a method to classify chromosomes into underlying re-
combination patterns using SNP data, which comprises three steps. (A) Mixturemodel fitting at a recom-
bination point, flanked by a pair of SNP-blocks. A mixture model classifies the chromosomes into recomb
(orange) and linkage (white) groups at a recombination point. For simplicity, SNP-blocks are represented
with two alleles. Historical recombination between the SNP-blocks is represented by a broken vertical line
between the SNP-blocks. Notice that haplotypes in linkage are those that maximize the likelihood of the
mixturemodel and are not the ancestral haplotypes of the population. (B) Chromosome classification into
subpopulations A and B. Themixturemodels provide a recomb/linkage classification at different recombi-
nation points across the target region. In the figure, the orange cells of the classification matrix represent
chromosomes classified in the recomb population across recombination points (columns). A principal
component (PC) analysis is performed on this matrix. The first PCs reveal clusters of chromosomes for
which their recomb/linkage classifications are consistent along the target region and therefore share similar
recombination patterns. Each chromosome is assigned to a recombination subpopulation (A: red; B:
blue), with chromosomes from 1 to M classified as subpopulation A and chromosomes from M+1 to
M+N as subpopulation B. (C) The recombination pattern for each chromosome subpopulation is recon-
structed from the proportion of chromosomes in the recomb group at each point in the genomic region.
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into different recombination histories along the target region is
performed in two clustering steps. In the first step, the method
fits a mixture model of two chromosome groups (recomb/linkage)
on a SNP-block pair, flanking one recombination point in the re-
gion. In chromosomes of the recomb group, SNP-blocks display
random association at the recombination point, whereas in chro-
mosomes of the linkage group, SNP-blocks are in complete associa-
tion (Fig. 1A). Several classifications are then obtained from fitting
the mixture model at recombination points covering the region.
In the second step, recombClust classifies chromosomes into sub-
populations (A/B) based on a consensus clustering across all the
mixture models fitted along the target region (Fig. 1B). The chro-
mosome groups A/B are the subpopulations associated with differ-
ent historical recombination patterns across the region. This
underlying chromosome substructure (A/B) can be used in down-
stream analysis, such as transcription andmethylation profiling or
association with phenotypes. Finally, the spatial recombination
patterns are reconstructed from the proportion of chromosomes
in the recomb group at each recombination point (Fig. 1C).

Modeling the mixture of chromosomes under recombination and

linkage

We developed amixturemodel to split the chromosomes of a pop-
ulation into those showing high recombination and those show-
ing high linkage history between two SNP-blocks (Methods).
Figure 1A illustrates an instance in which the mixture model is
fitted between two SNP-blocks. For illustration purposes, only
two alleles are shown at each SNP-block (+,−). The mixture model
classifies chromosomes in linkage and recomb groups at this recom-
bination point, maximizing the likelihood of the model.
Haplotypes in the linkage group are defined in a probabilistic man-
ner. Thus, haplotypes in the linkage group cannot be considered
the ancestral haplotypes in the population, but the haplotypes
that maximize the likelihood of the model.

Our mixture modeling is applicable to a wide range of theo-
retical scenarios. To assess its feasibility, we used multiple data
sets to determine the characteristics of the mixtures that could af-
fect its performance. These data sets are composed of SNP-block
pairs that flanked one recombination point for a group of chromo-
somes (recomb) but remained in linkage for a secondgroup (linkage)
(Methods). In addition, notice that these data sets do not assume
realistic linkage disequilibrium within or between the blocks. At
this stage, we thus tested the theoretical robustness of our model-
ing approach, using a wide range of generative mixture models.
Relevant biological scenarioswere considered in latter simulations.

We first evaluated how the proportion between recomb and
linkage populations affected the accuracy of the model to correctly
classify the chromosomes, varying the proportion between 0.1
and 0.9. We observed that the mixture model had high accuracy
(>80%) across all the proportions range, being optimal, as expect-
ed, when the mixture was small, that is, the mixture frequency ap-
proached 1 or 0 (Supplemental Fig. S1A).We also observed that the
model was robust under different initializations of themixture fre-
quency (Supplemental Fig. S1B). Overall, our simulations showed
that themixturemodelwas able to robustly split the chromosomes
into two groups, one with null LD (recomb) and other with full LD
(linkage) between a pair of SNP-blocks.

We then evaluated the accuracy of the model under different
within and between SNP-block variabilities, using a fixed scenario
with a 0.5 proportion of mixture between the recomb and linkage
groups. To test SNP-block variability, we simulated multiple SNP-

block pairs, flanking a recombination point, and determined the
haplotypes across the blocks. We varied the number of SNP alleles
that were different between the most frequent recomb and linkage
haplotypes. We thus assessed the extent to which the accuracy
of the model was affected by increasing mutation divergence be-
tween the groups. We observed that the mixture model had an ac-
curacy of 75% when most frequent haplotypes were shared
between groups and topped to 90% when the difference between
the haplotypes was given by only one SNP allele (Supplemental
Fig. S1C). This suggests a substantial gain in accuracywhen the dif-
ferences in mutation divergence between the groups are small,
which, in addition, can be boosted by the presence of one SNP al-
lele that associates with one of the groups. We then assessed the
influence of intra-block linkage disequilibrium (i.e., linkage dise-
quilibrium between the SNPs of a SNP-block) on model accuracy.
For a scenario of full linkage of the SNPs within all blocks, which
reduces to having blocks of 1 SNP, the accuracy dropped to
∼60% (Supplemental Fig. S1D).

Classifying chromosomes into different recombination histories

within a genomic region

The second step of recombClust is a consensus clustering ofmixture
model classifications at numerous points to group chromosomes
into consistent recombining groups (A/B) along a targeted geno-
mic region (Fig. 1B).Within the region, all possible SNP-block pairs
are tested such that they do not overlap. To speed up the compu-
tation, we only considered SNP-block pairs with a distance shorter
than 10 kb. Using data from human inv8p23.1, we observed that,
above this distance, most SNPs do not show differences in linkage
disequilibrium (LD) between inverted and standard subpopula-
tions (Supplemental Fig. S2). For each SNP-block pair, a mixture
model is fitted and the chromosomes are classified into the recomb
and linkage groups. Because chromosomes can be in recomb at one
point of the region and in linkage at another point, a consistent
classification over the mixture model predictions was considered.
For this step, we applied a clusteringmethod (k-means) on the first
two PCA components of the mixture model classification matrix
across all recombination points along the region (Fig. 1B). By de-
fault, recombClust identifies two clusters based on the first two
PCs, although the implementation allows the definition of addi-
tional clusters and PCs. The clusters identified were then consid-
ered as chromosomes with similar recombination patterns across
the region. Themixturemodel classificationmatrix was used to re-
construct the spatial recombination pattern of each subpopula-
tion, given by their proportion of recomb classifications at each
point (Fig. 1C). This pattern was then compared with the recombi-
nation patterns obtained by other linkage-based methods, which
are applicable only when the chromosome subpopulation A/B is
initially known.

Calibration was then required to test how the number of
chromosomes and the number of recombination points affected
the overall performance of recombClust modeling. At this stage,
we tested whether the method performed as expected in the theo-
retical scenarios for which it was designed.We thus simulated data
sets representing SNP-block pairs that flankedmultiple recombina-
tion points. We simulated two kinds of idealized scenarios: (1) a
mixture population, in which one subpopulation (A) belonged
to the recomb group in half of the points and to the linkage group
in the other half while a second subpopulation (B) belonged to
the linkage and recomb groups, respectively; and (2) a single popu-
lation in which all chromosomes belonged to the same
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recombination groups across all recombination points. After the
calibration, we considered testing recombClust inmore realistic sce-
narios, because these theoretical situations are unlikely to arise in
natural conditions.

First, to assess false discovery rate and statistical power, we se-
lected several calibrating scenarios changing the number of chro-
mosomes per population (from 20 to 60) and the number of
recombination points (from 10 to 100). In all cases, we performed
a PCA on the mixture model classification matrix (Fig. 1B). Then,
using k-means, we clustered the first two PC components in two
groups and considered that recombClust detected differences in re-
combination patterns when the average silhouette value of the
clustering was higher than 0.7 (Supplemental Fig. S3; Kaufman
and Rousseeuw 1990). We observed that under single population
simulations at equilibrium, recombClust had a false discovery rate
less than 0.05 for recombination points greater than 70 and for
all the number of chromosomes considered (more than 20). In ad-
dition, the power to detect different recombination patterns for
simulations of chromosomes with two different recombination
histories achieved 80% formore than 25 chromosomes and for dif-
ferences in historical recombination in more than 16 points
(Supplemental Fig. S4).

Second, to confirm that the model detected differences in re-
combination histories rather than allele differences, we compared
recombClust classification with that of a PCA on the simulated
genotypes. For a simulation with chromosome mixture, we ob-
served a neat separation of the chromosome subpopulations
(Supplemental Fig. S5A) with recombClust, which we did not ob-
serve for allele differences.

recombClust accurately classifies inversion

status based on differences in historic

recombination

The alleles of polymorphic inversionsdif-
fer in the recombination histories inside
the inverted region because recombina-
tion is suppressed in heterokaryotypes
(Alves et al. 2014). As such, inversions of-
fer realistic scenarios to test recombClust.
We, therefore, asked the extent to which
the inversion alleles, being strong recom-
bination modifiers, could be inferred by
recombination differences using recomb-
Clust. We first evaluated the method’s
performance to predict human simulated
inversions from the forward-time simula-
tor invertFREGENE. Using real genomic
data, we then tested its accuracy to classi-
fy validated human and Drosophila mela-
nogaster inversions (Supplemental Table
S1). Using invertFREGENE (O’Reilly et al.
2010), we simulated inversions with dif-
ferent lengths (from 50 kb to 1 Mb) and
frequencies (from 0.1 to 0.9) and tested
the prediction accuracy of chromosome
classification into their inversion alleles.
We observed an accuracy >90% for inver-
sions larger than 250 kb (Supplemental
Fig. S5B). As expected, the accuracy for
short inversions was lower as they pre-
sented fewer recombination points.

recombClust’s mean accuracy was higher (95%) for inversion fre-
quencies between 0.2 and 0.8 (Supplemental Fig. S6) but did not
correlate with the inversion’s age (r=0.02, P-value=0.19) (Supple-
mental Fig. S7). Finally, we explored the potential effect of popula-
tion expansion on recombClust accuracy, by simulating 100
inversions with frequency 0.5 and 500 kb length, where the popu-
lation doubled just before the inversion appeared. In this scenario,
recombClust classification perfectly matched inversion status in
99% of the simulations.

We then used recombClust to determine whether the alleles of
three common polymorphic chromosomal inversions in
Drosophila melanogaster [In(2L)t, In(2R)NS, and In(3R)Mo] could be
identified based on their recombination histories. We ran recomb-
Clust on genome-wide SNP data from205 lines derived from the Ra-
leigh, North Carolina, population, comprised in the Drosophila
melanogaster Genetics Reference Panel (DGRP2) (Mackay et al.
2012; Huang et al. 2014) and compared the inferred recombining
subpopulations with the experimental inversion alleles of the lines.
For all the inversions, we observed clear clustering in the first two PC
components of themixture classificationmatrix (Fig. 2A–C) that re-
sulted in a 98% match with the inversion alleles when a k-means
clustering was applied. Likewise, we compared the recombClust call-
ing of human inversions at 8p23.1 and 17q21.31 with the experi-
mental inversion genotypes, as obtained from the invFEST
repository (Martínez-Fundichely et al. 2014) for the European sub-
jects of The 1000 Genomes Project. Using SNP-phased data, we
found that recombClustneatly separated inverted and standard chro-
mosomes (Fig. 2D,E) in the first PCcomponentof themixturemodel
classification matrix. The k-means clustering of the first PC

E

BA C

D

Figure 2. PCAs of recombClust probabilities for chromosomal inversions inDrosophila melanogaster and
human. First two principal components of chromosomes, derived from the recombination classification
at multiple recombination points along different inverted regions. Each point is a chromosome. Clusters
mapping the inversion status in both Drosophila and human inversions are observed. Chromosomes with
known inversion genotypes are colored (green: standard, blue: inverted). (A–C) Drosophila inversions in
DGRP lines. (D,E) Human inversions in the European individuals of The 1000 Genomes Project. Gray
points represent chromosomes either from individuals without experimentally defined inversion status
or heterozygous individuals for the inversion.
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accurately matched the experimental inversion alleles (8p23.1:
100%; 17q21.31: 99.3%). Overall, these results showed that the re-
combination substructure can reliably identify the inversion alleles
of some common inversions in two different species.

To validate the ability of recombClust to extract underlying
groups with different historical recombination patterns, we
compared recombClust inferred patterns underlying the 8p23.1 in-
version region with the recombination rates independently esti-
mated for chromosomes with known inversion alleles using
FastEPRR (Fig. 3, II and IV; Gao et al. 2016). We observed that the
inferred proportion of chromosomes in the recomb population
across the genomic region (Fig. 1C) accurately captured the under-
lying recombination patterns obtained by FastEPRR for each of the
8p23.1 inversion alleles. We also observed that the largest differ-
ences in recombinationproportionswere obtainednear the recom-
bination peaks described by Alves et al. (2014) (Fig. 3, I). These
results confirmed that the chromosome subpopulations identified
by recombClust are mapped to different recombination histories.

recombClust detects recombination histories associated with

ancestral differences

Modifiers of historical recombination patterns include numerous
processes other than inversions that can act simultaneously on

the same genomic region. In particular, differences in historical re-
combination patterns between ancestries can derive from random
differences in the occurrence of recombination events or from the
emergence of hotspot differences regulated by ancestry-specific al-
leles (Jeffreys and Neumann 2009). As such, we asked to which ex-
tent differences between human populations could also be
detected in loci already under the influence of inversion alleles.
We, therefore, used recombClust to detect underlying recombina-
tion modifier alleles corresponding to the human inversions at
8p23.1 and 17q21.31 for all the individuals in The 1000
Genomes Project, covering four different continental populations
(Sudmant et al. 2015). We inspected the first two PC components
of the mixture model predictions for inv-8p23.1 (Supplemental
Fig. S8) and observed multiple clusters, in which chromosomes
segregated both by inversion status and ancestry. However, for
inv-17q21.31, the additional clusters observed in the standard al-
lele did not map to ancestral differences. The observations on
both human inversions confirmed that clusters identified in the
first PCs of the mixture model predictions can be interpreted
as non-recombining chromosome groups that differ in inversion
status, ancestry, or other unobserved factors that suppress
recombination between the groups, such as copy number variants
likely segregating the chromosomes at 17q21.31 (Steinberg et al.
2012).

Figure 3. Underlying recombination patterns in human inversions 8p23.1 for the European individuals of The 1000 Genomes Project. Ideogram for the
8p23.1 inverted region showing the transcripts in the region. (I) Approximate location of recombination peaks for standard or inverted chromosomes iden-
tified by Alves and colleagues (Alves et al. 2014). (II) Recombination rate obtained from FastEPRR independently for standard and inverted chromosomes.
(III) Rawand smoothed difference (moving average) in recombination rates between standard and inverted chromosomes as computed from FastEPRR. (IV)
The proportion of chromosomes belonging to recomb population in the chromosome subpopulations inferred by recombClust, which accurately predicted
inversion status. (V) Raw and smoothed difference (moving average) in the proportion of chromosomes belonging to the recomb population in inverted
and standard chromosomes, as predicted by recombClust.
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recombClust detects recombination histories associated with

selection

Chromosomes with advantageous alleles show a decrease in re-
combination around the locus under selection. Although selec-
tion, like demography, does not have a direct influence on the
biological process of recombination, they modulate the historical
recombination patterns (Stumpf and McVean 2003). Therefore,
we askedwhether recombClustwas able to detect chromosomes un-
der selection and recover their recombination patterns.We studied
the LCT locus, a human locus known to be under positive selection
for lactase tolerance, as defined in PopHumanScan (Chr 2:
135,770,000–136,900,000, hg19) (Murga-Moreno et al. 2019).
We aimed to detect the underlying chromosomes under selection
and their recombination pattern in the LCT locus, for the
European individuals of The 1000 Genomes Project. We observed
two chromosomes subpopulations (allele 1/allele 2) by clustering
the first PC components of themixture classificationmatrix (allele
1: 60.8%; allele 2: 39.2%) (Fig. 4A). Chromosome allele 1 was the

most frequent except for the Tuscany population (TSI)
(Supplemental Table S2), the only European population which
does not show marks of selection in the LCT locus, as reported
in PopHumanScan (Murga-Moreno et al. 2019). We also observed
a strong correlation between rs4988235 [C/T(-13910)], a SNP
linked to lactose persistence, and the inferred subpopulation
groups (r2 = 0.64), where the allele conferring lactose persistence
(T) was very frequent in chromosome allele 1 (83%) and almost ab-
sent in chromosome allele 2 (<1%). The ability of recombClust to
detect chromosomes under selection was further confirmed by
the spatial recombination patterns in the locus. We observed a
low and homogenous recombination pattern in group A (lactose
persistence group) across the LTC locus, possibly owing to a recent
selective sweep (Fig. 4B, II). We also recovered the recombination
patterns independently obtained with FastEPRR, for each chromo-
some subpopulation (Fig. 4B, IV). Recombination peaks for chro-
mosome allele 2 were found between genes R3HDM1 and DARS
genes, matching previously reported recombination peaks (Fig.
4B, I; Bhérer et al. 2017).

recombClust detects recombination

differences in complex genomic regions

The region at 1q21.1 between Chr 1:
145,399,075–145,594,214 (hg19)
(Albers et al. 2012) is prone to various
deleterious rearrangements by nonallelic
homologous recombination (NAHR) at
the numerous segmental duplications
(SD) in the region (Rosenfeld et al.
2012). The rearrangements include
microdeletions leading to the thrombo-
cytopenia-absent radius (TAR) syndrome
and a range of multiple neurodevelop-
mental phenotypes caused by duplica-
tions and deletions distal to the TAR
region (Rosenfeld et al. 2012). Because
strong control of recombination is ex-
pected in regions at risk of NAHR during
meiosis (Sasaki et al. 2010), we hypothe-
sized that different recombination histo-
ries would be detectable in this region
and aimed to determine their functional
correlates.

We ran recombClust across the re-
gionChr 1: 145.35–145.75Mb character-
ized by four blocks of segmental
duplications. The most common dele-
tion for the TAR syndrome is observed
between the first and third block
(Klopocki et al. 2007), whereas the small-
est reported deletion was found between
the second and third block (Fig. 5C, I and
II; Rosenfeld et al. 2012). We first ana-
lyzed the European individuals of The
1000 Genomes Project and observed
two clear clusters in the first two PCs of
the mixture model classification matrix
(Fig. 5A). We defined two chromosome
subpopulations (subpopulation 1:
80.9%; subpopulation 2: 19.1%) that
were in Hardy-Weinberg equilibrium (P

B

A
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Figure 4. Underlying recombination patterns in the LCT locus. (A) First two principal components of
chromosomes, derived from the recombination classification at multiple recombination points along
the LCT locus. (B) Ideogram for the LCT locus under selection showing the genes in the region. (I)
Recombination rates reported by Bhérer and colleagues (Bhérer et al. 2017). (II) Recombination rate ob-
tained from FastEPRR independently for chromosomes with alleles 1 and 2 detected by recombClust. (III)
Raw and smoothed difference (moving average) in recombination rates between alleles 1 and 2 as com-
puted from FastEPRR. (IV) The proportion of chromosomes belonging to recomb population in the chro-
mosome subpopulations with alleles 1 and 2, correctly predicting a flat pattern for the allele 1 that is
under selection. (V) Raw and smoothed difference (moving average) in the proportion of chromosomes
belonging to recomb population in alleles 1 and 2.
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=1) and thus confirmed our hypothesis for the presence of differ-
ent recombination histories in the region. We also analyzed a ran-
domly selected region (Chr 1: 14.6–15 Mb) of the same length of
the TAR region, but where we did not expect any recombClust sig-
nal. We confirmed that no clusters could be clearly defined
(Supplemental Fig. S9) and that the first two principal components
explained much less variance than those for the TAR or LCT
regions.

For each group, we estimated the recombination pattern giv-
en by the proportion of chromosomes in recomb (Fig. 5, III), observ-
ing important differences between the groups. Chromosomes in
subpopulation 2 had higher recombination proportion than those
in subpopulation 1 along the region except for the small interval
containing the genes LIX1L and RBM8A, the causative gene of
TAR syndrome (Albers et al. 2012). However, the highest differenc-
es in recombination proportions were observed between the third

BA

C
145.7 Mb

145.6 Mb145.4 Mb
145.5 Mb

Figure 5. Underlying recombination patterns in the TAR syndrome locus. (A) Chromosome subpopulations with different recombination patterns be-
tween the coordinates Chr 1: 145.35–145.75 (hg19), as detected in the genomic data of The 1000 Genomes and GTEx projects. (B) Transcriptomic anal-
yses for the genes in the region identified that ANKRD35 transcription is significantly associated with the chromosome population substructure. Individuals
are grouped by their chromosome subpopulations (pop1/pop1, pop1/pop2, pop2/pop2). (C) Ideogram for the TAR region showing the genes in the re-
gion. (I) Segmental duplications. (II) Location of common and minimal deletions. (III) Proportion of recomb chromosomes in each subpopulation in the
1000 Genomes data. (IV) Difference between the proportion of recomb chromosomes in subpopulation 2 and subpopulation 1 in the 1000 Genomes
data. (V) Proportion of recomb chromosomes in each subpopulation in GTEx data. (VI) Linkage disequilibrium (r2) between region SNPs and
recombClust subpopulation. (Green) eQTLs for ANKRD35 in whole blood; (red) GWAS hits for diastolic blood pressure.
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and fourth SD blocks, where subpopulation 1 showed null recom-
bination.We fully validated the chromosome subpopulations and
their recombination patterns using whole-genome sequencing
data of 287 European individuals from the Genotype-Tissue
Expression (GTEx) project (Fig. 5A,C, V).We thus obtained strong
evidence for the existence of two recombination histories in the
region.

We further asked whether the recombination histories could
have a functional role. We tested, using RNA sequencing data in
blood from the GTEx project, if the expression levels of the genes
in 1q21.1were associatedwith the two different recombination his-
tories. We found a significant differential expression of ANKRD35
(Fig. 5B) (log fold change=0.18, P=6.7×10−4) and noted that the
SNP rs10910843, an eQLTs of ANKRD35 in blood (Westra et al.
2013), was in high linkage with the chromosome subpopulations
(Fig. 5C, VI). We additionally found that the SNP rs72704264, a
risk factor for hypertension (Evangelou et al. 2018), was also in
high linkage with the subpopulations, showing likely functional
links associated with the different recombination histories.

recombClust classification correlates with mutation-based

population structure

We observed that recombClust classification strongly correlated
with mutation-based population structure. The mutation-based

substructure was detected in all the regions analyzed with
recombClust (three Drosophila melanogaster inversions, two human
inversions, the LCT and the TAR regions), using PCAs of the SNPs
within the regions (Fig. 6). In all cases, the first two principal com-
ponents revealed population clusters that overlapped with
recombClust subpopulations (Fig. 6). For inversions in D. mela-
nogaster and humans, mutation-based population substructure
and recombClust classification mapped to inversion genotypes of
the individuals, homozygous for D. melanogaster inbreds.
Although mutation-based substructures for the LCT and TAR re-
gionsweremore complex, theymapped to recombClust subpopula-
tions. Therefore, recombClust not only detects population
substructure, as mutation-based methods, but also deepens into
the substructure as it additionally computes divergent recombina-
tion histories, which naturally account for the accumulation of
specific mutations.

Discussion

recombClust is the firstmethod to classify chromosomes into differ-
ent subpopulations based on the inference of the recombination
histories along genomic regions. Linkage methods for detecting
historic recombination patterns have been important to character-
ize the distribution of recombination hotspots between species
and ancestries (Winckler et al. 2005; Laayouni et al. 2011;

Figure 6. recombClust classification recovers the population structure detected by principal component analysis (PCA) of SNP data. In D. melanogaster
inversions [In(2L)t, In(2R)NS, and In(3R)Mo], each point represents the first two principal components of an inbred line, colored by recombClust classifi-
cation: (black) subpopulation 1; (red) subpopulation 2. In humans, each point represents the first two PCs of a diploid individual colored by the
recombClust classification: (green) subpop1/subpop1; (blue) subpop1/subpop2; (cyan) subpop2/subpop2.
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Smukowski and Noor 2011). Although current methods aim to ro-
bustly estimate the recombination rate betweenmarkers by coales-
cent modeling, accounting for selection and demographic effects,
they do not detect recombination variation between individuals.
recombClust fills this gap, further allowing to test the association
between differences in recombination histories with phenotypes.

recombClust assumes that there is an inverse relationship be-
tween recombination and linkage between SNP-blocks. However,
the similarity of the recombination patterns obtained with
recombClustwith those obtained with FastEPRR shows that this as-
sumption is accurate. This is because recombClust is also the first
method to incorporate the spatial correlation of the recombina-
tion signal along a genomic region, which other linkage methods
do not. Consequently, demographic and selection signals, which
induce spatial correlation, are directly extracted from the data
(Figs. 4, 5). Additional analyses are, however, required to identify
the nature of different recombination histories and to determine
whether they are due to ancestry, selection, or the presence of
chromosomal rearrangements affecting the recombination pat-
ternswithin the region. In particular, themethod successfully split
the groups of chromosomes being selected in the LCT locus from
those which are not, giving a flat recombination pattern, with
the group under selection likely produced by a recent selective
sweep. This is an added advantage with respect to methods like
FastEPRR in the computation of recombination patterns because
recombClust explicitly extracts the selection signal from the data
by identifying the chromosomes under selection as those with a
flat recombination pattern in the locus. Our analyses showed
that at the LCT locus, the pattern differences between chromo-
somes groups were large, further suggesting a novel approach in
the detection of selection signals.

We have shown that when recombination modifiers are ex-
pected to affect a genomic region, such as inversions,
recombClust can be reliably used to infer its alleles in large popula-
tion samples. recombClust can, for instance, be added to other
methods that genotype inversion from SNP data, offering an addi-
tional signal derived from recombination patterns (Cáceres and
González 2015). However, we expect that the limitations of these
methods also apply to recombClust, such as being best suited to
identify ancient and nonrecurrent inversions. Thus, recombClust
is likely to improve performance when substantial differences in
recombination histories accumulate. Recombination modifiers
acting on small targeted sequences that are not expected to show
a spatial-extended historic pattern require further methodological
developments, like merging the mixture model with a coalescent
modeling. In general, recombination modifiers whose effects can-
not be observed in historical recombination patterns are beyond
linkage methods.

We also showed that recombClust can detect differences in re-
combination histories in complex regions prone to nonallelic ho-
mologous recombination (NAHR) and, therefore, likely subjected
to tight regulation of recombination (Sasaki et al. 2010). We dis-
covered and validated the existence or two recombination histo-
ries in the 1q21.1 locus at risk of deleterious syndromes. Detailed
analyses are needed to disentangle the nature of the recombina-
tion modifiers acting on the region, which can be, for instance, a
mixture of genomic rearrangements, epigenetic marks, or func-
tional mechanisms regulating double-strand breaks that avoid
NAHR (Sasaki et al. 2010). In addition, the question arises over
whether the recombination between the chromosome subpopula-
tions confers specific risks to deletions and duplications in the off-
spring. As for the subpopulations’ relation with more common

phenotypes, we observed a strong linkage with a risk factor for hy-
pertension showing probable implications of recombination vari-
ation with this trait within 1q21.1. We, therefore, showed an
approach to measure the impact of different recombination histo-
ries on phenotypes, opening a way to study how recombination
variation influences traits.

In this study, we have shown that recombClust can detect two
different recombination histories in a target region. However,
there is a clear possibility that more histories along a candidate re-
gion can be detected, even if the mixture models at a point are bi-
nary classifiers. In these cases, more clusters will appear in the
consensus PCA determining the chromosomal subpopulations.
The application of recombClust to the human inversion
inv8p23.1 when samples from multiple ancestries are included
(Supplemental Fig. S8) revealed that chromosomeswere differenti-
ated by inversion status (inverted vs. standard) and ancestries
(African vs. other) comprising fourmain clusters, eachwith a com-
bination of inversion status and ancestry and revealing different
recombination histories. The implementation of recombClust en-
ables the detection of more clusters with additional PCA dimen-
sions. Nonetheless, further evaluation of those scenarios is
needed. In addition, the examples provided here are based on
the human and the D. melanogaster genomes, but recombClust
could be applied to other organisms as well. To this end, different
parameters (such as the maximum distance between SNP-blocks)
can be adapted to the genome features of the target organism.

Methods

recombClust description

We proposed a method to classify chromosomes into different
groups based on recombination histories in a target region.
Consider a situation in which two different recombination histo-
ries are latent, generating two chromosome subpopulations in a
given genomic region (Supplemental Fig. S10). A first subpopula-
tion of chromosomes comprises those whose ancestral chromo-
somes have recombined at a given point within the region, and
a second subpopulation comprises those with a history of recom-
bination at other points. In this work, we proposed the method
recombClust that clusters the individuals into recombination histo-
ries in a target genomic region, using two steps. First, at each select-
ed point within the region, it fits a mixture model to classify
chromosomes into those that have recombined between two
SNP-blocks and those that have not. Second, it computes a consen-
sus classification of chromosomes across all selected points, sepa-
rating the population of chromosomes according to different
recombination patterns along the segment.

Mixture model to classify chromosomes into recombining groups

The first step of recombClust is to draw multiple classifications of a
sample of chromosomes at various recombination points covering
a target genomic region. At a given point, themethod classifies the
chromosomes with a history of recombination between two SNP-
blocks flanking the point and those without it. SNP-blocks are
made of L contiguous SNPs. We propose to model the likelihood
that a chromosome in the sample was drawn from a mixture of
chromosomes that highly recombined at that point (recomb) and
that remained in complete LD (linkage) (Fig. 1A). The likelihood
is therefore given by a mixture of two latent chromosome groups
(recomb/linkage). We model the recombination at a point that lies
in the sequence interval between a pair of SNP-blocks (i= 1, 2),
each of length L. Phased SNP alleles are encoded by 0 or 1, the
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haplotype of a chromosome at block i is a randomvariable denoted
Xi∈ {0, 1}L, and the haplotype of the joint blocks is the random
variable given by the concatenation of the block variables X12 =
X1 ○ X2. Under our model, the recombination completely breaks
the LD between the SNP-blocks (r2 = 0) in the recomb subpopula-
tion and therefore X1 and X2 are statistically independent.
Therefore, the probability that a chromosome is observed with
haplotype x12 in a chromosome group under recombination is

Precomb(X12 = x12|n1, n2) = P(X1 = x1|n1)× P(X2 = x2|n2), (1)

given the haplotype frequencies n1 and n2.
For the second chromosome group, we consider that there is

no recombination, andwemodel the SNP-blocks to be in complete
LD (r2 = 1). For the chromosomes in the linkage group, X1 and X2

are completely linked. X2 can be unambiguously mapped to X1

(f :X2→X1). Under this model, the probability of observing haplo-
type x12 is

Plinkage(X12 = x12|d, f ) = {P(X1 = x1|d), x1 = f (x2); 0, otherwise},

(2)

where the frequencies of X1 are denoted by d.
We define the mixture model with two components, follow-

ing Equations (1) and (2). The model represents a chromosome
population with a mixture of recomb and linkage groups with pro-
portion π. We therefore assume that the probability of observing a
chromosome with haplotype x12 is

Pmixture(X12 = x12|r1,r2,l1,g, p) = pPrecomb(X12 = x12|r1, r2)
+ (1− p)Plinkage(X12 = x12|l1, g)

(3)

where r1 and r2 are the frequencies of haplotypes X1 and X2 in
recomb; l1 is the haplotype frequencies of X1 in linkage; and g is
the function linking X2 to X1.

Given a set ofm independent chromosomes (k = 1, . . . , m),
we denote the random variable for the joint blocks over all chro-
mosomes as Y12 = (X1

12, X
2
12, . . . , Xm

12) and therefore the likeli-
hoods of observing the data y12 under the mixture model is

Lmixture(y12) =
∏m

k=1

Pmixture(Xk
12 = xk12|r1, r2,l1, g, p). (4)

Themixturemodel parameters are determined using an expec-
tation-maximization (EM) algorithm. For each chromosome, we
define a hidden variable zkε{0, 1}. This variable indicates if the
chromosome belongs to the recomb or the linkage groups. The
EM algorithm updates the model parameters iteratively maximiz-
ing the expectation of the data. Given the parameters of themodel
ω, ω= (r1, r2, l1, g, π), we define the probability that chromosome k
belongs to the linkage group, s0,k(v) = P(zk = 0|xk12, v). Similarly,
the probability that individual k belongs to the recomb group given
ω is s1,k(v) = P(zk = 1|xk12, v). For each k, the probability of belong-
ing to any group is 1 and, therefore, s0,k(ω) + s1,k(ω) = 1. In each step
of the EM algorithm, we find the value of ω′ that maximizes

v′ = argmaxv

∑m

k=1

[
log((1− p′)× Plink(xk12|l′1, g ′))× s0,k(v)

+log(p′Prec(xk12|r′1, r′2))× s1,k(v)
]
.

(5)

We, therefore, update the mixture likelihood by ω′ given by

p′ = argmaxp

[
log ((1 − p) x s0(v))+ (p x s1(v))

]
, (6)

r′1 = argmaxr1

∑m

k=1

log
[
P(xk12|r1)

]
× s1,k(v), (7)

r′2 = argmaxr2

∑m

k=1

log
[
P(xk12|r2)

]
× s1,k(v), (8)

l′1 = argmaxl1

∑m

k=1

log
[
P(xk12|l1)

]
× s0,k(v). (9)

We estimate haplotype frequencies r1, r2, and l1 in close form
using Lagrangemultipliers (Sindi and Raphael 2010). In particular,
we obtain

p = s1(v)
s0(v)+ s1(v)

, (10)

where s0(ω) and s1(ω) are the probabilities that a chromosome in
the population belongs to the linkage or the recomb groups
[s0(v) =

∑m
k=1 s0,k(v); s1(v) =

∑m
k=1 s1,k(v)]. We consider that a

chromosome k belongs to recomb if s1,k > 0.5. The function g′ is de-
fined using a greedy algorithm. It sequentially pairs each observed
r2, in decreasing order by their frequency, with the x1 for which the
observed frequency of x12 is maximum and has not been previous-
ly paired. The finalω′ is such that its square root differencewith the
previous estimate is lower thanmachine precision. In addition, for
numerical stability, we set the zero in Equation (2) to 10−5.

Clustering of chromosomes into different recombination histories

Chromosomes belonging to the same recombination history are
those with consistent recombination or linkage across the differ-
ent selected points along the target region. In the second step of
recombClust, a consensus clustering is performed on all the recom-
bination points tested over the target region to determinewhether
individual chromosomes can be consistently classified into groups
with common historical recombination patterns. Therefore, to
detect a subpopulation of chromosomes across the target region
based on their recombination patterns, recombClust first extensive-
ly fits the mixture model between numerous pairs of nonoverlap-
ping blocks of two SNPs each (L =2 in the mixture model),
covering the region. For each model, the method computes the
probability that the chromosomes belong to the recomb group.
Finally, recombClust produces a consensus classification of the
chromosomes by clustering the first principal component of the
recomb probabilities matrix across all mixture models fitted in
the genomic region (Fig. 1B).

Extraction of spatial patterns of historic recombination along a genomic region

For each subpopulation, we defined its recombClust recombination
pattern as the proportion of chromosomes that belonged to the
recomb group at different points along the target region (Fig. 1C).
Windows were defined as predetermined regular partitions of the
target region to summarize the results of each subpopulation in
terms of the recomb and linkage clustering. In particular, for a given
subpopulation, we computed the proportion of chromosomes that
were classified in the recomb group across all the models contained
in each window. A chromosome was classified as recomb if it had a
recomb probability above 0.5 in more than half of the models in a
window.We then showed that the proportion of recomb classifica-
tion along the region recapitulated the recombination pattern for
the subpopulation, as determined by other methods such as
FastEPRR. We defined a partition in regular windows of 50 kb for
the human ∼4 Mb inversion 8p23.1 and the ∼1 Mb LCT region,
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to compare with FastEPRR recombination patterns. We defined
nonoverlappingwindows of size 20 kb in the 0.4Mb1q21.1 region
to increase the resolution of the recombination patterns.

Simulated data sets to calibrate the mixture model

We simulated various scenarios to calibrate our mixture model.
Two hundred instances of a reference scenario were generated
and compared with the 200 instances of multiple scenarios featur-
ing different SNP-blocks and between chromosome group variabil-
ities. For one instance of the reference scenario, we simulated 1000
chromosomes in the recomb and the linkage groups each, given by
the random and full linkage association between a pair of SNP-
blocks, respectively. For the recomb group, the chromosome alleles
at each SNP were drawn from a binomial distribution whose fre-
quency was independently sampled from a uniform distribution
[unif(0.55, 0.95)], assuming no LD within the blocks and between
blocks. For the linkage group, SNPs within the blocks were inde-
pendent but the pair of blocks, flanking the recombination point,
was in maximum LD. We then considered that the most frequent
haplotype for the joint SNP-blocks was the same in both subpop-
ulations and given by the SNP alleles with maximum frequency,
so the overall linkage in the total population was of D′ =1.
Different scenarios were obtained by changing the parameters of
these simulations, in which we assessed the performance of the
mixture model, given by the accuracy to correctly classify chromo-
somes into the recomb/linkage groups. We first assessed the extent
to which the accuracy of the model was affected by the nucleotide
divergence between the populations, by considering that the dif-
ferences between the most frequent block-pair haplotypes in
each chromosome group were increasingly higher. We did this
by changing the number of SNP alleles that were different between
the most frequent haplotypes in each group.

We also assessed the influence of intra-block linkage disequi-
librium onmodel accuracy, by taking blocks where the linkage be-
tween the SNPs in the block was maximum. This scenario reduces
to having blocks of 1 SNP. Finally, we evaluated how the propor-
tion between recomb and linkage populations affected the mixture
model performance. We simulated different scenarios in which
the proportion of the recomb population ranged between 0.1 and
0.9. We tested the model in the reference scenario using different
initializations for the mixture frequency.

Performance of recombClust to detect chromosomes with different

recombination histories

We also evaluated the performance of classifying the
chromosomes under different recombination patterns using simu-
lated inversions. Because inversion polymorphisms produce
chromosomal subpopulations that differ in their historical recom-
bination patterns along with the inversion, we tested the ability of
recombClust to detect inversion status in simulated inversions. We
simulated inversions using invertFREGENE (O’Reilly et al. 2010)
with different lengths (from 50 kb to 1Mb) and inversion frequen-
cies (from 0.1 to 0.9). Each combination of frequency and length
was run 100 times. In all simulations, we used Ne=1000, a recom-
bination rate = 1.25×10−7 and a mutation rate = 2.3 ×10−7, as sug-
gested in invertFREGENE manual to speed up the execution time.
Our simulated inversions represent potential scenarios in which
there are no selective pressures and the subpopulations recently
diverged.

D. melanogaster and human inversions

We tested whether recombClust could characterize real chromo-
somal inversions by inferring different historical recombination

patterns in D. melanogaster and in humans (Supplemental Table
S1). We used recombClust to infer the inversion status of chromo-
somes for three well-known inversions: In(2L)t (2L:2225744–
13154180, dm6), In(2R)NS (2R:11278659–16163839, dm6), and
In(3R)Mo (3R:17232639–24857019). We used SNP data from
DGRP2 lines (Mackay et al. 2012; Huang et al. 2014), excluding in-
dividuals with call rate <95%and SNPs having anymissing or ami-
nor allele frequencies (MAF) <5%, classified the lines into the
underlying recombination patterns computed by recombClust,
and compared the classification with experimental inversion ge-
notypes (Huang et al. 2014).

We used recombClust to classify phased chromosomes into
underlying recombination patterns within human inversions at
8p23.1 (Chr 8: 8,055,789–11,980,649, hg19) and 17q21.31 (Chr
17: 43,661,775–44,372,665, hg19). We used SNP-phased data
from The 1000 Genomes Project (Sudmant et al. 2015). We in-
ferred underlying chromosomal subpopulations with different re-
combination histories using recombClust and compared themwith
the experimental inversion genotypes available in the invFEST re-
pository (Martínez-Fundichely et al. 2014).

Recombination substructure in the susceptibility region of TAR

syndrome

We ran recombClust across the region Chr 1: 145.35–145.75 Mb
characterized by four blocks of segmental duplications. This region
is prone to deleterious rearrangements by nonallelic homologous
recombination (NAHR), which can lead to the thrombocytope-
nia-absent radius (TAR) syndrome. We analyzed the 503
European individuals from The 1000 Genomes Project and the
528 European individuals of Genotype-Tissue Expression (GTEx)
project (The GTEx Consortium 2013). We obtained GTEx data
from the NCBI database of Genotypes and Phenotypes (dbGaP;
https://www.ncbi.nlm.nih.gov/gap/) (accession code: phs000
424.v7.p2), we phased it with SHAPEIT (Delaneau et al. 2013),
and we selected those individuals classified as European by peddy
(Pedersen and Quinlan 2017) with a probability higher than 0.9.
In the recombClust analysis, we included SNPs with a MAF>0.05
and performed the consensus clustering across the tested points
with a hierarchical clustering. For the GTEx data, we used the first
two PCs of the mixture model classification probabilities, but for
the 1000 Genomes data we used the second PC. We tested
Hardy-Weinberg equilibrium using SNPassoc (González et al.
2007).

We studied whether the chromosome genotypes, derived
from the chromosome subpopulations, were associated with
gene expression and phenotype differences between individuals.
We evaluated the association with gene expression in whole blood
using GTEx data, using the gene raw counts from recount2
(Collado-Torres et al. 2017). For each tissue, we removed genes
with fewer than 10 counts in >90% of the samples. We tested
the association between the chromosome alleles and gene expres-
sion, applying a robust linear regression with limma (Ritchie et al.
2015) to log2 CPMvalues obtainedwith voom (Law et al. 2014).We
included sex, platform, top three genome-wide principal compo-
nents, and variables from PEER as covariates.

Software availability

Development and release versions of recombClust are available at
GitHub (https://github.com/isglobal-brge/recombClust). The ver-
sion used to run the analysis of thismanuscript (v1.0.0) is available
in our Supplementary Code repository (https://github.com/
isglobal-brge/Supplementary-Material/tree/master/Ruiz-Arenas_
2020) as a source package. Finally, a vignette exemplifying how
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to apply recombClust to a new data set can be found at GitHub
(https://github.com/isglobal-brge/recombClust/blob/master/vignett
es/Overview.pdf). The code used to create figures, tables, and per-
form simulation studies is available at GitHub (https://github
.com/isglobal-brge/Supplementary-Material/tree/master/Ruiz-Are
nas_2020) and as Supplemental Code.
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