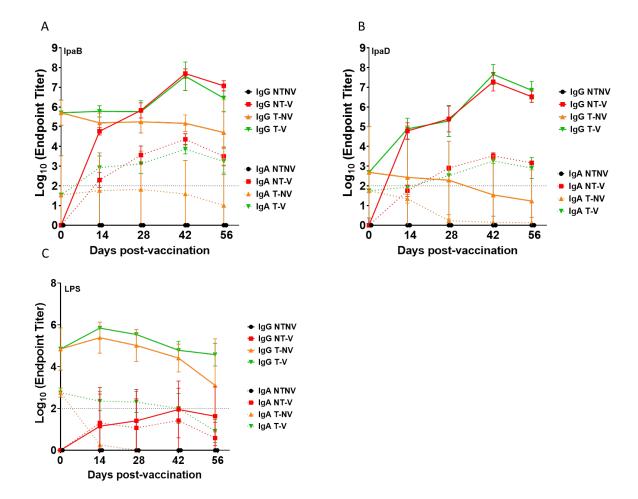
SUPPLEMENTARY MATERIALS for:

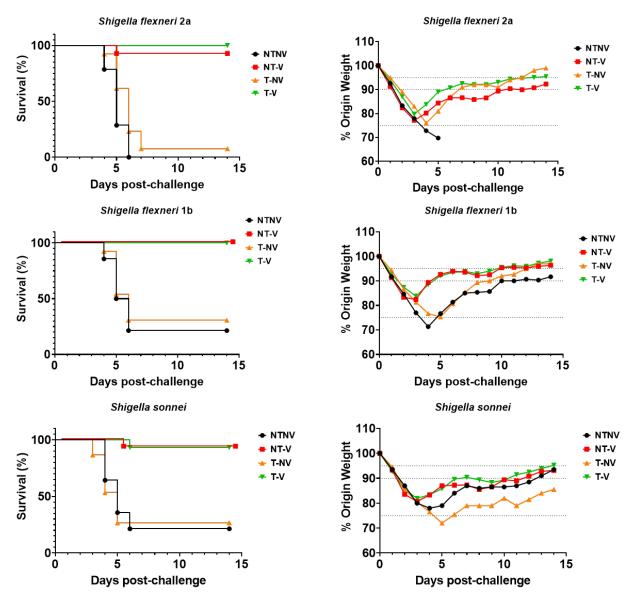
LDBF cross protects mice against different *Shigella* serotypes after early exposure to pathogen.

Ti Lu $^{1\#}$, Debaki R Howlader $^{1\#}$, Sayan Das 1§ , Zackary K Dietz $^{1\#}$, Aaron C. Nagel 2 , Sean K. Whittier $^{1\#}$, William D Picking 1§ , and Wendy L Picking 1§*

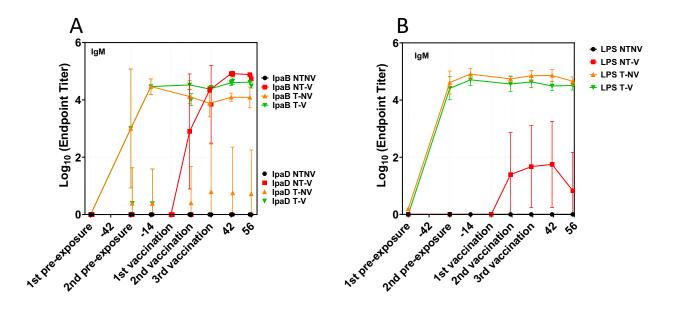
¹Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047 and ²Hafion, Inc, Lawrence, KS 66047

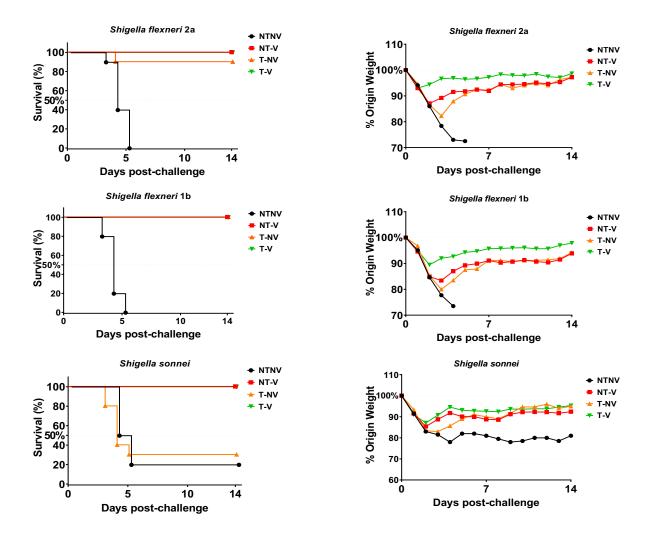

*Current address: Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA

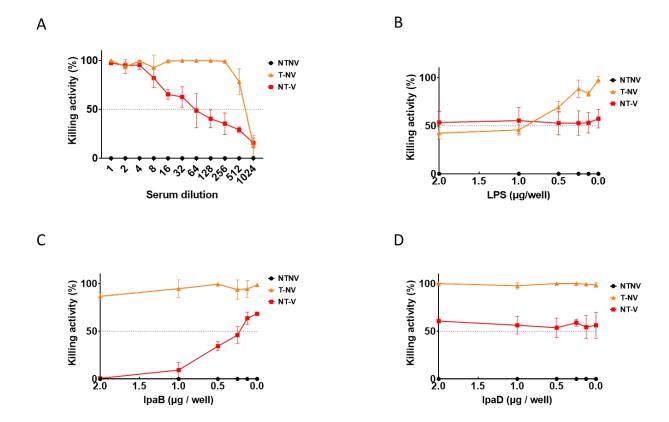
§Current address: University of Maryland-Baltimore School of Dentistry, Microbial Pathogenesis, Baltimore, Maryland, USA.

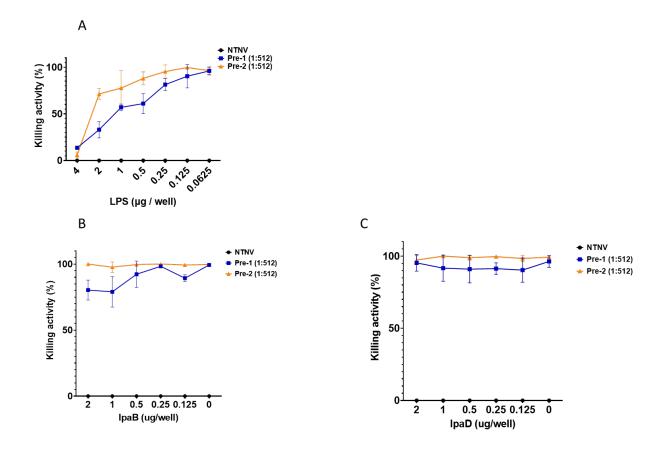

⁴Current address: Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.

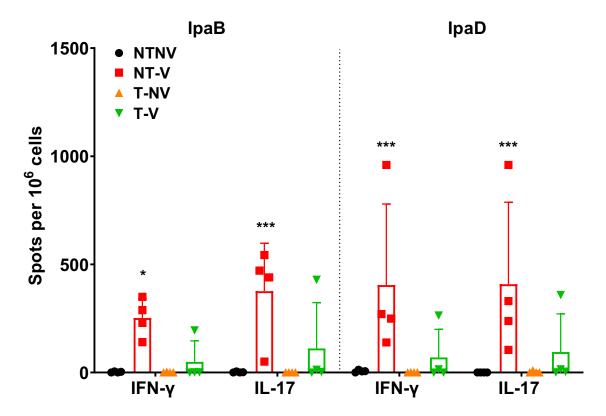
*Corresponding Author: Wendy L Picking, wendy.picking@missouri.edu

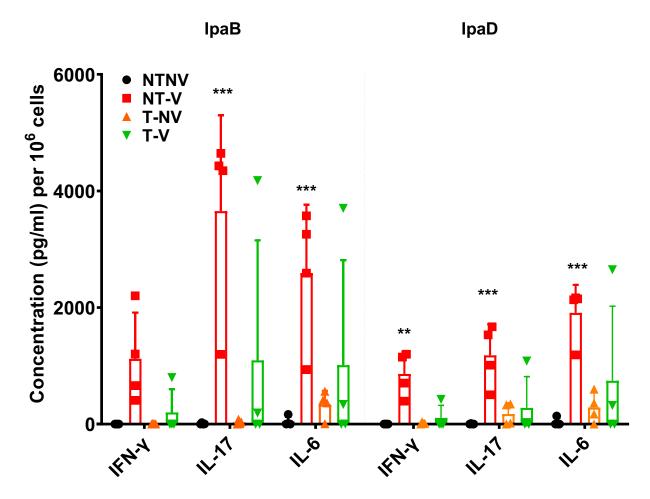

Keywords: Shigellosis; Pre-exposure; IpaB; IpaD; Vaccine; IL-17; IFN-γ; Il-6


Supplemental Figure 1. Kinetics of serum IgG and fecal IgA titers from mice after single pre-exposure. Mice were vaccinated intranasally (IN) three times (Day 0, 14, and 28). Blood and fecal samples were collected. Kinetics of resulting titers were measured for anti-IpaB (**panel A**), anti-IpaD (**panel B**) or anti-LPS (**panel C**) IgG (**solid**) and IgA (**dotted**) by ELISA. The individual titers are represented as EU ml⁻¹. Each point represents the mean of each group (n=10/group). NT-NV: no pre-exposure and PBS vaccination; T-NV: pre-exposure and vaccinated with PBS; T-V: pre-exposure and L-DBF vaccinated. The log = 2 (black dotted line) is the cutting level of the background.


Supplemental Figure 2. Protective efficacy of L-DBF against a *Shigella* lethal challenge in mice. Balb/C mice (n=10) were pre-exposed to a single sublethal dose of *S. flexneri* 2a on day 60 and then vaccinated IN on days 0, 14 and 28 with 25 μ g L-DBF. On day 56, the mice were challenged IN with *S. flexneri* 2a, *S. flexneri* 1b or *S. sonnei*.


Supplemental Figure 3. Kinetics of serum IgM responses from mice with two sublethal doses of *S. flexneri* 2a on days -56 and -28. Mice were then vaccinated IN three times (days 0, 14, and 28). Blood and fecal samples were collected, and the titers determined for anti-IpaB (solid) or IpaD (dotted) (Panel A) or anti-LPS (Panel B) IgM by ELISA. The individual titers are represented as EU ml⁻¹. Each point represents the mean of each group (n=10/group).


Supplemental Figure 4. Protective efficacy of L-DBF against the *Shigella* lethal challenge in mice. Balb/C mice (n=10) were pre-exposed to two sublethal doses of *S. flexneri* 2a on days -56 and -28 and then vaccinated intranasally (IN) on days 0, 14 and 28 with 25 μg L-DBF. On day 56, the mice were challenged IN with *S. flexneri* 2a, *S. flexneri* 1b or *S. sonnei*.


Supplemental Figure 5. Serum bacteriocidal activity (SBA) activity for serum from mice after a single S. flexneri 2a pre-exposure. The killing activity (%) in serially diluted pooled serum from NT-NV, T-NV or the NT-V group is shown (Panel A). The killing activity (%) in serum from the T-NV group (1:512 dilution) or from NT-V groups (1:64) in competition with serially diluted LPS is shown in Panel B. The killing activity (%) in serum from the T-NV group (1:512 dilution) or from the NT-V group (1:8 dilution) in competition with serially diluted IpaB (Panel C) or IpaD (Panel D) is also shown. Dashed horizontal lines indicate the 50% killing point. CFU counts obtained from wells incubated with serum from the NT-NV group was used as 0% killing (baseline control). Killing activity (%) = (Spots in NT-NV well – spots in test well) / Spots in NT-NV well]. Duplicate experiments with triplicate wells for each test point. Mann-Whitney test was used for analysis. *p<0.05; **p<0.01; ***p<0.001

Supplemental Figure 6. Competitive SBA of the samples from mice receiving two sublethal pre-infections with exogenously added *S. flexneri* **2a LPS, IpaB or IpaD.** The killing activity (*y* axis) after incubating with pre-1 (serum collected on day 28 after first pre-infection) or pre-2 (serum collected on day 14 after second pre-infection) in the presence of serially diluted LPS (**Panel A**) or IpaB (**Panel B**) or IpaD (**Panels C**) are shown. CFU counts obtained with wells incubated with serum from the NT-NV group was used as 0% killing (baseline). Killing % = (Spots in NT-NV well – spots in test well) / Spots in NT-NV well]. Duplicate experiments with triplicate wells for each test point. Mann-Whitney test was used for analysis. *p<0.05; **p<0.01; ***p<0.001

Supplemental Figure 7. The frequency of IL-17 and IFN- γ secreting cells after antigenspecific stimulation. The splenocytes were used to enumerate the antigen-specific IFN- γ and IL-17 secreting cells. Cells were incubated with 10 µg IpaB (left) or IpaD (right). IFN- γ and IL-17 secreting cells were enumerated by ELISpot analysis and are presented here as spot-forming cells/ 10^6 cells. The data are plotted as means \pm SD for individual mice in each group. Significance was calculated by comparing groups that were unvaccinated (PBS) and mice vaccinated with antigens using two-way ANOVA. *p<0.05; **p<0.01; ***p<0.001.

Supp. Figure 8. Concentrations of T cell-related cytokines secreted from splenocytes was determined after stimulation with IpaB or IpaD. Single spleen cell suspensions were used to assess antigen-specific IFN- γ , IL-17 and IL-6 secretion. Cells were incubated with 10 μ g IpaB (left) or IpaD (right). Cytokine concentrations were determined by Meso Scale Discovery analysis as per the manufacturer's specifications and are presented here as pg/ml/10⁶ cells. The data are plotted as means \pm SD for individual mice in each group. Significance was calculated by comparing groups that were unvaccinated (PBS) and mice vaccinated with antigens using two-way ANOVA. *p<0.05; **p<0.01; ***p<0.001.

Supplemental Table 1: Statistic analysis for the data shown in Supplementary Figure 5A.

	P Value					
	T-NV vs.	T-NV vs.	NT-V vs.			
Dilution	NT-V	NT-NV	NT-NV			
1	0.861 ns	<.001 ***	<.001 ***			
2	0.963 ns	<.001 ***	<.001 ***			
4	0.716 ns	<.001 ***	<.001 ***			
8	0.101 ns	<.001 ***	<.001 ***			
16	<.001 ***	<.001 ***	<.001 ***			
32	<.001 ***	<.001 ***	<.001 ***			
64	<.001 ***	<.001 ***	<.001 ***			
128	<.001 ***	<.001 ***	<.001 ***			
256	<.001 ***	<.001 ***	<.001 ***			
512	<.001 ***	<.001 ***	<.001 ***			
1024	0.861 ns	0.035 *	0.009 ***			

^{*} Mann-Whitney test. *p<0.05; **p<0.01; ***p< 0.001

Supplemental Table 2: Statistical analysis for the data shown in Figure 2A.

	P Value						
	Pre-1 vs. Pre-	NT-NV vs.	NT-NV vs.				
Dilution	2	Pre-1	Pre-2				
64	0.181 ns	<.001 ***	<.001 ***				
128	>0.999 ns	<.001 ***	<.001 ***				
256	0.123 ns	<.001 ***	<.001 ***				
512	0.106 ns	<.001 ***	<.001 ***				
1024	0.002 **	<.001 ***	<.001 ***				
2048	0.002 **	<.001 ***	<.001 ***				
4096	0.012 *	0.009 **	<.001 ***				
8192	0.010 *	0.956 ns	0.174 ns				

^{*} Mann-Whitney test. *p<0.05; **p<0.01; ***p<0.001

Supplemental Table 3: Statistic analysis for the data shown in Figure 2B.

	P Value						
	NT-NV vs.	NT-NV vs.	NT-NV	NT-V vs.	NT-V vs.	T-NV vs.	
Dilution	NT-V	T-NV	vs. T-V	T-NV	T-V	T-V	
16	0.002 **	0.002 **	0.002 **	0.002 **	0.002 **	>.999 ns	
32	0.002 **	0.002 **	0.002 **	0.002 **	0.002 **	>.999 ns	
64	0.002 **	0.002 **	0.002 **	0.002 **	0.002 **	>.999 ns	
128	0.002 **	0.002 **	0.002 **	0.002 **	0.002 **	0.455 ns	
256	0.002 **	0.002 **	0.002 **	0.002 **	0.002 **	>.999 ns	
512	0.002 **	0.002 **	0.002 **	0.002 **	0.002 **	0.197 ns	
1024	0.002 **	0.002 **	0.002 **	0.002 **	0.006 **	0.143 ns	
2048	0.048 *	0.002 **	0.061 ns	0.004 **	0.223 ns	0.126 ns	
4096	0.182 ns	0.002 **	0.061 ns	0.002 **	0.167 ns	0.108 ns	
8192	>.999 ns	0.002 **	0.002 **	0.002 **	0.002 **	0.032 *	

^{*} Mann-Whitney test. *p<0.05; **p<0.01; ***p< 0.001

Supplemental Table 4: Statistic analysis for the data shown in Figure 2C.

	P Value							
	NT-NV vs.	NT-NV vs.	NTNV vs.	NT-V vs.	NT-V vs.	T-NV vs.		
Dilution	NT-V	T-NV	T-V	T-NV	T-V	T-V		
16	<.001 ***	<.001 ***	<.001 ***	<.001 ***	<.001 ***	>.999 ns		
32	<.001 ***	<.001 ***	<.001 ***	<.001 ***	<.001 ***	>.999 ns		
64	<.001 ***	<.001 ***	<.001 ***	<.001 ***	<.001 ***	>.999 ns		
128	<.001 ***	<.001 ***	<.001 ***	<.001 ***	<.001 ***	>.999 ns		
256	<.001 ***	<.001 ***	<.001 ***	<.001 ***	<.001 ***	>.999 ns		
512	<.001 ***	<.001 ***	<.001 ***	<.001 ***	<.001 ***	>.999 ns		
1024	<.001 ***	<.001 ***	<.001 ***	<.001 ***	<.001 ***	0.015 *		
2048	<.001 ***	<.001 ***	<.001 ***	<.001 ***	<.001 ***	0.002 **		
4096	>.999 ns	<.001 ***	<.001 ***	<.001 ***	<.001 ***	0.004**		
8192	>.999 ns	<.001 ***	>.999 ns	<.001 ***	>.999 ns	0.002 **		

^{*} Mann-Whitney test. *p<0.05; **p<0.01; ***p< 0.001

Supplemental Table 5: Statistic analysis for the data shown in Figure 3A.

	P Value							
	NT-NV vs.	NT-NV vs.	NT-NV vs.	NT-V vs.	NT-V vs.	T-NV vs.		
Dilution	NT-V	T-NV	T-V	T-NV	T-V	T-V		
4	0.081 ns	0.807 ns	0.045 *	0.920 ns	0.656 ns	0.289 ns		
2	0.021 *	<.001 ***	<.001 ***	0.091 ns	0.702 ns	0.563 ns		
1	0.011 *	<.001 ***	<.001 ***	<.001 ***	<.001 ***	0.893 ns		
0.5	0.021 *	<.001 ***	<.001 ***	<.001 ***	<.001 ***	0.195 ns		
0.25	0.002 **	<.001 ***	<.001 ***	<.001 ***	<.001 ***	>.999 ns		
0.125	<.001 ***	<.001 ***	<.001 ***	<.001 ***	<.001 ***	0.385 ns		
0.0625	0.002 **	<.001 ***	<.001 ***	<.001 ***	<.001 ***	0.999 ns		

^{*} Mann-Whitney test. *p<0.05; **p<0.01; ***p< 0.001

Supplemental Table 6: Statistic analysis for the data shown in Figure 3B.

	P Value					
Dilution	NTNV vs.	NTNV vs.	NTNV vs.	NT-V vs.	NT-V vs.	T-NV vs.
	NT-V	T-NV	T-V	T-NV	T-V	T-V
4	0.002 **	0.002 **	0.002 **	0.008 **	0.002 **	0.129 ns
2	0.002 **	0.002 **	0.002 **	0.002 **	0.023 *	0.002 **
1	0.002 **	0.002 **	0.002 **	0.002 **	0.006 **	0.002 **
0.5	0.060 ns	0.002 **	0.002 **	0.002 **	0.006 **	0.002 **
0.25	0.015 *	0.002 **	0.002 **	0.002 **	0.004 **	0.002 **
0.125	0.002 **	0.002 **	0.002 **	0.002 **	0.002 **	0.002 **
0.0625	0.002 **	0.002 **	0.002 **	0.002 **	0.008 **	0.002 **

^{*} Mann-Whitney test. *p<0.05; **p<0.01; ***p< 0.00

Supplemental Table 7: Statistic analysis for the data shown in Figure 4A.

	P Value						
	NT-V vs.	NT-V vs.	NT-V vs.	T-NV vs.	T-NV vs.	T-V vs.	
Dilution	T-NV	T-V	NT-NV	T-V	NT-NV	NT-NV	
2	<.001 ***	<.001 ***	0.393 ns	>.999 ns	<.001 ***	<.001 ***	
1	<.001 ***	<.001 ***	<.001 ***	>.999 ns	<.001 ***	<.001 ***	
0.5	<.001 ***	<.001 ***	<.001 ***	>.999 ns	<.001 ***	<.001 ***	
0.25	<.001 ***	<.001 ***	<.001 ***	>.999 ns	<.001 ***	<.001 ***	
0.125	<.001 ***	<.001 ***	<.001 ***	0.923 ns	<.001 ***	<.001 ***	
0	0.003 **	0.001 ***	<.001 ***	0.991 ns	<.001 ***	<.001 ***	

^{*} Mann-Whitney test. *p<0.05; **p<0.01; ***p< 0.001

Supplemental Table 8: Statistic analysis for the data shown in Figure 4B.

	P Value						
	NT-V vs.	NT-V vs.	NT-V vs.	T-NV vs.	T-NV vs.	T-V vs.	
Dilution	T-NV	T-V	NT-NV	T-V	NT-NV	NT-NV	
2	<.001 ***	<.001 ***	<.001 ***	>.999 ns	<.001 ***	<.001 ***	
1	<.001 ***	<.001 ***	<.001 ***	>.999 ns	<.001 ***	<.001 ***	
0.5	<.001 ***	<.001 ***	<.001 ***	>.999 ns	<.001 ***	<.001 ***	
0.25	<.001 ***	<.001 ***	<.001 ***	>.999 ns	<.001 ***	<.001 ***	
0.125	<.001 ***	<.001 ***	<.001 ***	>.999 ns	<.001 ***	<.001 ***	
0	0.001 ***	<.001 ***	<.001 ***	0.998 ns	<.001 ***	<.001 ***	

^{*} Mann-Whitney test. *p<0.05; **p<0.01; ***p< 0.001

Supplemental Table 9: Statistic analysis of Figure 4C.

	P Value						
	NT-V vs.	NT-V vs.	NT-V vs.	T-NV vs.	T-NV vs.	T-V vs.	
Dilution	T-NV	T-V	NT-NV	T-V	NT-NV	NT-NV	
2	<.001 ***	<.001 ***	<.001 ***	>.999 ns	<.001 ***	<.001 ***	
1	<.001 ***	<.001 ***	<.001 ***	>.999 ns	<.001 ***	<.001 ***	
0.5	<.001 ***	<.001 ***	<.001 ***	>.999 ns	<.001 ***	<.001 ***	
0.25	<.001 ***	<.001 ***	<.001 ***	>.999 ns	<.001 ***	<.001 ***	
0.125	<.001 ***	<.001 ***	<.001 ***	0.879 ns	<.001 ***	<.001 ***	
0	<.001 ***	0.002 ***	<.001 ***	0.754 ns	<.001 ***	<.001 ***	

^{*} Mann-Whitney test. *p<0.05; **p<0.01; ***p< 0.001

Supplemental Table 10: Statistic analysis for the data shown in Figure 4D.

		P Value							
	NT-V vs.	NT-V vs.	NT-V vs.	T-NV vs.	T-NV vs.				
Dilution	T-NV	T-V	NTNV	T-V	NTNV	T-V vs. NTNV			
2	<.001 ***	<.001 ***	<.001 ***	0.99 ns	<.001 ***	<.001 ***			
1	<.001 ***	<.001 ***	<.001 ***	0.996 ns	<.001 ***	<.001 ***			
0.5	<.001 ***	<.001 ***	<.001 ***	0.675 ns	<.001 ***	<.001 ***			
0.25	<.001 ***	<.001 ***	<.001 ***	0.982 ns	<.001 ***	<.001 ***			
0.125	<.001 ***	<.001 ***	<.001 ***	0.952 ns	<.001 ***	<.001 ***			
0	<.001 ***	<.001 ***	<.001 ***	0.999 ns	<.001 ***	<.001 ***			

^{*} Mann-Whitney test. *p<0.05; **p<0.01; ***p< 0.001