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ABSTRACT Acinetobacter johnsonii has been severely understudied and its popula-
tion structure and the presence of antibiotic resistance genes (ARGs) are very much
uncertain. Our phylogeographical analysis shows that intercontinental transmission
has occurred frequently and that different lineages are circulating within single
countries; notably, clinical and nonclinical strains are not well differentiated from
one another. Importantly, in this species recombination is a significant source of sin-
gle nucleotide polymorphisms. Furthermore, our results show this species could be
an important reservoir of ARGs since it has a significant amount of ARGs, and many
of them show signals of horizontal gene transfer. Thus, this study clearly points out
the clinical importance of A. johnsonii and the urgent need to better appreciate its
genomic diversity.
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Acinetobacter johnsonii has not been studied as much as A. baumannii, and few
studies have been carried out to examine this species. A. johnsonii has been found

in aquatic sources, human skin, and animals (1, 2). However, it also causes severe
human infections (3–6), highlighting its clinical importance. For instance, Turton et al.
showed that 1.7% of 690 nonduplicate Acinetobacter isolates associated with bactere-
mia were A. johnsonii (6). Moreover, Cleland et al. identified A. johnsonii as a relevant
pathogen involved in chronic rhinosinusitis (7), and some studies have described A.
johnsonii isolates carrying antibiotic resistance genes (ARGs) (3, 8, 9). For example,
different carbapenemase genes, such as blaNDM-1 and blaOXA-58, have been identified in
A. johnsonii (3, 9). The first description of blaNDM-1-positive A. johnsonii occurred in two
isolates recovered from sewage in China in 2010 (9), and another isolate (also collected
from sewage) was found to coproduce the plasmid-encoded carbapenemases NDM-1,
OXA-58, and PER-1 (3). Interestingly, NDM-1 has also been found in phages not only in
A. johnsonii (10) but also in A. baumannii (11). Hence, this species could be a potential
reservoir of ARGs against last-line antibiotics, which is particularly worrying since these
genes can be transferred to other clinically relevant microorganisms.

Population genomics studies are needed to achieve a better understanding of the
phylogeny and the ARGs within A. johnsonii. Although two previous studies conducted
some comparative genomics analyses of A. johnsonii (3, 4), these only considered a very
small number of genomes. Thus, our aim was to characterize the phylogeography and
ARGs in A. johnsonii using all the genomes available to date. The lack of information on
A. johnsonii is clear; as of 16 March 2020, there were only 31 genomes on the National
Center for Biotechnology Information database. We downloaded these genomes (see
Table S1 in the supplemental material) and corroborated that they were A. johnsonii by
conducting an average nucleotide identity (ANI) analysis via OrthoANI (12). All but one
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genome (UBA3112) belonged to A. johnsonii since they shared ANI values higher than
the 95% (the cutoff value for species demarcation) when they were compared. Of note,
UBA3112 and UBA8888 were not included in downstream analyses because they did
not have high-quality genomes according to CheckM (13) (see also the footnote for
Table S1).

A pangenome analysis through Roary (14) yielded a total of 13,531 groups of
homologous genes (GHGs), most of them (89%) within the accessory genome (see
Table S2). The strict core genome consisted of 1,538 GHGs and the majority (�67%) was
found in 15% or fewer of the genomes (see Table S2). Moreover, this is an open
pangenome (see Fig. S1), since the number of GHGs kept growing as more genomes
were considered without tailing off; we therefore did not fully sample the gene
repertoire of this species. Then, to evaluate the level of synteny, we conducted a
genome alignment considering five genomes (one from each of the clusters identified
in the population structure analysis [see below]) using progressiveMauve (15). Figure S2
shows that a significant number of inversions and large-scale changes occurred within
these genomes, indicating that this species has undergone a considerable amount of
genome rearrangement.

To establish the population structure and the evolutionary relationships of these
isolates, maximum-likelihood phylogeny using PhyML (16) (model GTR�R�I) and
population structure analyses via hierBAPS (17) (in Rstudio, with K � 20) were con-
ducted on the core genome alignment, which had 161,087 segregating sites and a
nucleotide diversity of 0.0295. We found five genetically differentiated clusters (colored
labels in Fig. 1), and four seemed to be real populations, since they were monophyletic
groups according to the phylogeny (blue, maroon, green, and purple labels in the
figure); in contrast, cluster 2 appeared to be an exclusion group (red labels, Fig. 1).
Some of the real clusters had isolates from different continents. For instance, cluster 1
(blue labels) had isolates from South America (Chile and Argentina), Africa (Morocco),
Asia (China), and Australia, whereas cluster 3 (maroon labels) contained isolates from
Asia (Japan), Europe (Germany), and North America (USA). In addition, different lineages
can be circulating in the same country. For instance, isolates from China were found in
three of the clusters; this pattern also applies for the Japanese and U.S. strains.
Remarkably, we noted that in cluster 2 the clinical isolates (XBB1, Aj2199, and UCO-489)
grouped together with environmental isolates such as JH7 (recovered from mine
tailings), WCHAJo010049 (collected from sewage), or 18QD2AZ57W (sampled from pig
feces).

Thus, these analyses reveal a clear population structure in this species, where some
clusters are composed of isolates from distant geographic regions, showing that
intercontinental transmission has occurred frequently. Furthermore, different lineages
circulate within single countries, implying that several introduction events have hap-
pened in the same country. Importantly, there seems to be no clear delimitation
between clinical and nonclinical isolates. We used Gubbins (18) to assess the impact of
homologous recombination. Clearly, recombination is of paramount importance since
the average per-branch recombination/mutation ratio was 4.64, implying that recom-
bination is introducing almost five times more single nucleotide polymorphisms than
does mutation.

Finally, we conducted an in silico prediction of ARGs by conducting BLAST searches
(similarity criteria, �80% identity and �70% coverage) of the A. johnsonii proteomes
against the Comprehensive Antibiotic Resistance Database (19). Notably, all the strains,
even the environmental ones, had at least two ARGs (see Fig. 2); for instance, isolates
C6 and LXL_C1 both had oxacillinases and multidrug efflux resistance-nodulation-
division (RND) transporter genes. We found resistant determinants for several drug
classes in many isolates (see Fig. 2, drug class). We also looked for mutations conferring
resistance to fluoroquinolones via ResFinder (20), but we did not find any. In agreement
with previous studies (3, 4), we found some �-lactamase genes (blaNDM-1, blaPER-1,
blaPER-2, and blaOXA-58). In addition to some clinical isolates, two sewage strains (Acsw19
and WCHAJo010049) and a strain collected from pig feces (18QD2AZ57W) had the
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largest amount of ARGs. In this regard, Tang et al. determined that strain Acsw19 has
12 ARGs in plasmids and in the chromosome (10). Considering the OXA �-lactamases,
we found several families: OXA-211-like, OXA-58-like, and OXA-23-like. However, the
most abundant—OXA-281, OXA-334 and OXA-373— belong to the OXA-211-like family,
which was described rather recently in non-baumannii Acinetobacter spp. Remarkably,
many ARGs have undergone horizontal gene transfer (HGT) since 81% of them had
identical sequences in other bacteria from clinically relevant genera such as Salmonella,
Klebsiella, Vibrio, etc. (see Fig. 2 and Table S3). As a case in point, the carbapenemase
NDM-1 was present in four isolates (see gray rectangles in Fig. 1) on noncontiguous
branches of the tree, implying independent acquisitions of this gene, and identical
sequences of this gene were found in many genera other than Acinetobacter (see
Table S3). Taken together, these results show that many strains, both clinical and
nonclinical, had ARGs with signals of HGT and thus could function as a reservoir of ARGs
for other bacteria.

In conclusion, we highlight the clinical relevance of this species, since environmental

FIG 1 Phylogeny and population structure of A. johnsonii. The phylogeny was made on the core genome alignment. Strains are colored according to the
clusters found in the population structure analysis and are coded as follows: blue, cluster 1; red, cluster 2; maroon, cluster 3; green, cluster 4; and purple, cluster
5. Gray rectangles denote the isolates having the carbapenemase NDM-1 gene. The numbers by the nodes give the bootstrap values for the nodes, and the
scale bar shows the number of substitutions per site.

Phylogenomics of Acinetobacter johnsonii

July/August 2020 Volume 5 Issue 4 e00581-20 msphere.asm.org 3

https://msphere.asm.org


and clinical strains are intermingled with one another, and all the strains show ARGs.
Further (genomic and functional) studies of clinical and nonclinical strains are needed
to fully understand the clinical nature of this species.
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