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Genetic variants of the SH3 and multiple ankyrin repeat domains 3 (SHANK3) gene,
which encodes excitatory postsynaptic core scaffolds cause numerous brain disorders.
Several lines of Shank3 knock-out (KO) mice with deletions of different Shank3 exons
have previously been generated and characterized. The different Shank3 KO mouse
lines have both common and line-specific phenotypes. Shank3 isoform diversity is
considered a mechanism underlying phenotypic heterogeneity, and compensatory
changes through regulation of Shank3 expression may contribute to this heterogeneity.
However, whether such compensatory changes occur in Shank3 KO mouse lines has
not been investigated in detail. Using previously reported RNA-sequencing analyses,
we identified an unexpected increase in Shank3 transcripts in two different Shank3
mutant mouse lines (Shank3B and Shank3∆C) having partial deletions of Shank3
exons. We validated an increase in Shank3 transcripts in the hippocampus, cortex,
and striatum, but not in the cerebellum, of Shank3B heterozygous (HET) and KO mice,
using qRT-PCR analyses. In particular, expression of the N-terminal exons 1–12, but
not the more C-terminal exons 19–22, was observed to increase in Shank3B mice
with deletion of exons 13–16. This suggests a selective compensatory activation of
upstream Shank3 promoters. Furthermore, using domain-specific Shank3 antibodies,
we confirmed that the increased Shank3 transcripts in Shank3B KO mice produced
a small Shank3 isoform that was not detected in wild-type mice. Taken together, our
results illustrate another layer of complexity in the regulation of Shank3 expression in
the brain, which may also contribute to the phenotypic heterogeneity of different Shank3
KO mouse lines.
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INTRODUCTION

Deletions, duplications, and various point mutations of the
SH3 and multiple ankyrin repeat domains 3 (SHANK3) gene
that encodes neuronal excitatory postsynaptic core scaffolds are
causally associated with numerous brain disorders, including
autism spectrum disorders, bipolar disorder, intellectual
disability, and schizophrenia (Grabrucker et al., 2011; Monteiro
and Feng, 2017). Previously, several Shank3 mutant mouse
models (i.e., knock-out (KO), knock-in, viral-mediated
knock-down, and overexpression) mimicking conditions
in patients, were generated and their neurobehavioral
phenotypes were characterized in detail (Jiang and Ehlers,
2013; Monteiro and Feng, 2017). Specifically, more than
ten different lines of Shank3 KO mice having deletions of
different Shank3 exons were generated and mutant phenotypes
both common and specific to certain lines were identified
(Monteiro and Feng, 2017). The mouse Shank3 gene has
22 exons and expresses several protein isoforms as a result
of processing multiple intragenic promoters and alternative
splicing (Wang et al., 2014; Figure 1A). Therefore, different
subsets of Shank3 isoforms are disrupted in different Shank3
KO mouse lines having partial deletions of exons, which
can contribute to the phenotypic heterogeneity among the
KO mouse lines.

Because of its crucial roles in synaptic development and
function, Shank3 gene expression, and Shank3 protein stability
and interaction are tightly controlled by multiple mechanisms
from the transcriptional to post-translational levels (Zhu et al.,
2014; Choi et al., 2015; Kerrisk Campbell and Sheng, 2018; Wang
et al., 2019). Therefore, in addition to isoform diversity, any
compensatory changes in these Shank3 regulatory mechanisms
may also contribute to variable phenotypes in different Shank3
KO mouse lines. However, whether such compensatory changes
in regulation occur in any of the Shank3 KO mouse lines has not
yet been investigated in detail.

In this study, we identified and validated an unexpected
increase in Shank3 transcripts in the brain regions of Shank3B
mice, in which exons 13–16 of the Shank3 gene are targeted.
This increase occurred in both heterozygous (HET) and KO
mice. The increase was mainly observed from the N-terminal
(1–12) Shank3 exons in terms of the deleted exons in
Shank3B mice, suggesting selective compensatory activation
of upstream Shank3 promoters. Furthermore, we confirmed
that the upregulated Shank3 transcripts produced a small
Shank3 protein isoform in Shank3B KO brains. Our results
reveal a novel compensatory change with respect to regulating
Shank3 expression in the brain, which may also contribute
to the phenotypic heterogeneity of different Shank3 KO
mouse lines.

MATERIALS AND METHODS

Mice
The enhanced green fluorescent protein (EGFP)-Shank3
transgenic (TG), and Shank3B HET and KO mice used in this

study have been described previously (Peca et al., 2011; Han et al.,
2013b; Lee et al., 2017a; Lee B. et al., 2017). The mice were bred
and maintained in a C57BL/6J (Japan SLC, Inc.) background
according to the Korea University College of Medicine Research
Requirements, and all the experimental procedures were
approved by the Committee on Animal Research at the Korea
University College of Medicine (KOREA-2016-0096). The
mice were had access to water and food ad libitum and were
housed at 4–6 mice per cage under a 12-h light-dark cycle at
18–25◦C. For all experiments, only male mice were used, and
WT control refers to the WT littermates of the TG or HET
and KO mice.

RNA Purification and qRT-PCR
Real-time quantitative reverse transcription PCR (qRT-PCR)
was performed as described previously (Kim et al., 2016;
Lee B. et al., 2017; Jin et al., 2018b). Briefly, total RNA
was extracted from the brain regions of WT and Shank3
TG as well as WT, Shank3B HET, and KO mice using
an miRNeasy Mini Kit (Qiagen, #217004) according to the
manufacturer’s instructions. 1.5 µg of total RNA was used
for cDNA synthesis using an iScriptTM cDNA Synthesis
Kit (Bio-Rad, #170-8891). Target mRNAs were detected and
quantified by a real-time PCR instrument (CFX96 Touch,
Bio-Rad) using SYBR Green master mix (Bio-Rad, #170-
8884AP). The results were analyzed using the comparative Ct
method normalized against the housekeeping gene Gapdh (Han
et al., 2013a). The primer sequences for real-time PCR are
as follows:

Mouse Shank3 (exons 1–2)
forward 5′ CGGACCTGCAACAAACGAAG 3′,
reverse 5′ TGTCCAGGTTAGGCGGGTAG 3′

Mouse Shank3 (exons 2–3)
forward 5′ TCTGCGCCCTCAATCATAGC 3′,
reverse 5′ AGCTTTGCAAACTGCTTGTCA 3′

Mouse Shank3 (exons 3–4)
forward 5′ GCGGAGAGTTTATGCCCAGA 3′,
reverse 5′ GGCCACCTTATCTGTGCTGT 3′

Mouse Shank3 (exons 6–7)
forward 5′ TGGTTGGCAAGAGATCCAT 3′,
reverse 5′ TTGGCCCCATAGAACAAAAG 3′

Mouse Shank3 (exons 11–12)
forward 5′ CAAGTTCATCGCTGTGAAGG 3′,
reverse 5′ TGTCGCATCTGCACTTCTTC 3′

Mouse Shank3 (exons 13–14)
forward 5′ TCTTCCGCCACTACACTGTG 3′,
reverse 5′ AAAGCCAAACCCCTCATGGT 3′

Mouse Shank3 (exons 15–16)
forward 5′ TTACACCCACACCTGCCTTC 3′,
reverse 5′ CACCATCCTCCTCGGGTTTC 3′

Mouse Shank3 (exons 19–20)
forward 5′ ACATTGCAGATGCTGACTCG 3′,
reverse 5′ CAGATTTGGTCCGTGGAATC 3′

Mouse Shank3 (exon 22)
forward 5′ AGTACCCCTTCGGGCTTCTA 3′,
reverse 5′ CAGACTCCAAACCCGATGTT 3′

Frontiers in Molecular Neuroscience | www.frontiersin.org 2 September 2019 | Volume 12 | Article 228

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Jin et al. Shank3 Compensation in Knock-Out Mice

FIGURE 1 | Identification and validation of increased Shank3 transcript abundance in the brain regions of Shank3 mutant mice with partial exon deletions.
(A) Schematic diagram showing the structure of the mouse Shank3 gene. The locations of the intragenic promoters and protein domains below their respective
encoding exons are indicated. ANK, ankyrin repeat domain; DUF535, protein domain of unknown function 535; PDZ, postsynaptic density 95/discs large/zonula
occludens 1 domain; PRO, proline-rich region; SAM; sterile alpha motif; SH3, SRC homology 3 domain. (B) Summary of changes in the Shank3 and Shank2
transcript levels obtained from the previously reported RNA-sequencing analyses of different Shank3 and Shank2 mutant mouse lines. P, postnatal day; PFC,
prefrontal cortex. (C) qRT-PCR validation of Shank3 transcript levels in the four brain regions of adult Shank3B heterozygous (HET) and knock-out (KO), and Shank3
TG mice compared to their respective WT littermates (n = 5 animals per genotype). (D) qRT-PCR analysis of Shank3 transcript levels in the cortex, striatum, and
cerebellum of juvenile Shank3B HET and KO mice compared to the WT littermates (n = 5 animals per genotype). (E) Summary of the qRT-PCR analyses. Crb,
cerebellum; Ctx, cortex; Hp, hippocampus; NS, not significant; Str, striatum. Data are presented as mean ± SEM. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001 [one-way
analysis of variance (ANOVA) with Tukey’s post-test for WT, HET, and KO; unpaired two-tailed Student’s t-test for WT and TG].

Mouse Gapdh
forward 5′ GGCATTGCTCTCAATGACAA 3′,
reverse 5′ CCCTGTTGCTGTAGCCGTAT 3′

Specificity of each primer set was confirmed by examining the
melting peaks of qRT-PCR reactions and the band size of PCR
products from the reactions (Supplementary Figure S1).

Western Blot Analysis
Whole lysate of themouse brain tissue was prepared as previously
described (Han et al., 2009, 2015; Zhang et al., 2018). Briefly,
frozen mouse brain tissue was homogenized in RIPA buffer
(50 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.1% SDS, 1% Triton
X-100, 0.5% sodium deoxycholate) with freshly added protease
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FIGURE 2 | Western blot validation of expression of a small Shank3 isoform in the brain regions of Shank3B KO mice. (A) Targeted Shank3 regions of the
antibodies (Ab#1∼3) are indicated. Ab, antibody. Note that the deleted exons (13–16) in Shank3B mutant mice encode the PDZ domain of Shank3. (B) Western blot
detection of Shank3 proteins by domain-specific Shank3 antibodies from whole lysates of the hippocampus, cortex, striatum, and cerebellum of adult WT, Shank3B
KO, and Shank3 TG mice. Note that a ∼60 kDa band (asterisk) was detected in the hippocampus, cortex, and striatum of KO, but not WT and TG, mice by
N-terminal antibodies #1 and #2. Also note that, in the cerebellum, there is no such KO-specific ∼60 kDa band detected. (C) Quantification of fold-increases of the
∼60 kDa band in the Shank3B KO brains compared to the WT brains (n = 4 animals per genotype). Data are presented as mean ± SEM. ∗P < 0.05; ∗∗P < 0.01
(unpaired two-tailed Student’s t-test).

and phosphatase inhibitors (Sigma-Aldrich, #11836170001 and
#4906837001, respectively). Protein concentration was measured
using the Bradford Protein Assay (Bio-Rad, #500-0006). The
lysate was heated in 1X NuPAGE LDS sample buffer (Thermo
Fisher Scientific, #NP0007) containing 1X NuPAGE reducing
agent (Thermo Fisher Scientific, #NP0004). From each sample,
20 µg of protein was loaded into 4%–15% Mini-PROTEAN
TGXTM Precast Protein Gels (Bio-Rad, #4561084) for western
blotting. The proteins were then transferred to a PVDF
membrane (Millipore, #IPVH00010). The primary antibodies
used for western blot analysis were Shank3 Ab#1 (aa 192–221)
and Ab#2 (aa 529–558; kindly gifted by Prof. Eunjoon Kim,
KAIST; Lee et al., 2015), Shank3 Ab#3 (aa 1431–1590, Santa
Cruz, #sc-30193), and GAPDH (Cell Signaling, #2118S).
Western blot images were acquired with the ChemiDoc
Touch Imaging System (Bio-Rad) and quantified using
ImageJ software.

RESULTS AND DISCUSSION

In recent RNA-sequencing analyses of the striatum of adult
Shank3B HET and KO mice (Lee et al., 2019), we had
unexpectedly observed significantly increased total Shank3

transcripts in the KO striatum when compared to the
WT striatum (Figure 1B). This raised our interest in the
potential compensatory changes that occur in Shank3 KO
mouse lines. To understand whether this increase in Shank3
transcripts was specific to the Shank3B KO line alone, we
consulted another recently reported RNA-sequencing analysis
(Qin et al., 2018) of the prefrontal cortex of Shank3∆C
HET mice in which exon 21 of the Shank3 gene was
targeted (Kouser et al., 2013). We found that abundance of
Shank3 transcripts was also significantly increased in this line
(Figure 1B). Meanwhile, RNA-sequencing analyses for the
whole brain of KO mice in which exons 6–7 of Shank2,
another member of the Shank gene family, were targeted
(Chung et al., 2019), showed a decrease in total Shank2
transcripts and normal Shank3 transcripts (Figure 1B), thus
suggesting that an increase in Shank3 transcripts may be
specific to Shank3 mutant mice with partial deletions of
Shank3 exons.

To directly validate the changes in Shank3 transcripts in
detail, we performed qRT-PCR analyses on four different
brain regions (hippocampus, cortex, striatum, and cerebellum)
from adult (postnatal day 70–84) Shank3B HET and KO
mice, and their WT littermates. We used nine primer sets
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targeting different exons along the Shank3 gene (Figure 1C).
Furthermore, we performed qRT-PCR experiments on the brain
regions in adult Shank3-overexpressing TG mice and their WT
littermates as a control (Han et al., 2013b; Lee et al., 2017b;
Jin et al., 2018a,c). As expected, expression of exons 13–16
(i.e., the deleted exons) decreased by 50% and 100% in the
four brain regions of Shank3B HET and KO mice, respectively
(Figure 1C). Moreover, the C-terminal exons (exons 19–22)
showed decreased expression in the cortex and cerebellum from
Shank3B HET and KO mice when compared to WT mice.
However, expression levels of the N-terminal exons (exons
1–12) were unexpectedly and significantly increased in the
hippocampus, cortex, and striatum of Shank3B HET and KO
mice (Figure 1C). These N-terminal exons were expressed at
normal levels in the cerebellum of Shank3B HET and KO mice.
In contrast, all the examined Shank3 exons were expressed at
higher levels in the four brain regions of Shank3 TG mice
compared to WT mice (Figure 1C). Increased expression of
N-terminal Shank3 exons was also observed in the cortex
and striatum, but not in the cerebellum (with the exception
of exons 11–12), of juvenile (postnatal day 21–28) Shank3B
HET and KO mice (Figure 1D). Figure 1E summarizes the
qRT-PCR analyses.

Next, we investigated whether the increased Shank3
transcripts in Shank3B KO mice were translated to produce
Shank3 proteins. We performed western blot analyses on
the brain lysates from WT, KO, and TG mice using three
different domain-specific Shank3 antibodies (Lee et al., 2015;
Figure 2A). Notably, antibodies against the N-terminal regions
(Ab#1 and Ab#2), but not against the C-terminal region (Ab#3),
of Shank3 detected a∼60 kDa protein band in the hippocampus,
cortex, and striatum of Shank3B KO mice (Figures 2B,C).
Importantly, the band was not detected in the WT and TG
brains. The protein size approximately corresponded to the
number of amino acids (∼540 residues) encoded by exons
1–12 of the Shank3 gene. These results suggest that the ∼60 kDa
Shank3 protein detected in the hippocampus, cortex, and
striatum of Shank3B KO mice was likely translated from
the increased Shank3 exon 1–12 transcripts in the mice.
Consistently with this interpretation, we did not detect the
KO-specific ∼60 kDa protein in the cerebellum (Figure 2B)
where expression of the N-terminal Shank3 exons was normal
in Shank3B KO mice (Figure 1C). Nevertheless, our western
blot results should be considered cautiously and require further
validation with additional, if available, Shank3 domain-specific
antibodies because there were multiple faint bands detected by
the antibodies.

In this study, we observed an unexpected increase in
Shank3 transcripts in the brain regions in Shank3 HET
and KO mice having partial deletions of particular exons.
The increase in Shank3 transcripts was unlikely to be a
non-specific outcome of chromosomal changes in the Shank3
gene because it was observed in two different Shank3 mutant
mouse lines (i.e., Shank3B and Shank3∆C) with different
Shank3 exonal deletions, and because it was not observed in
the cerebellum of Shank3B mutant mice based on qRT-PCR.
Moreover, the increase mainly occurred in the N-terminal

but not C-terminal exons in Shank3B mutant mice, which
suggests selective compensatory activation of upstream Shank3
promoters in the process. Even so, it is not immediately
clear how loss of synaptic Shank3 leads to the activation of
Shank3 promoters. One candidate player for this feedback
mechanism is β-catenin, which, upon loss of synaptic Shank3,
translocates from the synapse to the nucleus to induce histone
deacetylase 2 (HDAC2)-dependent transcriptional changes (Qin
et al., 2018). Whether β-catenin directly binds to the upstream
Shank3 promoters to induce their transcription remains
to be validated.

Any functional effect of the increased Shank3 transcripts
in Shank3 mutant mice also remains to be investigated. Our
western blot analyses suggest that Shank3B KO mice produce a
small Shank3 isoform, possibly having the N-terminal DUF535,
ANK, and SH3 domains. This short isoform may function in
a dominant-negative manner by sequestering some N-terminal
Shank3 interactors, and thereby contributing to synaptic changes
observed in the KO mice. Indeed, functional roles of the
N-terminal part of Shank3 have been revealed by several studies
(Hayashi et al., 2009; Cochoy et al., 2015; Lilja et al., 2017; Hassani
Nia and Kreienkamp, 2018).

Regardless of the detailed underlying mechanisms and
potential functional effects, our finding provides another layer
of complexity with respect to regulating Shank3 expression
in the brain. We suggest that this may also contribute
to phenotypic heterogeneity between Shank3 mutant mouse
lines with partial deletions of exons. For example, even
with activation of the upstream Shank3 promoters, no or
minimal Shank3 transcript increase may be observed in mutant
mouse lines having deletions in the N-terminal Shank3 exons
(Bozdagi et al., 2010; Peca et al., 2011; Wang et al., 2011).
Meanwhile, the increased Shank3 transcripts in Shank3∆C
mice in which exon 21 of the Shank3 gene was targeted
(Kouser et al., 2013), may produce longer Shank3 protein
isoforms than the ∼60 kDa isoform detected in Shank3B
KO mice. Comprehensive qRT-PCR validation of exon-specific
Shank3 transcripts and western blot analyses using domain-
specific Shank3 antibodies in the brain regions of different
Shank3 mutant mouse lines are necessary to confirm this
intriguing hypothesis.
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