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Drawing is a comprehensive skill that primarily involves visuospatial processing, eye-hand
coordination, and other higher-order cognitive functions. Various drawing tasks are
widely used to assess brain function. The neuropsychological basis of drawing is
extremely sophisticated. Previous work has addressed the critical role of the posterior
parietal cortex (PPC) in drawing, but the specific functions of the PPC in drawing remain
unclear. Functional magnetic resonance imaging and electrophysiological studies found
that drawing activates the PPC. Lesion-symptom mapping studies have shown an
association between PPC injury and drawing deficits in patients with global and focal
cerebral pathology. These findings depicted a core framework of the fronto-parietal
network in drawing tasks. Here, we review neuroimaging and electrophysiological studies
applying drawing paradigms and discuss the specific functions of the PPC in visuospatial
and sensorimotor aspects. Ultimately, we proposed a hypothetical model based on the
dorsal stream. It demonstrates the organization of a PPC-centered network for drawing
and provides systematic insights into drawing for future neuropsychological research.

Keywords: drawing, posterior parietal cortex, sensorimotor integration, visuospatial abilities, dementia,
constructional apraxia

DRAWING TASKS

Drawing is a unique high-order human ability that transforms mental representations into fine
hand movements (La Femina et al., 2009; McCrea, 2014). Drawing tasks are widely used in the
clinical assessment of brain function for their easy availability and high efficiency. Performing
drawing tests requires only a pen and a piece of paper, but the drawing performance yields a wealth
of information on the cognitive abilities of the drawer. By evaluating the drawing performance of
patients, neurologists detect cerebral injuries (Gainotti and Trojano, 2018; Rusconi, 2018), make
the diagnosis of dementia (Tan et al., 2015; Salimi et al., 2018), discriminate easily confused
diseases (Tan et al., 2015; Salimi et al., 2019), and predict the development of cognitive decline
(Youn et al., 2021). Recently, the value of drawing tasks has attracted much attention for their
sensitivity in detecting visuospatial symptoms, which are identified as early diagnostic biomarkers
for Alzheimer’s disease (AD) and Parkinson’s disease (PD; Mandal et al., 2012; Zhu et al., 2020;
Aarsland et al., 2021; Robinson et al., 2021).
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Drawing tasks can be classified into externally-cued (e.g.,
copying from an existing model) and internally-cued drawings
(e.g., drawing from memory and imagery) according to the
stimuli (Yuan and Brown, 2014, 2015; Griffith and Bingman,
2020). Moreover, drawing a familiar object (objective drawing)
is distinguished from drawing unfamiliar or meaningless stimuli
(nonobjective drawing; Yuan and Brown, 2015; Griffith and
Bingman, 2020; Raimo et al., 2021). In addition, the need for
creativity, complexity of stimuli, and other attributes should
also be considered when performing drawing tasks (see Table 1,
Figure 1A; Saggar et al., 2017).

To interpret the neural substrates of drawing, several
theoretical neuropsychological models have been developed
(Roncato et al., 1987; Sommers, 1989; Grossi, 1991; La Femina
et al., 2009; McCrea, 2014). One of the most accepted cognitive
models of drawing proposed by Sommers et al. posited
that drawing mainly relies on visual perception and graphic
production systems (Sommers, 1989; Guérin et al., 1999).
Additionally, Roncato et al. (1987) presumed four stages in
the externally-cued drawing: exploring the model, preparing
the drawing plane, executing the drawing plan, and comparing
the drawing to the model. La Femina et al. (2009) organized
the drawing procedure into preliminary analysis, preparation
of drawing plan, execution, and control processes. From the
above theories, it can be concluded that visuospatial encoding
of visual representations (visuospatial function) and execution
of sensory-guided movements (sensorimotor function) are two
fundamental components involved in drawing (McCrea, 2014).
Certainly, other cognitive domains such as lexical semantics,
visual imagination, and memory processes, may be engaged
under specific drawing circumstances (Roncato et al., 1987;
Trojano et al., 2009; Paula et al., 2013; Senese et al., 2015; Trojano
and Gainotti, 2016).

Visuospatial abilities include the intelligence to specify the
parts and overall configuration of a percept, appreciate its
position in space, integrate a coherent spatial framework, and
perform mental operations on spatial concepts (Salimi et al.,
2018). In drawing situations, visuospatial processing produces
mental images drawn from the stimuli, which are subsequently
transformed into limb movements. Sensorimotor integration
is the ability to incorporate sensory inputs from the body
and the environment to inform and shape motor output
(Edwards et al., 2019). In drawing tasks, sensory inputs provide
information about the position of the hand and guide the hand
to reach the target loci on canvas. The posterior parietal cortex
(PPC) plays a critical role in visuospatial (Whitlock, 2017; Xu,

2018; Hadjidimitrakis et al., 2019) and sensorimotor functions
(Chivukula et al., 2019; Edwards et al., 2019). Under the grand
frame of the drawing model, here we endeavor to depict the
visuospatial and sensorimotor aspects which are specified to be
highly associated with the PPC in drawing tasks (Averbeck et al.,
2009; Raimo et al., 2021). To better understand the functions
of PPC in drawing tasks, we reviewed neuroimaging and
electrophysiological studies investigating the anatomic-clinical
correlates.

THE ANATOMY OF THE PPC

The PPC comprises the superior parietal lobule (SPL), inferior
parietal lobule (IPL), and intraparietal sulcus (IPS). This
anatomical region can be approximately equal to the Brodmann
Area 5 (BA5), BA7, BA39, and BA40 (Whitlock, 2017; Caspers
and Zilles, 2018). The medial portion of the parietal lobe is the
precuneus (preCun). The IPL consists of the supramarginal gyrus
(SMG, BA40) and the angular gyrus (AG, BA39). The SPL and
IPL are further subdivided into a mosaic of cytoarchitectonically
distinct areas (Caspers and Zilles, 2018).

The PPC is one of the key association cortices in the brain.
It is adjacent to the postcentral gyrus, the occipital and temporal
lobes connecting the distant frontal lobe and subcortical regions
through the superior longitudinal fasciculus, middle longitudinal
fasciculus, and arcuate fasciculus (Caspers and Zilles, 2018).

THE ASSOCIATION BETWEEN DRAWING
AND PPC

Drawing Activates the PPC
Numerous functional magnetic resonance imaging (fMRI) and
electrophysiological studies have shown that drawing tasks
activate the PPC (see Table 2). Activation likelihood estimation
(ALE) research on fMRI has identified the specific role of IPL and
preCun in the core fronto-parietal network by drawing (Raimo
et al., 2021).

The intended drawing starts with the encoding of mental
representations from either externally or internally-cued stimuli
(McCrea, 2014). Externally-cued drawing requires the drawer to
directly observe and reproduce the existing model (Tchalenko
and Chris Miall, 2009; Perdreau and Cavanagh, 2015). Copying
from a model activated more visual processing regions, such
as the middle occipital gyrus, cuneus, and lingual gyrus, than
internally-cued drawing (Ferber et al., 2007; Ogawa and Inui,
2009; Saggar et al., 2015). The information of visual perception

TABLE 1 | Comparison of common clinical drawing tests.

Drawing tests Stimuli Symmetry of the stimuli Elements of the stimuli

MMSE-PCT (Folstein et al., 1975) EC, NO Bilateral Pentagons
MoCA-CDT (Nasreddine et al., 2005) IC, O Central Circle, lines, and numbers
MoCA-Cube copying (Nasreddine et al., 2005) EC, O Central Squares and parallelogram
ROCFC (Shin et al., 2006) EC and IC, NO None Multiple regular geometric figures
Human face copying (Schaer et al., 2012) EC, O Bilateral Curves and irregular geometric figures
Torrance Tests of Creative Thinking (Torrance, 1972) IC, NO/O Unrestricted Geometrical figures

Abbreviations: CDT, clock drawing test; EC, externally-cued drawing; IC, internally-cued drawing; MMSE, Mini-mental state examination; MoCA, Montreal Cognitive Assessment; NO,
nonobjective; O, objective; PCT, pentagon copying test; ROCFC, Rey-Osterrieth complex figure copying.
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FIGURE 1 | Cortical neural circuitry underlying the visuospatial and sensorimotor functions of PPC in drawing tasks. (A) Stimuli. The first card with an irregular
shape is an externally-cued nonobject stimulus and the contour of a car in the second card represents an external objective cue. The card with a word and the
auditory instructions are instances of the internal cue of familiar objects. The primary visual cortex (PVC) and the superior temporal gyrus (STG) process the visual
and auditory stimuli respectively. The information is subsequently conveyed to the adjacent PPC. (B) Object recognition. Transfer of object visual information to the
temporal lobe through the ventral stream. The inferior temporal lobe is recruited to recognize and name the object presented. This conceptual information is then
passed to the PPC through the connections between the dorsal and ventral streams. This extra procedure facilitates the construction of graphical representation to
be drawn. (C) Coordinate transformation. The movement of limbs is encoded within the egocentric coordination, thus, the visual representation from the
allocentric (world-centered) coordinate frame is transformed to an egocentric one (e.g., eye-centered or body-centered) in the PPC. (D) Sensorimotor integration.
The PPC integrates multidimensional inputs of vision and somatosensory from the PVC and the primary somatosensory cortex (S1) respectively. These sensory
inputs together determine the current position of the limb and provide guidance for planning and adjusting the trajectory toward the target on the canvas in the PPC.
Then the premotor area (PMA) encodes the motor commands, and the primary motor cortex (M1) programs the motor signals and projects to the limb. As a result,
the hand/pen moves to shape the final figure on the paper. (E) Spatial remapping. The PPC is communicated to the frontal eye fields (FEE) during saccades, which
ensures the consistency of the graphical representations between the model and the copy. Abbreviations: EC, external cue; FEF, frontal eye fields; IC, internal cue;
M1, primary motor cortex; MTL, medial temporal lobe; NO, nonobject; O, object; PMA, premotor area; PPC, posterior parietal cortex; PVC, primary visual cortex; S1,
primary somatosensory cortex; STG, superior temporal gyrus; TE, rostral inferior temporal cortex.

was conveyed to the PPC, given that drawing activates the
projection from the occipital cortex to the IPS (Yuan and
Brown, 2014). The activation of the occipito-parietal network
reflects the demand for intensive visual perception, visuospatial
working memory, and attention remapping components (Ferber
et al., 2007; Yuan and Brown, 2014). Given that the PPC and
posterior inferior temporal sulcus (pITS, BA37) were activated
when the subjects named and drew the object (Makuuchi
et al., 2003; Harrington et al., 2009), it was implied that the
PPC links the procedure of object recognition to the drawing
processes (Ino et al., 2003; Makuuchi et al., 2003; Kravitz
et al., 2011; Milner, 2017), by which the information from the
ventral ‘‘what’’ pathway is communicated to the dorsal ‘‘how’’
stream.

For most internally-cued drawing tasks, the drawer usually
obtains the stimuli by reading or listening to a text instruction
instead of viewing graphical stimuli (Ino et al., 2003; Harrington
et al., 2007, 2009; Yuan and Brown, 2014; Potgieser et al.,
2015; Saggar et al., 2015). These paradigms engage lexical-
semantic systems and memory retrieval to generate mental
representations of the object (Gainotti et al., 1983; Ellamil
et al., 2012; Coslett and Schwartz, 2018). It is supported by
the fact that the left fronto-temporo-parietal network, including
the temporal lobe, dorsolateral prefrontal cortex, and dorsal
anterior cingulate cortex, is activated when the subjects draw a
familiar object from memory (Harrington et al., 2009; Ellamil

et al., 2012). The left IPL, the reading area, participates in
semantic processing in the internally-cued drawing (Ellamil
et al., 2012; Saggar et al., 2015; Bzdok et al., 2016; Coslett
and Schwartz, 2018). Some tasks require the subjects to create
or design novel objects (Chen Q. et al., 2020). Such creative
drawing tasks may require elaborate mental imagery and spatial
transformation. The PPC plays a causal role in mental rotation
ability, which manipulates figural elements and assembles them
into a whole (Hawes et al., 2019). Contrastingly, some studies
found that parietal activation was relatively suppressed in the
creation stage (Kowatari et al., 2009; Saggar et al., 2017) while
cerebellar–prefrontal connectivity was activated in improvisation
(Saggar et al., 2017). The prefrontal cortex (PFC), especially the
dorsolateral prefrontal cortex (dlPFC), is essential for creativity
(Chen Q. et al., 2020).

ALE analysis based on fMRI studies supported greater
activation including the posterior IPS, right frontal eye field,
right fusiform gyrus, and the cerebellum in copying tasks than
in memory-based drawing. This indicates the need for more
frequent saccades and more intensive visuospatial processing
under copying conditions (Yuan and Brown, 2015). In contrast,
internally-cued drawings elicit distinct activation of bilateral
dlPFC, the occipital-temporal region of the ventral stream
(Griffith and Bingman, 2020). The difference in activated
patterns is consistent with the involvement of the dorsal and
ventral pathways in different drawing paradigms.
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TABLE 2 | The activation of the PPC in drawing tests from fMRI studies.

Investigators Sample size Drawing tests Related brain areas (function/process)

Ino (Ino et al., 2003) 18 CDT SPL, IPS, dPMA, preSMA, vPFC, precentral gyrus, and
cerebellum.

Makuuchi (Makuuchi et al., 2003) 17 Object drawing and naming SPL, IPS, SMG
PostITS and vPMA (object recognition).

Ferber (Ferber et al., 2007) 20 Drawing from memory and copying Cuneus, LG, and ACC (copying vs. drawing from memory).

Gowen and Miall
(Gowen and Miall, 2007)

10 Tracing and drawing shapes Right cerebellar crus I, preSMA, dPMC, right SPL/preCun,
and left preCun (drawing vs. tracing).

Harrington (Harrington et al., 2007) 11 Drawing and writing BA 37 (naming), BA 44 (execution and imagery of
movement), BA 7 (spatial processing), BA 40 (motor
attention and working memory), FEF (eye movement).

Harrington (Harrington et al., 2009) 8 Objective and nonobjective drawing ITG, FG, aIFG, and IPL (familiar objects vs. nonobject); IFG
and ITG (semantic process).

Kowatari (Kowatari et al., 2009) 20 Designing new pens PFC-parietal Network (creativity); training exerts a direct
effect on the left parietal cortex.

Miall (Miall et al., 2009) 13 Cartoon faces drawing Lateral occipital lobe and FFA (face processing); PPC and
frontal lobe (drawing from memory).

Schaer (Schaer et al., 2012) 20 Portrait drawing FFA and higher visual cortex (face recognition); PreCun
(allocentric coordinate encoding); IPS and cerebellum
(feedback during motor feedback).

Ellamil (Ellamil et al., 2012) 15 Book cover designing MTL, dlPFC, dACC (creative generation); mPFC,
PCC/preCun, TPJ (creative evaluation).

Yuan and Brown
(Yuan and Brown, 2014)

15 Blind drawing, copying, and visual
perception

M1, SMA, cerebellum (hand movement); FEF (eye
movement)
V5/MT+, V3A, LO (visual motion perception); SPL, IPL, and
IPS (visuomotor coupling).

Garbarini (Garbarini et al., 2014) 12 Real and imagery tasks preSMA, PPC (bimanual coupling); right SPL (mediating
spatial interference); left PPC (motor imagery).

Park (Park et al., 2015) 48 Figural Torrance Tests of Creative
Thinking

bilateral ITG, left IG, left PL, right AG, PFC (creativity).

Saggar (Saggar et al., 2015) 30 Word-guessing game of Pictionary Cerebellum, thalamus, left parietal cortex, right SFG, left
PFC and paracingulate/cingulate regions.

Saggar (Saggar et al., 2017) 36 Word-guessing game of Pictionary DLPFC, ACC/PCC, SMA, and parietal regions (executive
functioning); cerebellar–frontal connectivity (spontaneous
implicit).

Talwar (Talwar et al., 2019) 33 CDT Fontal, occipital and parietal lobes; DNN negative activation.

Abbreviations: ACC, anterior cingulate cortex; CDT, clock drawing test; dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; dPMC, dorsal premotor cortex;
DNN, default neural network; dPMA, dorsal premotor area; FEF, frontal eye field; FFA, fusiform face area; IPS, intraparietal sulcus; ITS, inferior temporal sulcus; LG, lingual gyrus;
LO, lateral occipital region; M1, the primary motor cortex; mPFC, medial prefrontal cortex; PCC, posterior cingulate cortex; PFC, prefrontal cortex; preCun, precuneus; preSMA,
pre-supplementary motor area; SFG, superior frontal gyrus; SMA, supplementary motor area; SMG, supramarginal gyrus; SPL, superior parietal lobe; TPJ, temporoparietal junction;
V5/MT+, visual area 5/middle temporal complex; V3A, visual area 3; vPFC, ventral prefrontal cortex; vPMA, ventral premotor area.

Visuospatial encoding is followed by the production and
output of limb movements. In an fMRI study (Ino et al., 2003),
subjects were blindfolded and asked to draw the clock hands at a
given timewith their index finger. The bilateral SPL, IPS, together
with the dorsal premotor area, supplementary motor area,
ventral prefrontal cortex, precentral gyrus, and cerebellum were
activated in this blind drawing test, suggesting the involvement
of the PPC in encoding the movement of drawing. Generally,
almost all paradigms that require hand-drawing have reported
the activation of bilateral premotor area (BA 6), IPL (BA 40),
preCun, and SPL (BA 7; Raimo et al., 2021).

To confirm that activation is associated with the intended
drawing, the activation pattern during drawing was compared
to that under nonmotor conditions (Harrington et al., 2007,
2009; Schaer et al., 2012; Yuan and Brown, 2014; Talwar et al.,
2019; Raimo et al., 2021) and non-drawing hand movements

(Ferber et al., 2007; Gowen and Miall, 2007; Ogawa and Inui,
2009; Potgieser et al., 2015; Saggar et al., 2015). Compared
with nonmotor tasks, more widespread regions included the
IPL (BA 40), precentral gyrus, premotor area (PMA), and
supplementary motor area (SMA), and the cerebellum, were
activated in drawing. Similarly, in contrast to non-drawing hand
tasks, drawing recruits more areas of the PMA, SMA, and
SPL (Raimo et al., 2021). These results show that PPC also
contributes to planning the limb movements in addition to the
frontal motor area and the cerebellum (Chivukula et al., 2019).
This aligns with the idea that the IPL constructs the spatial
representation while the SPL is connected with visuospatial
working memory and sensorimotor processing (McCrea, 2014;
Griffith and Bingman, 2020; Raimo et al., 2021). Collectively,
these results addressed the core function of the fronto-parietal
network in the drawing.
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The apparent role of the PPC and the dorsal visual network
in drawing was also demonstrated by electrophysiological
evidence. High-density electroencephalogram (EEG) showed
that the parietal and occipital regions were associated with event-
related desynchronization (ERD) activity in the low-frequency
theta/alpha range (van der Meer and van der Weel, 2017). This
pattern of ERD activity could enhance the involved neurons
for visual processing and sensorimotor integration, resulting
in cortical activation at the macro level. The desynchronized
alpha-range (8–10 Hz) and beta-range (12–30 Hz) activities
were more pronounced in drawing than handwriting which
may represent the stage of constructing the figure form
(Ose Askvik et al., 2020).

PPC Lesions Cause Drawing Deficits
In the early 20th century, researchers noticed connections
between parietal lesions and visuospatial impairments (Balint,
1909; Strauss, 1924; Mayer-Gross, 1935). Constructional apraxia
(CA) is one of the most common manifestations observed in
patients with parietal injury. Noninvasive neuroimaging and
electrophysiological techniques facilitate the precise mapping
of brain lesions with symptoms and better understand the
pathogenesis of CA. Here, we discuss the lesion-symptom
relationships in patients with global or bilateral cerebral injury
(e.g., AD, frontotemporal dementia, and PD, see Table 3),
and focal brain injury (e.g., stroke and tumors, see Table 4),
respectively.

The volume loss of the PPC causes significant visuospatial
impairment, leading to CA in drawing tests (Lehmann et al.,
2011; Crutch et al., 2012, 2017). Zink et al. reported that the
thickness of the left parietal cortex could predict the performance
of the patient on the visuospatial memory test. In contrast, the
right parietal thickness predicted the performance on a block-
design test (Zink et al., 2018), indicating hemispheric dominance
for visuospatial working memory and visuospatial construction.
The scores of the clock drawing test (CDT) were negatively
correlated with the thickness of the right PPC and preCun
(Matsuoka et al., 2011), SMG, and bilateral temporal lobes
(Hirjak et al., 2017) in the AD population. AD patients with CA
showmore severe atrophy of the right preCun and AG than those
without CA (Serra et al., 2014). Specifically, it is inferred that the
preCun is critical for placing the figure, the AG is involved in
salient object detection and spatial attention reorientation, and
the SMG is the necessity for the control of elaborate reaching
movements (Karnath, 2001; Gharabaghi et al., 2006; Xu, 2018).

In addition to structural changes, hypoperfusion and
decreased metabolism of PPC undermine the performance of the
drawing tests. Decreased regional cerebral glucose metabolism
in the right IPL and posterior cingulate cortex is associated
with poor performance on the CDT in patients with AD (Lee
et al., 2008). Temporal-parietal, occipital, and frontal lobes were
correlated with the performance of Rey-Osterrieth complex
figure copying (ROCFC; Melrose et al., 2013). Shon et al.
(2013) detected metabolic activity in PPC with positron emission
tomography under both memory-based drawing and model-
based copying. Drawing from memory recruited the left frontal
cortex in addition to the PPC, indicating greater demand for

the executive ability for the task, highlighting the functional
specialization of the visuospatial processing in PPC.

Compared with the neural degeneration disease which
generally injures the whole brain, studies in patients with
unilateral and focal lesions due to ischemic infarction or tumors
can reveal the more precise causal relationship between PPC
injury and CA. Voxel-based lesion-symptom mapping (LSM) is
usually adopted for such analysis (Bates et al., 2003; Karnath et al.,
2018). These studies strongly support the idea that damaging the
PPC or interrupting the fibers that pass through the dorsal stream
network leads to CA, which indicate the specific role of PPC in
visuospatial perceptual and constructional processing (Table 4,
Vocat et al., 2010; Chechlacz et al., 2014; Chen et al., 2016; Toba
et al., 2018).

The different impaired subregions of the PPC exhibited
distinct drawing errors. A clock-drawing study found that
whether the clock hands were properly oriented was correlated
with metabolism in the bilateral PPC, right occipital lobe,
right posterior temporal lobe, and right middle frontal gyrus;
whether the numbers were correctly arranged and placed on the
clock face was influenced by the metabolism of the temporal
lobe (Matsuoka et al., 2013). Furthermore, the number loss
was attributed to hypometabolism in the right BA40 and the
uneven spacing between the numbers of hypometabolism in the
right BA40 and BA7 (Nakashima et al., 2016). These results
support the dominance of the right PPC in spatial processing
by correctly orienting and placing the figure elements. A voxel-
based morphology study suggested that injury to the right PPC
was associated with visuospatial errors in CDT, and left PPC
dysfunction resulted in time-setting errors (Tranel et al., 2008).
Biesbroek et al. (2014) compared the anatomic correlates for the
complex figure copying and the judgment of line orientation
(JLO) test, and found that constructional abilities rely on the
integrity of the right SPL, IPL, AG, and middle occipital gyrus
(MOG). In another voxel-based LSM study, Chechlacz et al.
found that right AG injury was more likely to cause errors in the
left part of the figure, while damage to the right AG, IPS, and left
preCun were related to inaccuracy in the right part. Furthermore,
the left calcarine cortex, temporoparietal junction, and insular
gyrus might process detailed local elements, whereas the right
MTG organized the overall framework (Chechlacz et al., 2014).

Although these findings emphasized the close correlation
between PPC injury and drawing deficits, this does not mean
that drawing errors specifically indicate PPC dysfunction. Poor
performance in drawing tasks due to the damage of occipital,
temporal, frontal lobe, and basal ganglion was also mentioned in
most LSM results. Of note, some characteristics of the drawing or
specific categories of errors were significantly correlated with the
PPC, such as the left part errors in complex figure with the right
AG (Chechlacz et al., 2014), and the orientation errors with the
SMG (Nakashima et al., 2016; Van der Stigchel et al., 2018).

Electroencephalographic studies have found altered activity
in patients with cerebral disease and showing difficulties in
drawig. Compared with other structures, EEG slowing of the
parietal cortex was associated with visuospatial dysfunction in
patients with PD (Eichelberger et al., 2017). The reduction in
the alpha/theta ratio of the right posterior region (Jaramillo-
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TABLE 3 | Correlations between the PPC and drawing deficits in patients with global brain injury.

Investigators Drawing tests Diseases Imaging method Related brain areas

Matsuoka (Matsuoka et al., 2011) CDT AD, MCI MRI Right parietal lobe (general); right posterior ITG, preCun,
PTL, left MTG and STG (Shulman criteria); right preCun,
posterior ITG (Rouleau criteria); right posterior STG
(CLOX1 criteria).

Possin (Possin et al., 2011) Benson figure
copying

AD, bvFTD MRI PPC (AD); dlPFC (bvFTD).

Serra (Serra et al., 2014) Figure drawing,
copying

AD MRI BA7, BA37, BA21, BA39, BA23/31, BA18.

Barrows (Barrows et al., 2015) CDT AD, BvFTD MRI Dorsolateral frontal-parietal network (executive hand
placement).

Hirjak (Hirjak et al., 2017) CDT AD MRI Bilateral temporal lobe, IPL, and right SMG.

Van der Stigchel (Van der Stigchel
et al., 2018)

PCT AD MRI Right parietal lobe but not frontal lobe (spatial remapping).

Zink (Zink et al., 2018) BVMT, JoLO,
BDT

Dementia,
dyskinesia

MRI Right parietal lobe (BDT); left parietal lobe (BVMT-R);
Temporal lobe (JoLO).

Lee (Lee et al., 2008) CDT AD PET IPL and PCC

Takahashi (Takahashi et al., 2008) CDT AD PET Left parietal lobe, AG, bilateral hippopotamus.

Shon (Shon et al., 2013) CDT AD PET Bilateral temporoparietal lobe and left MTG (drawing from
memory), bilateral temporoparietal lobe (copying).

Matsuoka (Matsuoka et al., 2013) CDT AD PET Bilateral parietal lobe, posterior temporal lobe, and right
MTG (total score); bilateral parietal lobe, right posterior
temporal lobe, occipital lobe, and MFG (clock hands
orientation).

Melrose (Melrose et al., 2013) ROCFC AD PET Bilateral temporal-parietal cortex and occipital lobe, and
right frontal lobe.

Nakashima (Nakashima et al., 2016) CDT AD SPECT BA40 (number loss), BA40, and BA7 (uneven spacing
among the numbers).

Yoshii (Yoshii et al., 2018) ADAS-Jcog AD SPECT Right parietal lobe, STG, MTG, AG, and PCC.

Abbreviations: ACE, Addenbrooke’s Cognitive Examination; AD, Alzheimer’s disease; ADAS-Jcog, Alzheimer’s Disease Assessment Scale, Cognitive Subscale (Japanese version); AG,
angular gyrus; BDT, block design test; BVMT, Brief Visuospatial Memory Test-Revised Copying Trial; bvFTD, behavioral variant of frontotemporal dementia; CDT, Clock Drawing Test;
CLOX1, Clock Drawing Task 1; dlPFC, dorsolateral prefrontal cortex; IPL, inferior parietal lobe; ITG, inferior temporal gyrus; JoLO, Judgment of Line Orientation test; MCI, mild cognitive
impairment; MFG, middle frontal gyrus; MRI, magnet renounce imagination; MTG, middle temporal gyrus; PET, positron emission tomography; PCC, posterior cingulate cortex; PTL,
posterior temporal lobe; preCun, precuneus; ROCFC, Rey-Osterrieth complex figure copying; SPECT, single-photon emission computed tomography; STG, superior temporal gyrus;
VOSP, Visual Object and Space Perception.

Jimenez et al., 2021) and parietal sigma EEG abnormalities
during non-rapid eye movement sleep may be predictors of
dementia (Latreille et al., 2016; Jaramillo-Jimenez et al., 2021).

THE FUNCTIONS OF PPC IN DRAWING

Visuospatial Processing
Unerringly encoding the object to be drawn is a prerequisite
for drawing accurately. An essential procedure of this step
is to transform the spatial representation of the object from
an allocentric (world-centered) space to an egocentric (body-
centered) space (Buneo and Andersen, 2006; Ekstrom et al.,
2017). This process is termed coordinated transformation. With
this egocentric reference frame, the individual can manipulate
the hand movements to reach the target on canvas (Jackson and
Husain, 2006; Filimon, 2015; Edwards et al., 2019).

The PPC plays an important role in egocentric coordinate
transformation. In nonhuman primates, the lateral and ventral
intraparietal areas are important for egocentric-allocentric
transformation (Cohen and Andersen, 2002; Chen et al.,
2018). In humans, the PPC, especially the right PPC, encodes
egocentric information during the perception and exploration

of the peripersonal space (Chokron, 2003; Sherrill et al., 2015).
Evidence demonstrated the activation of the IPS in blind
drawing (Ino et al., 2003), tracing, and figure copying tasks
(Ogawa and Inui, 2009), indicating its involvement in egocentric
representation. Damage to the PPC severely disturbs the
egocentric coordinate transformation, causing drawing errors
(Chechlacz et al., 2014; Kenzie et al., 2015).

Spatial remapping refers to the operation that updates and
integrates the selected visual information and spatial changes
of objects into stable, successive visual representations during
saccades or shifts of attention (Melcher and Colby, 2008;
Wurtz, 2008; Pierce and Saj, 2019). In copying tests, spatial
remapping is prominent, as the visual attention is frequently
shifted between the model and the copy to ensure consistency.
After an attentional shift, the newly acquired visual stimuli are
seamlessly integrated into those stored before the saccade.

PPC is vital for spatial remapping operations (Melcher and
Colby, 2008; Pierce and Saj, 2019). The neurons that encode
saccades and coupling previous and current stimuli are located
in the lateral IPS (LIP) of primates (Duhamel et al., 1992;
Heiser and Colby, 2006; Subramanian and Colby, 2014; Mirpour
and Bisley, 2016). The homologous region, SMG in humans, is
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TABLE 4 | Correlations between the PPC and drawing deficits in patients with focal brain injury.

Investigators Drawing tests Diseases Hemisphere Methods Related brain areas

Vocat (Vocat et al., 2010) Gainotti–Ogden
figure copying

Ischemic stroke Right VLSM dlPFC, PPC (hyperacute phase); dlPFC, PPC and TPJ
(subacute phase).

Chechlacz (Chechlacz et al., 2014) BCoS figure
copying

Stroke Both VBM Right BG, Tha (total score); right IPL, MFG (left
egocentric neglect); right IG, left LG and calcarine
(relative position); right AG, Put, IG (left asymmetry
score); right MTG, ITG, AG, IPS, left PreCun (left
asymmetry score); left calcarine, Cun, PreCun, IG,
cerebellum (local features); right MTG (global features).

Chen (Chen et al., 2016) BCoS figure
copying

Ischemic stroke Both VLSM Right thalamus, MFG, left IPL, postCG (high-level motor
control); right MOG extending to FG, left LG, RO
(visuo-motor transformation); right LG, preCun, FG,
cerebellum, left IFG (interacting with objects and
planning).

Toba (Toba et al., 2018) GEREN battery Ischemic stroke Right VLSM Right AG and SMG (neglect); right AG, SLF, and IFOF
(copying score).

Tranel (Tranel et al., 2008) CDT Multiple causes Both PM3 Right parietal lobe (visuospatial errors); left frontal lobe
(time concept related errors).

Biesbroek (Biesbroek et al., 2014) ROCFC, JLO Ischemic stroke Right VLSM Right frontal lobe, SMG, STG (both ROCFC and JLO);
right IPL, SPL, AG, MOG (ROCFC only).

Russell (Russell et al., 2010) ROCFC, BDT Stroke Right LS Right temporoparietal junction and IG.

Kenzie (Kenzie et al., 2015) BIT Stroke Right VLSM SPL, IPL, STG, MTG (allocentric neglect);
PreCG, MFG, IG, Cau (egocentric neglect).

Carson (Carson et al., 2019) Star and cube
copying

Stroke Both VLSM Right STG, IG, RO, TP (presence of neglect); right IG,
STG, MTG, SMG (left cube face omission).

Abbreviations: AG, angular gyrus; BDT, block design test; BG, basal ganglion; BIT, Behavioral Inattention Test; Cau, caudate nucleus; dlPFC, dorsolateral prefrontal cortex; FG, fusiform
gyrus; IFG, insular gyrus; IFOF, inferior fronto-occipital fasciculus; IG, insular gyrus; IPL, inferior parietal lobe; IPS, intraparietal sulcus; ITG, inferior temporal gyrus; JoLO, judgment
of line orientation test; LS, lesion subtraction; MOG, middle occipital gyrus; MTG, middle temporal gyrus; PM3, lesion proportion difference map; postCG, postcentral gyrus; PPC,
posterior parietal cortex; preCun, precuneus; Put, putamen; RO, rolandic operculum; ROCFC, Rey-osterrieth complex figure copying test; SLF, superior longitudinal fasciculus; SPL,
superior parietal lobe; TP, temporal pole; TPJ, temporoparietal junction; VLSM, voxel-based lesion mapping.

specifically sensitive to detect intrasaccade orientation changes
in goal-driven movements and is activated in tasks that depend
on spatial remapping (Parks and Corballis, 2010; Pierce et al.,
2019; Baltaretu et al., 2020). Spatial remapping impairments
explain the failure of patients with CA to copy accurately,
leading to disorganized, inaccurate images (Pierce and Saj, 2019;
Pierce et al., 2019). Right AG atrophy is associated with spatial
remapping dysfunction (Serra et al., 2014). SMG lesions lead to
spatial remapping dysfunction deficits and cause errors in the
shaping and orientation of the pentagons during the pentagons
copying task (Van der Stigchel et al., 2018).

Sensorimotor Integration
Intrinsically, drawing can be decomposed into a series of sensory-
guided reachingmovements. The shape and position of the figure
are essentially determined by the location where the hand or
pen reaches (Battaglia-Mayer et al., 2003; Huette et al., 2013).
With the guidance of multisensory information, the target is set
and the movement scheme is planned. In most conditions, visual
information is the dominant form of sensory inputs. For blind
drawing tests, inputs from the proprioception and the vestibular
system instead guide hand movement.

The PPC coordinates the eyes and hands to modulate
reaching movement (Jackson and Husain, 2006; Huette et al.,
2013). Specifically, the PPC directs hand placement, adjusts
velocity, and amends bias along the trajectory to the targeted
loci (Buneo and Andersen, 2006; Jackson and Husain, 2006;

Averbeck et al., 2009; Archambault et al., 2011; Battaglia-Mayer
et al., 2015). In primates, the anterior intraparietal area (AIP)
contains neurons for reaching and hand posture (Chivukula
et al., 2019). Several areas have been associated with reaching
movement, including the preCun, posterior IPS, occipito-parietal
conjunction, superior parietal occipital cortex, and lateral IPS
(Karnath and Perenin, 2005; Andersen et al., 2014; Xu, 2018).

Besides, damage to other parts of the parieto-frontal
network can also affect the PPC’s connection, resulting in
visuomotor incoordination (Caminiti et al., 2015; Gainotti and
Trojano, 2018). Lesions in the frontal motor cortex that receive
projections from PPC cause CA (Chen et al., 2016). Damage
to the thalamus, caudate nuclei, and putamen, interrupts the
connection between the PPC and the motor cortex, resulting
in poor visuospatial construction (Chechlacz et al., 2014;
Chen et al., 2016).

A HYPOTHETICAL PPC-CENTERED
NEURAL CIRCUITRY FOR DRAWING

According to the classic dual-stream theory, drawing is a typical
task of the dorsal or ‘‘action’’ stream (Goodale and Milner,
1992; Freud et al., 2016; Milner, 2017). After that, Kravitz et al.
(2011) further identified three branches that projected from the
PPC for specific visuospatial skills: (1) the parietal-prefrontal
pathway, which is related to visuospatial working memory and
visual-guided eye movement; (2) the parietal-premotor pathway,
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which coordinates the position and movement of body parts
with the peripheral environment; and (3) the parietal-medial
temporal pathway for spatial navigation (Kravitz et al., 2011).
Drawing is highly related to the first two branches. Caminiti
et al. described a detailed processing frame for the fronto-parietal
network. According to the theory, the sensorimotor functions
of the PPC in drawing may encompass (1) visual guided hand
movement (SPL); (2) visual guided hand-object coordination
(ventral parietal-PMC pathway); and (3) direct kinetic and
kinematic limb information processing (somatosensory cortex
and medial IPS; Caminiti et al., 2015). Interestingly, drawing
tasks just perfectly embody the integrated functions of the
dorsal stream and concretize the functional organization of the
occipital-parietal-frontal network.

With the anatomic-functional corrections, we propose a
plausible model of cortical neural circuitry based on the dorsal
visual pathway (Figure 1). First, the PPC is involved in the
visuospatial processing for constructing the mental graphic
representations. In drawing tasks, the stimuli can be either
from an external or internal cue (Figure 1A). Distinct upstream
occipital and temporal areas transmit the information to the PPC.
Nonobjective visual stimuli (e.g., the first card with the picture of
meaningless shape in Figure 1A) are directly processed through
the occipital-parietal pathway. Objective stimuli (the second
card with the picture of a car in Figure 1A) are synchronously
recognized and conceptualized in the ventral pathway to facilitate
visuospatial processing (Figure 1B). Non-graphic internally cued
stimuli (the third card with the written word of ‘‘car’’ or
the auditory instruction of ‘‘car’’ in Figure 1A) are initially
comprehended by the semantic system; then, the graphic
representation is either created out of nothing or retrieved from
long-term memory.

Second, the PPC collects perceptual information, constructs
the mental representation, and transforms it into an egocentric
coordinate (Figure 1C), which is essential for producing limb
movement. Meanwhile, the IPL also takes part in spatial
manipulation in complex drawing tasks.

Third, the PPC encodes the drawing plan and directs
the downstream motor cortex to produce and execute the
intended movements (Figure 1D). Multiple sensory inputs
such as visual perception and somatosensory are integrated for
eye-hand and hand-object coordination. In this way, continuous
visual feedback guides the hand to complete the drawing task.
Additionally, the PPC interacts with the frontal eye area and
coordinates the saccades, which are especially required for
copying tasks (Figure 1E). This model may provide new insight
into how the PPC works in the occipital-parietal-frontal network
and how the PPC communicates between the dorsal and ventral
streams.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Drawing tasks are powerful neuropsychological assessment
tools. The strategic anatomical location of the PPC and its
extensive connections make it a bridge between sensory inputs
and motor output. Evidence from fMRI and EEG studies has
shown that PPC is activated in different drawing tests, and
damage in the PPC is associated with various drawing errors,
according to LSM research. These findings suggest that the PPC
contributes to both visuospatial and sensorimotor processing in
drawing.

As the neural mechanism involved in drawing activity is
elusive and multifaceted, many unsolved questions remain.
Although the PPC is highlighted in drawing activities,
its functions are based on the comprehensive degree of
association with other parts of the brain. The functional
network for drawing may involve a large scale of networks
such as the dorsal stream, execution network, attention
network, and memory network (Yuan and Brown, 2015;
Griffith and Bingman, 2020). How these complex functional
networks are organized remains to be explored in future
studies.

Recent studies have focused on the value of visuospatial
assessment in the early prediction of dementia (Coughlan
et al., 2018; Wang et al., 2020; Aarsland et al., 2021). For
better diagnostic efficiency, progress has been made by
applying artificial intelligence algorithms to evaluate drawing
performance (Chen S. et al., 2020; Youn et al., 2021). It is
feasible to anticipate the invention of assessing systems with
higher accuracy for the diagnosis and differential diagnosis
of cerebral disorders. Finally, despite some studies that
have shown the benefits of drawing training in cognitive
rehabilitation, drawing as a therapeutic method is still
controversial in clinical practice. Further investigations
are needed to interpret the therapeutic effect of drawing
practice and its potential effect on promoting brain
plasticity.
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