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a b s t r a c t

The alarming pandemic situation of Coronavirus infectious disease COVID-19, caused by the severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has become a critical threat to public health.
The unexpected outbreak and unrealistic progression of COVID-19 have generated an utmost need
to realize promising therapeutic strategies to fight the pandemic. Drug repurposing-an efficient drug
discovery technique from approved drugs is an emerging tactic to face the immediate global challenge.
It offers a time-efficient and cost-effective way to find potential therapeutic agents for the disease.
Artificial Intelligence-empowered deep learning models enable the rapid identification of potentially
repurposable drug candidates against diseases. This study presents a deep learning ensemble model
to prioritize clinically validated anti-viral drugs for their potential efficacy against SARS-CoV-2. The
method integrates the similarities of drug chemical structures and virus genome sequences to generate
feature vectors. The best combination of features is retrieved by the convolutional neural network in
a deep learning manner. The extracted deep features are classified by the extreme gradient boosting
classifier to infer potential virus–drug associations. The method could achieve an AUC of 0.8897 with
0.8571 prediction accuracy and 0.8394 sensitivity under the fivefold cross-validation. The experimental
results and case studies demonstrate the suggested deep learning ensemble system yields competitive
results compared with the state-of-the-art approaches. The top-ranked drugs are released for further
wet-lab researches.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Coronavirus disease 2019 (COVID-19) is a highly contagious
nd pathogenic respiratory illness that created a dreadful situa-
ion worldwide, affecting people’s lives and causing many deaths.
he causative agent for the disease, severe acute respiratory syn-
rome coronavirus-2, SARS-CoV-2 (previously 2019-novel coro-
avirus, 2019-nCoV), is an enveloped positive-strand RNA virus
ith mammalian hosts [1,2]. They are classified under the Coro-
aviridae family and Betacoronavirus genus. SARS-CoV-2 is the
eventh coronavirus known to infect humans, and they are ge-
etically very similar to SARS (severe acute respiratory syndrome)
nd MERS (Middle East respiratory syndrome) coronaviruses [3,
]. With a genome of 80–160 nm in length and 27–32 kb in size,
oronaviruses are the biggest among known RNA viruses [5,6].
he ongoing COVID-19 pandemic has highlighted the urgency to
evelop, test, and deploy new drugs and therapeutics. However,

∗ Corresponding author at: Department of Computer Science, College of
ngineering, Vadakara (CAPE, Govt. of Kerala), Kozhikkode 673104, Kerala, India.

E-mail address: deepthi523@gmail.com (Deepthi K.).
ttps://doi.org/10.1016/j.asoc.2021.107945
568-4946/© 2021 Elsevier B.V. All rights reserved.
designing a novel drug from scratch is very tough and tedious,
and thus impractical to combat the global challenge of the SARS-
CoV-2 pandemic. One efficient way to face this challenge is to
effectively screen clinically approved drugs for their anti-viral
activity against SARS-CoV-2 for repurposing.

Drug repurposing (DR) is the deployment of already approved
drugs for different indications other than the drug’s original
therapeutic application. Since the de novo drug discovery is
high-cost, lengthy, and laborious, DR has become a promising
strategy to combat newly emerging diseases [7,8]. This effective
drug discovery technique can quickly identify potential thera-
peutic agents for difficult to treat diseases like COVID-19 [9].
DR based on biological experiments is generally a high-risk and
high-investment process [10]. The availability of huge biologi-
cal and structural databases and high-performance computing
empowered computational DR as an alternative to experimental
approaches to identify the most efficacious drugs against specific
diseases in a short time [11–13].

In the present study, we propose a deep learning ensemble
approach, DLEVDA, capable of identifying novel virus–drug asso-
ciations to combat the rapidly evolving pandemic of COVID-19.

https://doi.org/10.1016/j.asoc.2021.107945
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.107945&domain=pdf
mailto:deepthi523@gmail.com
https://doi.org/10.1016/j.asoc.2021.107945
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nsemble methods integrate the potential of multiple classifiers,
hus yield models with enhanced predictive power and cred-
bility. The proposed approach combines the pairwise similar-
ties of drug chemical structures and virus genome sequences
o build classification features. The generated samples were fed
o the convolutional neural network for learning intricate in-
ut patterns. The learned abstract features were used to train
he extreme gradient boosting classifier, which infers promising
andidate drugs against SARS-CoV-2 infections. We conducted
ivefold cross-validation (CV) to assess the efficacy of DLEVDA;
he model achieved an AUC of 0.8897 with 0.8571 prediction
ccuracy and 0.8394 sensitivity. The comparison results with the
tate-of-the-art methods and competing classifiers reveal the pre-
ictive power of the approach. Experiments were conducted with
istinct datasets. We could confirm the majority of the predicted
esults with existing literature which indicates the robustness of
he model in prediction.

The rest of the paper is organized as follows: Section 2 dis-
usses a review of recent works in drug repositioning to identify
otential therapeutic drugs targeting covid-19. Section 3 de-
cribes the data preparation and architectural details of DLEVDA.
ection 4 presents and analyzes the results of the proposed
ethod. Section 5 discusses the results and Section 6 concludes

he paper with future directions.

. Related works

Based on the method, computational DR applied to infer anti-
iral drugs against COVID-19 falls mainly into two categories:
etwork-based and machine learning-based. Network-based DR
ethods represent drugs, diseases, and other biological entities

ike proteins, genes, etc., as network nodes and their associ-
tions as edges between nodes. Zhou et al. [14] suggested a
ethod that identifies new anti-viral drugs against covid-19 by
nalyzing the association networks related to the Human coro-
aviruses (HCoVs) and drugs with their target proteins in the
uman protein–protein interaction (PPI) network. They collected
he target proteins related to the HCoVs and generated the HCoV-
ost protein subnetwork. By computing the network proximity
mong the drug’s target proteins and HCoV-related proteins, po-
ential anti-SARS-CoV-2 drugs were identified. Fiscon et al. [15]
roposed a method that identifies new anti-viral drugs against
ovid-19 from already approved drugs. They quantified the re-
ationships between drug targets and disease-associated genes
sing a network similarity-based approach to identify repurpos-
ble anti-SARS-CoV-2 drugs. The method utilized a drug–target
etwork based on the drugs and their target proteins and a
isease–gene network based on the diseases and their associated
enes for prediction. The idea behind the algorithm is that a
rug will be effective for a specific disease if the drug targets
nd the disease genes are nearby in the constructed network.
heir algorithm calculated the network proximity value between
ach drug and disease to prioritize appropriate drug candidates
gainst SARS-CoV-2. Meng et al. [16] proposed a method that
redicts new anti-viral drugs against SARS-CoV-2 using similarity
onstrained probabilistic matrix factorization. They utilized drug
hemical structure and virus genomic sequence-based similarities
nd known drug–virus relationships for prediction. They applied
robabilistic matrix factorization on the drug–virus relationship
atrix by introducing similarity constraints for drugs and viruses

n the factorization process.
Adhami et al. [17] suggested a method that infers novel ther-

peutic drugs against COVID-19 by identifying the causal genes
ehind it. They retrieved the PPI network corresponding to the
uman proteins interacting with SARS-CoV-2 from the String
atabase [18]. They identified 7 clusters of proteins that are
2

deeply linked to SARS-CoV-2 and retrieved the genes and as-
sociated miRNAs related to the identified protein clusters. Fi-
nally, they acquired the drug targeting gene modules from the
DGIdb [19] and then rebuilt the drug–gene network for the
obtained protein modules. Next, they implemented a network-
oriented drug repositioning method using computational bioin-
formatics tools to identify novel anti-viral drugs to fight COIVD-
19. Peng et al. [20] presented an approach that predicts novel
anti-viral drugs against COVID from FDA-approved drugs by uti-
lizing drug chemical structure similarities, virus genome
sequence-based similarities, and known drug–virus relationships.
By integrating this data, they built a heterogeneous network and
applied the random walk with restart algorithm [21] on the built
network to identify new anti-viral drugs against SARS-CoV-2. The
algorithm predicts the association score between SARS-CoV-2 and
each drug in the dataset.

Though artificial intelligence-based researches are very active
in tackling the Covid-19 epidemic, few articles are concerned
with DR. Beck et al. [22] suggested a method that identifies
currently available drugs that can interact with the proteins of
SARS-CoV-2. They trained a pre-trained drug–target interaction
prediction deep learning model [23], with the samples made
of drug SMILES (Simplified Molecular Input Line Entry System)
strings and amino acid sequences to infer new drug–virus as-
sociations. Ke et al. [24] implemented a deep learning method
that prioritizes known drugs for their efficacy in fighting against
SARS-CoV-2. They trained the model with two datasets; one with
the approved drugs against viruses like SARS-CoV, influenza virus,
etc., and the other with the confirmed protease inhibitors. They
tested the efficacy of the identified drugs using in vitro cell-based
assays. With the obtained results, they retrained their model and
finally built a model that could identify efficacious drugs against
COVID-19. Both of these studies did not evaluate their models
quantitatively, and so they do not have exactly comparable re-
sults. Systematic deep learning or ensemble machine learning
techniques are not applied in the field of virus–drug associa-
tion prediction. Based on the status of the studies mentioned
above, we are proposing a deep learning ensemble approach to
infer novel virus–drug associations for identifying promising drug
candidates against SARS-CoV-2.

3. Materials and methods

3.1. Datasets

This section describes the preparation of data used in the
study:

Drug–virus associations: Experimentally verified virus–drug rela-
tionships are obtained from various literature through text min-
ing technology. The dataset contains 455 human drug–virus as-
sociations between 219 drugs and 34 viruses. A binary matrix R
is to represent the drug–virus associations. R(r (i) , v(j)) is set as
1 if the drug r(i) has an association with virus v(j) ; otherwise
(r (i) , v(j)) = 0.

ntra-drug similarities: The intra-drug similarities were quantified
ased on the chemical structures of drugs. The drug chemical
tructures were acquired from DrugBank [25] by adopting the
MILES format [26]. The Molecular Access System (MACCS) fin-
erprints of drugs were computed using Open Babel v2.3.1 [27].
he similarity between the two drugs was measured using the
animoto index [28] based on their MACCS fingerprints. The
animoto index between two drugs can be defined as:

=
nc
na + nb − nc
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here na and nb represent the number of bits set in the corre-
ponding drug fingerprints, and nc represents the number of bits
hat are set in both the fingerprints.

ntra-virus similarities: The intra-virus similarities were measured
ased on the virus genome sequences. The virus genome nu-
leotide sequences belonging to the human hosts were acquired
rom National Center for Biotechnology Information, NCBI [29].
heir pairwise sequence similarities were computed with Mul-
iple Alignment using Fast Fourier Transform, MAFFT version
[30], a multiple sequence alignment tool. The known drug–

irus relationships and the pairwise similarities among drugs and
iruses were acquired from [16]; We consider it the benchmark
ataset for this study.

.2. Methods

In this research, we presented an ensemble machine learning
ethod that identifies new virus–drug relationships utilizing the
rug, virus pairwise similarities, and known drug–virus inter-
ctions. The overall idea of DLEVDA is narrated in Fig. 1. The
roposed approach includes two main segments: convolutional
eural network (CNN) and Extreme Gradient Boosting (XGBoost).
LEVDA first generated feature vectors for each drug–virus pair
n the dataset by considering the drug and virus pairwise similar-
ties. The feature vector FV (ri, vj) for the drug–virus pair (ri, vj)
an be represented by

V (ri, vj) = [Rsim (ri) ΛVsim(vj)]

here Rsim (ri) denotes the chemical structure-based similarities
f the ith drug to all other drugs, Vsim(vj) denotes the genomic
equence-based similarities of the jth virus to all other viruses,
nd Λ denotes the concatenation operation. In more detail, we
efined Rsim (ri) = [ wi1, wi2, wi3,. . . , wix. . . . . . , wiNr ] and Vsim(vj) =

zj1, zj2, zj3,. . . . . . . . . , zjx. . . . . . .. . . , zjNv ], where wix denotes the pair-
ise similarity between the ith and xth drugs, zjx is the pairwise
imilarity between the jth and xth viruses, and Nr , Nv the total
umber of drugs and viruses respectively in the dataset. Alto-
ether, there were Nr × Nv samples of length Nr + Nv; each
orresponds to a drug–virus relationship. The associated labels
ere picked from the relationship matrix R. The label was set to
ne if there was a confirmed interaction between the correspond-
ng drug and virus; otherwise, to zero. The samples with label one
ormed the positive set. Next, random samples from unconfirmed
nteractions were selected and created the negative set such that
he ratio of positive and negative samples was 1:1. There is
chance for unknown positive interactions among the chosen
egative samples, but the probability, 455÷ (219 × 34 − 455) ≈

.065 %, is very less when compared to the total unknown inter-
ctions in the dataset. Finally, the positive and negative sets were
ntegrated to generate the training set, which comprised 910
amples. With CNN, the intricate patterns of the samples were
xtracted and fed to the XGBoost classifier to identify novel drug
andidates against SARS-CoV-2 and other viruses in the dataset.

.2.1. Convolutional neural network for feature extraction
CNN is a deep learning algorithm proposed by Lecun et al. [31]

hat consists of three essential layers — convolutional layer, sub-
ampling layer, and fully connected layer. Convolutional layers
re the primary building blocks of CNN which are capable of
apturing hidden patterns from the raw input data. CNN com-
rises two fundamental sections: feature extraction and classi-
ication. Feature extraction is achieved by multiple convolutions
nd subsampling layers and classification by fully connected lay-
rs. CNNs were effectively utilized for feature learning and clas-
ification in prediction problems for identifying the relationships
etween diseases, drugs, microRNAs, circular RNAs, etc. [32–34].
3

n DLEVDA, we employed CNN for extracting the sophisticated
nput patterns from the concatenated drug–virus feature vectors
n a deep learning manner. We performed multiple convolution
perations on the input samples using different kernels to gener-
te the activation map. The activation map Qk at layer k can be
escribed as:

k = ϑ(Qk−1 ⊙ Wk + bk),

here ϑ(p) denotes the activation function, Wk the convolution
ernel at layer k, bk the offset vector, and ⊙ the convolution
peration. To compress data and minimize overfitting, the sub-
ampling layer is used. The sampling formula at the subsampling
ayer Qk can be expressed as:

k = Subsampling (Qk−1) .

e employed max-pooling at the subsampling layer, which re-
ains the most prominent feature at each filter area. The CNN was
rained to decrease the loss function of the network. The training
amples were sent to the CNN to capture the significant features.
o get our best model, we tuned the CNN hyper-parameters
hrough several experiments. We implemented the convolution
peration by using 16 filters of 1×16 size. At the subsampling
ayer, we set the filter size to 1×2. We used rectified linear
nit, Relu [35], as the activation function at the convolution and
ully connected layers and the sigmoid function at the output
ayer. The model was implemented using binary cross-entropy
s the error function and Adam as the optimizer. To prevent
verfitting, dropout layers [36] are added with convolution and
idden layers. Finally, the learned latent representations after
umerous convolution and pooling operations are retrieved for
dentifying the potential virus–drug relationships.

.2.2. Extreme gradient boosting based classification
XGBoost is a classification algorithm founded by Chen and

uestrin [37] which works under the framework of gradient
oosting. In XGBoost, classification, and regression trees, CART,
s created in sequential form. The basic idea is to continuously
educe the residual of the prior model in the gradient direction to
et a new model. The algorithm employs multiple regularization
arameters, including LASSO (L1) and Ridge (L2), which help
revent overfitting and improve performance.
XGBoost has been successfully applied for binary classifica-

ion problems such as microRNA/lncRNA-disease association pre-
ictions [38,39], prediction of hot spots in protein–DNA bind-
ng interfaces [40], protein submitochondrial localization predic-
ion [41], etc. This study established a deep learning model in
hich XGBoost was employed to perform the task of classifica-
ion. The feature vectors obtained after convolution and pooling
perations from the CNN were a dense, high-level representation
f the original samples. We trained the XGBoost classifier with
he training set features learned by CNN; the trained model could
redict the correlation score for each unverified drug–virus pair
n the dataset. The samples with scores above the threshold
ere considered as potential virus–drug associations, and they
ere released for future biological tests. We optimized XGBoost
yperparameters through grid search and set the values for pa-
ameters such as n_estimators, max_depth, and learning_rate to
50,8 and 0.1, respectively. Fig. 2. depicts the basic structure of
he CNN-XGBoost model.

. Results

.1. Performance evaluation

We conducted the fivefold CV to evaluate the predictive per-
ormance of DLEVDA in identifying new virus–drug relationships.
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Fig. 1. The workflow of DLEVDA to prioritize potential virus–drug associations. With the integrated features of viruses and drugs as input, DLEVDA comprises two
essential components: CNN-based feature learning and XGBoost-based classification.
Fig. 2. The basic architecture of the CNN-XGBoost model.
n k-fold CV, the training set is separated into random subsets
f uniform size. At each fold, the model was trained with k-1
ubsets and validated with the remaining subset. The process
as repeated k times until each subset was validated once, and
he mean was taken as the end result. In the predicted results,
nown virus–drug relationships with correlation scores beyond
he threshold were treated as true positives (TP), and lower
han the threshold were treated as false negatives (FN). Likewise,
nknown relationships with correlation scores lower than the
hreshold were treated as true negatives (TN), and beyond the
hreshold were treated as false positives (FP). We plotted the
eceiver Operating Characteristic curve (ROC) [42,43] by measur-
ng the true positive rate and the false positive rate at different
ut-offs, and the model obtained an Area Under the ROC curve
AUC) [44] of 0.8897. We further assessed the predictive capabil-
ty of DLEVDA by quantifying other statistical parameters such as
ccuracy, sensitivity, specificity, F1-score, PPV (positive predictive
alue), NPV (negative predictive value), and Matthews’s corre-
ation coefficient (MCC), and the result is shown in Table 1. In
ddition, we computed the Area Under the Precision–Recall curve
AUPR) [45] as another kind of evaluation metric. The ROC and
recision–Recall (PR) curves based on the fivefold CV are shown
n Fig. 3. To diminish the deviations from randomly partitioned
amples, we implemented fivefold CV twenty times, and the
erformances were averaged.
4

Additionally, we evaluated the model performance by im-
plementing it on an independent test set. We generated the
independent test set by randomly choosing 20% samples from
the training set such that it contains equal positive and negative
samples. The remaining training set samples were partitioned
into five random subsets of roughly equal size, which were used
as the training and validation sets for the fivefold CV. Next, the
validated model is trained with the whole samples in the training
set, excluding the independent test set. The trained model is used
to predict the correlation score for the samples in the indepen-
dent test set. The experimental results based on the independent
test set are summarized in Table 2.

4.2. Comparison with previous studies

We evaluated the predictive performance of DLEVDA by com-
paring it to related approaches. Existing researches for identify-
ing repurposable anti-viral drugs against COVID-19 was rare as
the COVID-19 researches were mainly focused on sequence data
of viruses. We compared DLEVDA with other methods predict-
ing virus–drug relationships such as the similarity constrained
probabilistic matrix factorization, SCPMF [16], and virus–drug
association prediction based on random walk with restart, VDA-
RWR [20], using the same dataset we used. We further evaluated
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Fig. 3. ROC and PR curves obtained by DLEVDA under the fivefold CV experiment.
Table 1
Cross-validation results of DLEVDA based on fivefold CV experiment.
Method Accuracy Sensitivity Specificity F1-score PPV NPV MCC AUC AUPR

Fivefold 0.8571 0.8394 0.8624 0.8432 0.8563 0.8667 0.7337 0.8897 0.7732
Table 2
Cross-validation results of DLEVDA based on the independent test set.
Method Accuracy Sensitivity Specificity F1-score PPV NPV MCC AUC AUPR

Independent test set 0.8635 0.8418 0.8692 0.8316 0.8602 0.8701 0.7432 0.8926 0.7624
our model by comparing it to other association prediction ap-
proaches such as IMCMDA [46], NCPMDA [47], and SAEROF [48].
These three models achieved robust performances in their respec-
tive applications. IMCMDA was applied to identify new miRNA-
disease associations based on the inductive matrix completion al-
gorithm. NCPMDA identified novel diseases associated with miR-
NAs based on Network Consistency Projection. SAEROF was ap-
plied to predict novel drug–disease relationships utilizing sparse
autoencoder and rotation forest. We compared DLEVDA with
these models using the same dataset used in our study. The
performance was evaluated based on the fivefold CV, and the
results are depicted in Table 3. From the table, it is evident that
DLEVDA outperformed other methods with high robustness.

4.3. Comparison with different classifiers

To further assess the efficacy of DLEVDA, we compared the
odel performance with other state-of-the-art classifiers such as

andom forest (RF), support vector machine (SVM), and decision
ree under fivefold CV. In order to assure the fairness of the ex-
eriment, we adopted the same feature construction and feature
xtraction methods during comparison. We could achieve AUCs
f 0.8897, 0.8634, 0.8217, and 0.7242 for DLEVDA, RF, SVM, and
ecision tree classifiers, respectively. Fig. 4 plots a comparison
f ROC curves generated by these classifiers. Next, we com-
ared the model performance by implementing these classifiers
ithout employing CNN for feature extraction. The experiments
ielded 0.8169, 0.8201, 0.7628, and 0.6581 for XGBoost, RF, SVM,
nd decision tree classifiers, respectively. From the results, it
an be seen that deep learning-based feature retrieval improved
he classification results significantly. These experimental results
ith both the raw and learned high-level features demonstrate
he predictive power of DLEVDA in identifying novel virus–drug
elationships.
5

Fig. 4. Comparison of DLEVDA with the competing classifiers under the fivefold
CV experiment.

4.4. Comparison with other datasets

To test the influence of various datasets in DLEVDA, we im-
plemented it with another dataset that consists of 96 drug–virus
associations between 78 drugs and 11 viruses. In this dataset, 12
viruses akin to SARS-CoV-2 were considered, and their genome
sequence-based information was obtained from the NCBI
database. Their pairwise similarities were computed using MAFFT
version 7. The drugs associated with these viruses were ac-
quired from Drugbank, NCBI, and PubMed databases, and their
structural similarities were computed. We conducted fivefold
CV, and DLEVDA yielded mean values of 0.8039, 0.7554, 0.7783,
0.7017, 0.7647, 0.7805, 0.6505, 0.8420, and 0.6982 for accuracy,
sensitivity, specificity, F1-score, PPV, NPV, MCC, AUC, and AUPR,
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Table 3
Comparison of DLEVDA with related approaches, through the AUC scores under fivefold CV experiment.
Fivefold DLEVDA SCPMF VDA-RWR IMCMDA NCPMDA SAEROF

AUC score 0.8897 0.8631 0.8501 0.6423 0.6711 0.7935
Table 4
The top twelve predicted anti-viral drugs against SARS-CoV-2 with their
evidence in the literature.
Rank Drug Evidence (PMID)

1 Ribavirin 32227493, 32149772, 33689451
2 Nitazoxanide 32020029, 32568620, 33031085
3 Mizoribine Unconfirmed
4 Favipiravir 32346491, 32246834, 33176367
5 Amantadine 32361028, 32571606
6 N4-Hydroxycytidine Unconfirmed
7 Quinacrine 33477376
8 Zanamivir 32511320
9 Maribavir 32147628
10 Chloroquine 32145363, 32074550, 32203437
11 Clevudine Unconfirmed
12 EIDD-2801 33561864

respectively. The corresponding ROC and PR curves are plotted
in Fig. 5. The model performance is slightly low compared to the
benchmark dataset used in this study as the number of training
data is significantly less. We downloaded this dataset from the
supplementary material associated with the paper [20].

4.5. Case studies

To further validate the predictive capability of DLEVDA, we
onducted case studies on the top-predicted results. For this, we
rained the model with all known drug–virus relationships and
redicted correlation scores for all unknown drug–virus pairs in
he dataset. The predicted correlation scores were sorted in de-
cending order with the corresponding virus–drug relationships.
pecifically, we ranked the top predicted drugs associated with
he SARS-CoV-2, Tab. 4. Out of twelve top-predicted drugs, 9
f them could be validated by recent literature. For example,
ibavirin, the top-ranked drug against COVID-19, is an anti-viral
rug used to treat Hepatitis C and some viral hemorrhagic fevers.
t inhibits the replication of RNA viruses and has been applied
or treating COVID-19 patients [49–51]. Nitazoxanide, the sec-
nd top-predicted candidate drug, boosts the host’s anti-viral
esponse by upregulating the host interferon and impedes virus
eplication [52]. It has been proved that Nitazoxanide can prevent
ARS-CoV-2 infections at a reduced micromolar concentration
nd has been recommended for clinical trials to treat COVID-
9 [53–55]. The fourth-ranked drug favipiravir is one of the
nti-viral agents considered in numerous clinical trials to combat
OVID-19. Favipiravir is a purine nucleic acid analog with a broad
pectrum of anti-RNA virus activities [56–59]. In addition, among
he top twelve predicted drugs against SARS-CoV-2, many are
ndergoing clinical trials [60,61]. These results reveal the efficacy
nd credibility of DLEVDA in identifying repurposable ant-viral
rugs against COVID-19 and other emerging infectious diseases
see Table 4).

. Discussion

Prioritization of clinically validated drugs for their anti-viral
fficacy is urgent for the rapid clinical trials against COVID-19.
his research proposed an ensemble deep learning architecture
o infer promising preclinical drug candidates to treat SARS-CoV-
infections. The proposed architecture comprised two essential
6

segments of CNN-based feature learning and XGBoost-based clas-
sification. The CNN was trained with the feature vectors con-
structed based on drug chemical structures and virus genomic
sequences. Then, the learned high-level features were classified
with the XGBoost classifier to identify novel candidate drugs to
combat COVID-19 and other viral infectious diseases.

There are many factors attributed to the efficient performance
of DLEVDA. Ensemble approaches yield excellent results by in-
tegrating the potency of multiple classifiers. CNN is a powerful
feature extractor that automatically learns high-quality features
from the raw input data. However, a large amount of training
data is required by CNN to prevent overfitting [62]. The available
training data for this research is limited. So, we employed XG-
Boost for the task of classification. XGBoost utilizes multicore CPU
parallel computing to enhance performance. It combines software
and hardware optimization strategies to produce more accurate
results with lesser computing resources. The incorporation of a
regularized model makes the classifier unique [37,63]. However,
we examine that XGBoost is still unclear for feature extraction. In
addition, the potential of a single classifier may not be sufficient
to meet the perfection required for many biological problems. In
DLEVDA, the integration of CNN and XGBoost classifiers produced
more accurate and robust results.

The network-oriented DR techniques have the drawback that
the network needs to be reconstructed whenever a new drug or
disease is added to the dataset [14–17,20]. Many of the network-
oriented DR strategies cannot be applied to drugs with no con-
firmed disease interactions or diseases with no confirmed drug
interactions in the dataset. DLEVDA can be applied to drugs (dis-
eases) for which no confirmed disease(drug) associations; Hence,
we can apply the model to predict potential drugs for emerg-
ing diseases like COVID-19. Similar to other machine learning
methods, DLEVDA can quickly adapt to changes. When newly dis-
covered drugs, diseases, or drug–virus associations are identified,
they can be easily included in the dataset after similarity com-
putation. In addition, DLEVDA incorporated multiple biological
data, including the complete genome sequences of viruses and
chemical structures of drugs for feature construction. Above all,
artificial intelligence-empowered DR is low-cost, fast, and effec-
tive and can minimize failures in clinical trials. The limitation is
that DLEVDA requires positive and negative samples for training.
But it is tough to acquire the actual negative samples. We built
the negative set by picking samples from unconfirmed drug–virus
relationships at random. There is a possibility for unconfirmed
positive interactions in the constructed negative set, even if the
probability is low. Besides, the known drug–virus associations
available for the study are limited. We believe the performance of
DLEVDA can be improved further as more drug–virus associations
are discovered. Since similarity scores play a crucial part in pre-
dictive performance, it is required to further investigate the kinds
of features bundled up for similarity computation.

The overall time complexity of DLEVDA can be expressed
as max(O

(
τ ∗ m ∗

(∑r
j=1(x ∗ k2s ∗ nk ∗ f 2s )

))
,O (nt∗d ∗ q ∗ logm)),

where the first and second components represent the time com-
plexities of CNN-based feature learning and XGBoost-based clas-
sification, respectively, with m training samples [37,64]. In the
first component, r denotes the number of convolution layers,
τ the number of epochs, x the number of input channels, ks
the spatial size of the kernel, nk the number of kernels, and fs
the spatial size of the output feature map of the jth layer. In
the second component, n represents the total number of trees,
t
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Fig. 5. ROC and PR curves obtained by DLEVDA on a different drug–virus association dataset under the fivefold CV experiment.
the maximum depth of the tree, and q the number of non-
issing entries in the training data. From the equation, it can
e inferred that the complexity of DLEVDA depends on the com-
lexity O

(
τ ∗ m ∗

(∑r
j=1(x ∗ k2s ∗ nk ∗ f 2s )

))
of CNN-based feature

earning. The complexity of pooling and fully connected layers are
ot involved in this formulation. These layers may take 5%–10%
omputational time.

. Conclusion

In summary, this study proposed an efficacious deep learning
nsemble model for rapid identification of candidate repurpos-
ble drugs to fight against SARS-CoV-2 infections. We carried out
xtensive experiments and case studies to measure the efficacy of
he developed system. The comparison results with the state-of-
he-art methods demonstrated an improvement over the existing
echniques evaluated under the same condition. Experiments per-
ormed with different machine learning classifiers using both
he raw and deep features reveal the robustness of the model.
he case studies could identify many drugs under clinical trials,
hich indicate the promising performance of DLEVDA to identify
ighly credible candidates for experimental analysis. However,
he use of randomly chosen negative samples and the limited
umber of experimentally confirmed virus–drug associations are
ome of the limitations of the model. All the top predicted drugs
gainst COVID-19 are released for further researches. We believe
hese drug candidates provide a meaningful reference to support
linicians. In the future, the proposed model can be extended to
he next level for predicting the collective effect of a set of drugs
gainst SARS-CoV-2 and other viruses.
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