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Machine learning-based lifetime breast cancer risk
reclassification compared with the BOADICEA
model: impact on screening recommendations

Chang Ming

!, Valeria Viassolo?, Nicole Probst-Hensch?, Ivo D. Dinov*>%7, Pierre O. Chappuis>® and Maria C. Katapodi'’

BACKGROUND: The clinical utility of machine-learning (ML) algorithms for breast cancer risk prediction and screening practices is
unknown. We compared classification of lifetime breast cancer risk based on ML and the BOADICEA model. We explored the
differences in risk classification and their clinical impact on screening practices.

METHODS: We used three different ML algorithms and the BOADICEA model to estimate lifetime breast cancer risk in a sample of
112,587 individuals from 2481 families from the Oncogenetic Unit, Geneva University Hospitals. Performance of algorithms was
evaluated using the area under the receiver operating characteristic (AU-ROC) curve. Risk reclassification was compared for 36,146
breast cancer-free women of ages 20-80. The impact on recommendations for mammography surveillance was based on the Swiss

Surveillance Protocol.

RESULTS: The predictive accuracy of ML-based algorithms (0.843 < AU-ROC < 0.889) was superior to BOADICEA (AU-ROC = 0.639)
and reclassified 35.3% of women in different risk categories. The largest reclassification (20.8%) was observed in women
characterised as ‘near population’ risk by BOADICEA. Reclassification had the largest impact on screening practices of women

younger than 50.

CONCLUSION: ML-based reclassification of lifetime breast cancer risk occurred in approximately one in three women.
Reclassification is important for younger women because it impacts clinical decision- making for the initiation of screening.
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BACKGROUND

Breast cancer is the most common malignancy affecting women
worldwide and the fifth leading cause of cancer death.! In
Switzerland, about 6000 women are diagnosed with breast cancer
each year, and more than 1350 die from the disease.’ Most
established risk factors, i.e, age, family history, genetic predis-
position, hormone and reproductive factors and history of benign
breast disease, are not applicable for primary prevention to reduce
breast cancer incidence and mortality.> Survival of breast cancer
patients in the past few decades has mostly improved through
screening, especially if tumours are diagnosed at early stages, and
through advances in therapeutic approaches.™ Breast cancer
remains a public health problem, and early detection is currently
the best option to reduce its impact.

Breast cancer screening with biennial mammograms for women
50-74-years old has been recommended by the U.S. Preventive
Services Task Force since 2009.°7 In Europe, nationally organised
screening programmes began around 1985 in the Nordic
countries and the United Kingdom, followed by other European
countries.®® Most of these programmes target women from 50 to

69 years old for screening.’® In 1995, the Swiss Federal Office of
Public Health and the Swiss Cancer League adopted a national
programme recommending biennial mammography screening for
women over 50 years old.?"" In 2013, the Swiss Cancer League
adopted the UK NICE Clinical Guidelines, which recommend
screening with mammography and MRI based on women's risk
classification. The guidelines classify women into moderate (17% <
lifetime risk <30%) or high (lifetime risk >30%) breast cancer risk
calculated with the BOADICEA model based on different scenarios
of family history.'*"3

Age over 50 years is the sole risk factor considered for entering a
population-based screening programme.' However, about 25% of
all breast cancers are diagnosed in younger women.">'® Moreover,
mammography is less effective as a screening tool for younger
women, who are more likely to have dense breast tissue,
compromising the efficiency of routine mammograms in this age
group. This contributes to diagnostic delays and increased
morbidity and mortality.'®'” In the era of personalised medicine,
a screening strategy based on individual breast cancer risk may
improve the benefit-harm ratio of mammography, and increase the
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efficiency of screening programmes.'®'® Many medical societies
and professional groups proposed that risk-based screening would
be more effective, less morbid and more cost-effective. 394

Although many models are used to predict breast cancer risk,
such as the Breast Cancer Risk Assessment Tool (BCRAT, also
referred as the Gail model), the International Breast Intervention
Study (IBIS) model, the Breast and Ovarian Analysis of Disease
Incidence and Carrier Estimation Algorithm (BOADICEA model), >’
no consistent model has been incorporated into routine clinical
practice and/or screening programmes due to limited discrimina-
tory accuracy and applicability. The discriminatory ability, area
under the receiver operating characteristic (AU-ROC) curve, of these
models is between 0.53 and 064.2°?%3" A comprehensive risk
prediction model with an improved discriminatory power to classify
women into clinically meaningful risk groups will enable
targeting high-risk women, while reducing interventions in those
at low risk.

Machine-learning (ML) algorithms offer an alternative approach
to standard prediction modelling that may address current
limitations and improve the accuracy of breast cancer prediction
models.3%33 A series of ML techniques, including our own work,
have been developed and used in breast cancer prediction and
prognosis, demonstrating that the application of ML methods
could improve the prediction accuracy of cancer susceptibility,
recurrence and survival models.3*>° Previous studies presented
the discriminatory accuracy, sensitivity, specificity and calibration
performance of different ML algorithms. However, clinical utility, in
terms of potential clinical consequences of using new ML
prediction models, is rarely examined. The objective of the current
study is to assess the impact of using ML-based breast cancer
risk prediction on screening practices. Using data from a
large clinical population, we quantified performance measure
and reclassification of lifetime breast cancer risk generated
from ML algorithms and from the BOADICEA model. We also
examined the clinical impact of reclassification of breast cancer
risk on screening practices based on the Swiss Surveillance
Protocol.'®

METHODS

Swiss clinic-based retrospective data

The Oncogenetic Unit at the Geneva University Hospitals has been
offering genetic counselling and testing for hereditary cancer
syndromes since 1994 to patients and asymptomatic individuals
concerned with their family history. The common reasons for
genetic consultation are familial aggregation of breast or color-
ectal cancer or suspicion of hereditary cancer syndromes, mainly
due to breast, ovarian or colon cancer. For each individual seen in
consultation, demographic, personal and family history, previous
genetic test results and a detailed family pedigree are collected
and recorded with the ‘Progeny' software.”® Data used in this
study were collected as part of routine medical records. The
Regional Research Ethics Committee at the University Hospitals of
Geneva has approved the data collection and management
processes. Informed consent was obtained from all participants
included in the study before genetic testing.

For the purposes of this study, information regarding pathology
reports, archived tumour tissue and cancer treatment, was
extracted from medical records for cancer patients and affected
relatives, whenever possible. Data from genetic consultation
records and Progeny files were extracted with R packages ‘tm’
and ‘gdata’*' Extracted data were suitable for risk calculations
with the BOADICEA model for multiple female members from
each family. There were about 13% missing values. BRCA1/BRCA2
status, oestrogen receptor and progesterone receptor status
contributed 11%. In addition to ‘positive' and ‘negative’, missing
values for BRCA pathogenic variants and hormone receptor testing
were characterised as ‘unknown' in subsequent analyses. This
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approach is also consistent with the flexibility of the BOADICEA
model in handling missing information.

BOADICEA model classification

Lifetime risk predictions were generated with the web-based
batch processing from the BOADICEA web application (version
3.0) using data from 2481 families with 112,587 family members.
The lifetime breast cancer risk for each woman in every family was
calculated using data from all other family members, and by
assigning every female family member once as the targeted
woman for risk calculation.

ML risk classifications
We generated breast cancer lifetime risk predictions for all female
members within each family.

Based on previous reports of method reliability, effectiveness
and performance in identifying, tracking and exploiting salient
features in similar samples with the same data structures, we
selected three ML algorithms, i.e., Markov Chain Monte Carlo
generalised linear mixed model (MCMC GLMM),** adaptive
boosting (ADA) and random forest (RF).3%3*#2™%> The input for
the ML algorithms used identical risk factors as the ones included
in the BOADICEA model in order to have fair comparisons among
the different risk prediction models. The variables included in each
comparison are presented in Supplementary Table 1.

In our supervised classification, we rebalanced the breast cancer
patients and cancer-free controls to reduce potential bias with the
R packages ‘unbalanced' (Racing for Unbalanced Methods
Selection) and 'SMOTE' (Synthetic Minority Over-sampling TEch-
nique).***” SMOTE implements known ML techniques to adap-
tively select the most appropriate strategy for a given unbalanced
task. To ensure the reliability of ML predictions and the
consistency of the forecasts, we used 10-fold cross-validation
with 20 repetitions. This strategy provides a powerful preventive
measure against model overfitting.*#->°

Comparisons of performance measure and classification
BOADICEA cannot be applied for females older than 80 years, for
males and for deceased individuals. Thus, we excluded all
predictions generated for those individuals when we compared
the performance of ML algorithms with the BOADICEA model. The
performance of BOADICEA was evaluated from n = 45,110 women
using the AU-ROC, while the performance of ML techniques is
presented with the mean AU-ROC from 10-fold cross-validations.

According to the Swiss Surveillance Protocol, we applied the
following cut-offs for lifetime breast cancer risk: <17% as near-
population risk, =17% and < 30% as moderate risk and =30% as
high-risk group. We excluded women who were under 20-years
old or had been diagnosed with breast cancer to be consistent
with the clinical utility of the protocol. We estimated differences in
breast cancer risk classification using the BOADICEA model and
the best-performing ML algorithm, based on the data from n=
36,146 breast cancer-free women.

Statistical analyses

Frequencies, percentages, means and standard deviations were
used to describe the demographics and clinical characteristics of
36,146 breast cancer-free women. We present classifications by
age and risk categories using the BOADICEA model as the
reference standard. Differences in classification for mammography
surveillance according to the Swiss Surveillance Protocol were
calculated for the moderate- and high-risk groups.

RESULTS

A consort flow diagram (Fig. 1) presents sample acquisition,
prediction, classification and surveillance status, and the overall
process of methodology and materials.
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Fig. 1

Consort flow diagram of the whole cohort with breast cancer risk-based classification. ML machine learning, BOADICEA

Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm, AU-ROC Area Under the Receiver Operating Characteristic

curve.

Model performance

The mean age of the 45,110 women was 49.82 (+11.02) years
old. There were 4911 breast cancer patients with average age
onset at 51.76 (+9.79) years old. Among them, 554 had a second
breast cancer diagnosis. There were 119 cases with first-ductal
carcinoma in situ (DCIS). Table 1 presents the performance
comparison of the three ML algorithms compared with the
BOADICEA model. Using the same risk factors, the accuracy of
ML techniques was superior to the BOADICEA model for the
Swiss clinic-based samples. Predictive accuracy reached 88.9%
using ADA, 85.1% using MCMC GLMM and 84.3% using RF versus
63.9% using the BOADICEA model, showing an approximately
20-25% increase in accuracy. Figure 2 presents the ROC curves
that visualise the accuracy improvement between the BOADI-
CEA model and ADA, which was the best-performing ML
approach.

Breast cancer-free women

Table 2 presents demographic and clinical characteristics of the
Swiss clinic-based sample. Among n = 36,146 breast cancer-free
women, 2617 (7.24%) had a diagnosis of another type of cancer.

Table 1. Performance by area under the receiver operating
characteristic curve (AU-ROC) of the machine-learning (ML) algorithms
predicting breast cancer lifetime risk derived from 10-fold cross-
validations compared with the BOADICEA model.

Algorithms AU-ROC Standard 95% Absolute
deviation  Confidence change from

interval BOADICEA
LCL UCL

BOADICEA 0639 - - - -

ML-ADA 0.889 0.005 0.885 0.903 +25.0%

ML-MCMC GLMM 0.851 0.006 0.847 0.856 +21.2%

ML-RF 0.843 0.008 0.838 0.849 +20.4%

MCMC GLMM Markov Chain Monte Carlo generalised linear mixed model,
ADA adaptive boosting, RF random forest, LCL lower confidence limit, UCL
upper confidence limit. BOADICEA Breast and Ovarian Analysis of Disease
Incidence and Carrier Estimation Algorithm.

N = 45,110 female individuals.
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Fig. 2 Receiver operating characteristic (ROC) curves of the ML-adapt boosting and BOADICEA model predicting breast cancer lifetime risk,
N =45,110 female individuals. ML machine learning, BOADICEA Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation

Algorithm, Cl confidence interval.

Table 2. Characteristics of the breast cancer-free female cohort.

Breast cancer-free female
cohort, N=36,146 (% or +

Demographics and clinical
characteristics

SD)
Age (years) 51.09 +15.35
Age at menarche (years) 12.82+1.51
Age at first live birth (nulliparous 24.10+5.03
excluded, years)
Parity (nulliparous excluded) 1.92+1.32
Age at menopause (premenopausal 47.94 + 6.68

women excluded, years)

239 (0.66%)
828 (2.29%)

115 (462 tested)

Ashkenazi Jewish ancestry
Ethnicity (Black)

BRCA1 or BRCA2 germline pathogenic
variants

Cancer diagnosis (all types) 2 617 (7.24%)

Age at cancer onset (years) 57.44 +15.96
Colorectal cancer 574 (1.59%)

Age at colorectal cancer onset (years) 61.63+17.19
Lung/bronchus cancer 153 (0.42%)

Age at lung/bronchus cancer onset  62.01 +26.18

(years)

Pancreatic cancer 136 (0.38%)

Age at pancreatic cancer onset (years) 66.85 +22.94
Ovarian cancer 508 (1.40%)
Age at ovarian cancer onset (years) 55.96 +22.84

N = 36,146 individuals.

In the total sample, only few breast cancer-free women (462;
1.3%) were tested for BRCAT and/or BRCA2 germline pathogenic
variants, including both complete and targeted testing. Most of
these women had a targeted genetic testing, i.e., the search for a
pathogenic variant previously identified in the family, since
consultations were limited to situations that are highly
suggestive for a hereditary syndrome and, whenever possible,

genetic testing was offered first to breast cancer patients
belonging to the family.

Classification comparison

When using the BOADICEA model as the reference standard, and
based on the lifetime breast cancer risk cut-offs from the Swiss
clinical guidelines, 58.8% of all samples were categorised as near-
population risk, 32.3% as moderate risk and 8.8% as high risk
(Table 3). Compared with the BOADICEA model, ML-ADA classified
7968 women into the high-risk group, which is an increase of
4790 samples. ML-ADA also classified 16,465 women into near-
population risk group, which is a decrease of 4818 samples
compared with the BOADICEA model. Concordance between the
BOADICEA model and ML-ADA was ~60% in the near-population
and the moderate-risk groups, while it was 87.95% in the high-risk
group. ML-ADA classified 9595 women (26.55%) to a higher- risk
group and 3174 (8.78%) women to a lower-risk group. When we
combined Table 3 with the Swiss Surveillance Protocol, we
identified an additional 2469 (14.83%) women younger than 50
who needed early-onset screening.

Clinical impact on mammography surveillance

Table 4 presents the overall number differences in mammo-
graphy surveillance when applying the BOADICEA and ML-ADA
models, and based on the Swiss Surveillance Protocol. For
women 40-59 years old, ML-ADA grouped an additional 184
women in the moderate-risk group, suggesting annual mammo-
graphy surveillance. ML-ADA grouped an additional 4,790
women in the high-risk group, among which 2535 women were
between 30 and 59 years old, suggesting annual mammogra-
phy, and 1865 women older than 60 years, suggesting biennial
mammography.

DISCUSSION

We used a novel approach to identify individuals at increased risk
of breast cancer by using ML algorithms. We analysed family
history, cancer pathology and clinic-demographic data from a
large retrospective dataset of n= 112,587 individuals from 2481
families. We examined whether ML algorithms could improve
predictive accuracy for breast cancer compared with the
BOADICEA model. We also quantified the differences in risk
classification and the impact on screening between these two
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Table 3.
for the breast cancer-free cohort.

Comparisons of lifetime risk classification between ML-Adapt Boosting (ML-ADA) algorithm and the BOADICEA model (reference standard)

Risk age Near-population risk Moderate risk High-risk BOADICEA > 30%,

BOADICEA risk < 17%, N = 21,283 17% < BOADICEA risk < 30%, N = 11,685 N=3178

ML-ADA < 17%< ML-ADA  ML-ADA 2 ML-ADA < 17%< ML-ADA ML-ADA 2 ML-ADA<  17%< ML- ML-ADA 2

17% <30% 30% 17% <30% 30% 17% ADA < 30% 30%
20-29 (n=4959) 2181 430 215 372 1050 233 17 41 420
30-39 (n=5277) 2069 645 430 407 989 256 18 34 429
40-49 (n=6 410) 2466 832 625 442 1191 326 20 44 464
50-59 (n=7 025) 2681 899 751 535 1243 337 25 49 505
60-69 (n=6 436) 2037 745 849 570 1326 349 23 43 494
70-80 (n=6 039) 2116 871 441 465 1233 361 21 48 483
Total 13,550 4422 3311 2791 7032 1862 124 259 2795
Concordance 63.67% - - - 60.18% - - - 87.95%
Reclassification - 20.78% 15.56% 23.89% - 15.93% 3.90% 8.15% -

- Does not apply.

N = 36,146. ML machine learning, BOADICEA Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm, ADA adaptive boosting.

Table 4.

Clinical impact on mammography screening based on Swiss Surveillance Protocol.

Breast cancer risk categories

No Mammography

Annual Mammography

Biennial Mammography

Moderate risk High risk
17-29% lifetime risk 230% lifetime risk
ML-ADA BOADICEA Difference ML-ADA BOADICEA Difference
20-29 1521 1655 -134 868 478 390
30-39 1668 1652 16 1115 481 634
40-49 2 067 1959 108 1415 528 887
50-59 2191 2115 76 1593 579 1014
60-69 2114 2245 -131 1692 560 1132
70-80 2152 2059 93 1285 552 733
Total 11713 11 685 28 7 968 3178 4790
Legend

ML machine learning, BOADICEA Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm, ADA adaptive boosting.

techniques based on the Swiss Surveillance Protocol. Compared
with the BOADICEA model, all three ML techniques were superior
at distinguishing cancer cases from cancer-free women, and
improved the predictive accuracy by 20-25% using exactly the
same risk factors as the BOADICEA model. These findings clearly
demonstrate the inherently better predictive ability of ML
algorithms.

About one in four women were classified into a higher-risk
group compared with the BOADICEA model. Given that ML
approaches achieved much higher discriminatory accuracy, some
women’s breast cancer risk would have been underestimated
when using the BOADICEA model, while one in eleven women'’s
risk would have been overestimated. When taking into account
the Swiss Surveillance Protocol, the major discordance for
mammography surveillance was observed for the high-risk group.
About 10-15% women 30-80 years old were underscreened when
using the BOADICEA model compared with ML-ADA.

Consistent with other national screening programmes, the
Swiss national breast cancer screening programme is based on
age alone, starting at 50 years old. This approach will miss some
breast cancers in moderate- and high-risk women 40-49 years old

and in high-risk women 30-49 years old. The development and
implementation of risk-based breast cancer control and preven-
tion strategies have important public health implications. Com-
mon risk estimation models, like the BOADICEA model, are
currently used in clinical practice to provide evidence for
adjustment of screening, i.e, more frequent mammographic
screening and initiation at a younger age. However, low
discriminatory accuracy has greatly limited the clinical utility of
these models. At the population level, ML algorithms have
reached high sensitivity and can be implemented to identify
high-risk women who should initiate earlier breast cancer screen-
ing. At the individual level, the decision for preventive interven-
tions, such as prophylactic mastectomy or use of tamoxifen as a
risk-reducing agent, is influenced by a woman'’s individualised
breast cancer risk estimate. When using ML, one in three women
were classified into different risk categories compared with the
BOADICEA model, which may lead to different preventive
interventions.

Given that breast cancer screening guidelines were established
after the release of several commonly used risk prediction models,
including BOADICEA, the guideline cut-offs (risk categorisation)



have been greatly influenced by these models. According to
several validation studies of the BOADICEA model, about 80-90%
of women were classified as having a lifetime breast cancer risk
between 5 and 25% (near population or moderate risk).>® This risk
distribution was also observed in our study. However, using a 17%
cut-off within a non-disperse risk distribution may have resulted in
low discriminatory accuracy for women around that cut-off (17%
or ‘near population risk'). When we reclassified women with ML
algorithms, applying cut-offs of 17% and 30% resulted in
shifting relatively large proportions of women between different
risk groups. This indicates that for ML algorithms, categorisation
of different risk groups (i.e., near population, moderate or
high risk) should be probably based on different cut-offs, based
on a clinically meaningful decision of their sensitivity and
specificity.”’

There are several barriers for using risk prediction models in a
wide variety of settings. First, each risk prediction model uses
different risk factors. The panel of risk factors used in the
development of each model limits its applicability and validity in
broader segments of the population. ML models can be applied
in medical consultation contexts where similar data inputs were
collected. Currently, the most feasible way of following the Swiss
Surveillance Protocol is through consultation with a medical
specialist. In this context, clinical decisions about risk manage-
ment options are likely influenced by risk calculations from such
prediction models. Secondly, existing infrastructures for collec-
tion and assessment of clinical data limit the development of
risk prediction models and their generalisability in broader
segments of the population. ML approaches have the potential
to achieve better accuracy, and can incorporate different types
of information, including mammographic images, family history,
germline genetic data and clinical factors. However, currently
there are no comprehensive systems that incorporate data from
such diverse sources, e.g., screening programmes, medical
consultations and medical records. In order to develop a risk
prediction model that can be used to enhance national
screening programmes, the usefulness of accessible risk factors
from screening practice, e.g., breast density and previous benign
breast disease, should be assessed. Based on the predictive
ability of each risk factor, and the feasibility of collecting
relevant data in the screening setting, a parsimony panel of risk
factors would be applied in ML modelling to develop a
comprehensive model that supports effective clinical decision-
making. However, limited resources have been invested into this
promising new analytic approach.

Strengths and limitations

Our results are reliable because we used a limited number of well-
established breast cancer risk factors without feature selection and
relatively non-complex ML models, which helps mitigate the
‘black-box' nature of ML algorithms. They are also reliable due to
the large sample size, completeness and high accuracies of the
data. Our models have been evaluated for internal validity, since
we have reproduced similar accuracy performance in this study
compared with our previous study.>* They have been partially
evaluated for external validity using internal statistical cross-
validation, a process where each fold iteration relies on separate
and independent training and testing datasets. For fully assessing
the external validity, we need to evaluate prospective samples
from populations intrinsically different from the development
sample, in respect to location, time or methods/criteria used for
data collection, which is a gradual process commonly applied to
prediction models.?**® Current screening guidelines already
incorporate risk estimates from existing prediction tools based
on inputs from medical consultation contexts. Thus, it is important
to study the potential clinical utility of ML as a promising
alternative analytic approach, even with limited information from
screening practice. Finally, breast cancer surveillance guidelines
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define ‘population level risk' as having a lifetime risk <17%
calculated from the BOADICEA model. This risk estimate does
not necessarily mean ‘low' risk in the general population due
to potential misclassifications. In our reclassification results,
the BOADICEA model classified 21,293 (58.9%) samples into the
population-level risk. Thus, our sample is ‘suitable’ for the
comparison and covers sufficiently women with a wide range of
risk estimates based on current recommendations.

One limitation of the study is that the performance of our
approaches was evaluated with k-Fold cross-validation process in
the same dataset, which could result in an optimistic model
performance. However, the k-Fold cross-validation process gen-
erally results in a less biased or less optimistic estimate of the
model skill compared with other commonly used methods, e.g.,
simple train/test split.>?> Moreover, we used retrospective cross-
sectional data, which limit the ability of ML algorithms to generate
5- or 10-year risk estimates. Analysing prospective longitudinal
data with ML algorithms may reveal additional implications for
clinical decision support.

In summary, we calculated lifetime breast cancer risk with ML
algorithms and compared their discriminatory accuracy, classi-
fication and impact on mammography screening with the
BOADICEA model according to the Swiss Surveillance Protocol.
Differences in classification and impact on breast cancer
surveillance were considerable. The ability of our model to
detect individuals with high suspicion of breast cancer, should
be further evaluated with other datasets and prospective
samples. Future studies can enhance the performance of ML
algorithms through incorporation of additional clinical data,
such as lifestyle, medications, breast images, exact histology of
benign breast diseases and co-morbidities.>*3” Future
studies can also include resource rearrangement
involving health policymakers and other stakeholders, in terms
of cost-effectiveness and adaptability in different clinical
settings. A prospective clinical trial would provide more
functional and extended evaluation of the performance of ML
algorithms, and findings can be compared with ongoing
personalised breast cancer screening trials like ‘My PeBS' and
‘WISDOM'>*>*
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