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Abstract
Purpose Fetoscopic laser photocoagulation is a minimally invasive surgical procedure used to treat twin-to-twin transfusion
syndrome (TTTS), which involves localization and ablation of abnormal vascular connections on the placenta to regulate
the blood flow in both fetuses. This procedure is particularly challenging due to the limited field of view, poor visibility,
occasional bleeding, and poor image quality. Fetoscopic mosaicking can help in creating an image with the expanded field of
view which could facilitate the clinicians during the TTTS procedure.
Methods We propose a deep learning-based mosaicking framework for diverse fetoscopic videos captured from different
settings such as simulation, phantoms, ex vivo, and in vivo environments. The proposed mosaicking framework extends an
existing deep image homography model to handle video data by introducing the controlled data generation and consistent
homography estimation modules. Training is performed on a small subset of fetoscopic images which are independent of the
testing videos.
Results We perform both quantitative and qualitative evaluations on 5 diverse fetoscopic videos (2400 frames) that captured
different environments. To demonstrate the robustness of the proposed framework, a comparison is performedwith the existing
feature-based and deep image homography methods.
Conclusion The proposed mosaicking framework outperformed existing methods and generated meaningful mosaic, while
reducing the accumulated drift, even in the presence of visual challenges such as specular highlights, reflection, texture
paucity, and low video resolution.
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Introduction

Twin-to-twin transfusion syndrome (TTTS) is a rare con-
dition during pregnancy that affects 10–15% of genetically
identical twins sharing a monochorionic placenta [5]. It is
caused by abnormal placental vascular anastomoses on the
chorionic plate of the placenta resulting in uneven flow of
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blood between the fetuses. This condition puts both twins
at risk and requires treatment before birth to increase their
survival rate. Fetoscopic laser photocoagulation (Fig. 1), a
minimally invasive procedure, is the most effective treatment
for TTTS in which the surgeon uses a fetoscopic camera to
inspect and identify abnormal vascular anastomoses on the
placental chorionic plate, and uses a retractable laser ablation
tool in the working channel of the scope to photocoagulate
the vascular anastomoses to separate the blood circulation of
each twin. Limited field of view (FoV) and maneuverability
of the fetoscope, poor visibility [18] due to variability in light
source, and unusual placenta position [11] may impede the
procedure leading to increased procedural time and incom-
plete ablation of anastomoses resulting to persistent TTTS.
Fetoscopic mosaicking can create an expanded FoV image
of the placental surface, which may facilitate the surgeons in
localizing vascular anastomoses during the procedure.

Mosaicking for the FoV expansion in fetoscopy has
been explored using feature-based, intensity-based, and
deep learning-based methods [2,3,10,21,22,26,27]. Reeff et
al. [22] and Daga et al. [10] used the classical image feature-
based matching method for creating mosaics from planar
placenta images. Reeff et al. [22] experimented with the feto-
scopic images of an ex vivo placenta submerged in water,
while Daga et al. [10] used images of an ex vivo phantom
placenta. Amosaic is generated by aligning the relative trans-
formations between the pair of consecutive fetoscopic images
with respect to a reference frame. A small error in the rela-
tive transformations can introduce large drift in the mosaic,
where global consistency alignment techniques and use of
electromagnetic tracker can help to minimize the drifting
error [21,26,27]. Tella-Amo et al. [26,27] assumed placenta
to be planar and static and integrated the electromagnetic
tracker with the fetoscopic in a synthetic and ex vivo setup
to propose a mosaicking approach capable of handling the
drifting error. However, current clinical regulations and lim-
ited form factor of the fetoscope hinder the use of such a
tracker in intraoperative settings. Peter et al. [21] proposed
a direct pixel-wise alignment of gradient orientations for
creating a mosaic from a single in vivo fetoscopic video.
Gaisser et al. [15] detected stable regions on veins of the
placenta using a region-based convolutional neural network
and then used these detected regions as features for placen-
tal image registration in an underwater phantom setting [15].
Bano et al. [3] proposed a deep learning approach for pla-
cental vessel segmentation and registration for mosaicking
and showed that vessels can act as unique landmarks for
creating mosaics with minimum drifting error. Mosaicking
from fetoscopic videos particularly remains challenging due
to fetoscopic device limitations (monocular low-resolution
fetoscopic camera with FoV limitation), occlusion by the
fetus, ablation tool presence and occasional bleeding, non-
planar views, turbid amniotic fluid, specular highlights and

reflection due to variation in the light source, distortion due to
light refraction [9], and texture paucity. Automatic selection
of occlusion-free fetoscopic video segments [4] can help in
identifying relevant segments for mosaicking. We showed
in [2] that deep learning-based image alignment helps in
reducing the accumulated drift, even in the presence of visual
challenges such as specular highlights, reflection, texture
paucity, and low video resolution.

Supervised deep learning-based techniques estimate the
correspondences between pair of disparate natural scene
images [13,23,25] by using benchmark datasets of disparate
natural scene images with known ground-truth correspon-
dence for training. However, ground-truth correspondences
are unknown in fetoscopic videos. Moreover, [13] and [25]
used pair of high-resolution natural scene images which are
sharp and rich in both texture and color contrast, contrary to
fetoscopic videos which are of low resolution, lack both tex-
ture and color contrast since the in vivo scene is monotonic
in color, and are unsharp because of the introduced aver-
aging to compensate for the honeycomb effect of the fiber
bundle scope. As a result, hand-crafted feature-based meth-
ods perform poorly on the fetoscopic videos. Shen et al. [23]
and Srivastava et al. [25] used pretrained deep learning fea-
tures as backbone for learning the correspondences between
natural images. However, in the case of fetoscopic videos,
due to poor texture and contrast, feature maps computed
from pretrained networks may not capture distinct features
for robust correspondence estimation since these models are
pretrained on natural images (like ImageNet) which does not
capture the fetoscopic data distribution. Moreover, none of
the approaches [13,23,25] extended beyond pair of images
matching to expand the field of view from videos.

Self-supervised deep learning-based solutions can over-
come some of the challenges associated with fetoscopic
mosaicking. Image homography estimation methods have
been proposed [12,20] that use pairs of image patches
extracted from a single image to estimate the homography
between them. In practice, a full mosaic is generated by com-
puting sequential homographies between adjacent frames in
an image sequence, where fetoscopic video poses additional
challenges due to artifacts and occlusions, thus affecting the
stitching problem. However, such challenges can be tackled
by estimating the homographies between a pair of con-
secutive frames by extracting random pair of patches each
time and estimating the most consistent homography. In this
paper, we adopt this approach and propose a framework for
mosaicking from fetoscopic videos captured from various
fetoscopes and in various experimental settings. We adapt
the deep image homography (DIH) [12] estimation method
for training by assuming that the transformation between two
adjacent frames contains a rotation and translation compo-
nent only. We propose a controlled data generation approach
that uses a small set of fetoscopic images of varying qual-
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Fig. 1 Pictorial illustration of the fetoscopic laser photocoagulation for the treatment of TTTS and 1-to-1 mapping of 4-pt and 3 × 3 homography
parameterizations

ity and appearance, for training. We then perform outlier
rejection to find the consistent homography estimate between
multiple pair of patches extracted at randomfrom twoconsec-
utive frames. Controlled data generation and outlier rejection
combine to minimize the drift without the use of any external
sensors. We perform comparison of the proposed fetoscopic
video mosaicking (FVM) framework with existing methods
using 5 diverse datasets. This paper is an extended version
of the work presented at the MICCAI 2019 conference [2]
and provides a broader insight into the fetoscopic mosaick-
ing research, comprehensive analysis of both qualitative and
quantitative results and comparison with the existing meth-
ods.

Problem formulation

A homography (rigid) or projective transformation, repre-
sented by a 3×3 matrix H, is a nonlinear transformation that
maps image points x → x′ between two camera views under
the planar scene assumption:

⎡
⎣
u′
v′
1

⎤
⎦ ∝

⎡
⎣
h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤
⎦

⎡
⎣
u
v

1

⎤
⎦ , (1)

where (u, v) is a 2D point that is mapped to (u′, v′) with the
homography H and H is defined up to a scale; hence, it has
eight degrees of freedom.

The problem of generating a mosaic from an image
sequence is to find the pairwise homographies between
frames Fk and Fk+l (where k and l are not necessarily
consecutive frames) followed by computing the relative
homographies with respect to a fixed reference frame, also
termed as the mosaic plane. The relative homography is
represented by left-hand matrix multiplication of pairwise
homographies:

Hk
k+l =

k+l−1∏
i=k

Hi
i+1. (2)

This assumes a piecewise planarity of the placental surface
observed by the fetoscope, and while not generally true, it
is sufficient for local patches of the placenta. Note that a
rigid transformation model is considered since the placental
surface does not deform over time. Moreover, there is no
perceptible placental vessel expansion/contraction due to the
breathing of the patient.

Deep image homography

Deep image homography (DIH) model [12] uses a convo-
lutional neural network to estimate the relative homography
between pairs of image patches extracted from a single image
by learning to estimate the four-point homography.

Four-point homography estimation

The rotation and shear components in the 3× 3 parameteriza-
tion H have smaller magnitude compared to the translation;
as a result, their effect on the loss function during train-
ing is small. Therefore, DIH model [12] uses the 4-point
homography parameterization 4pH [1], instead of the 3×3
parameterization H (Eq. 1) for the estimation. Let (ui , vi ),
where i = 1, 2, 3, 4, denote the four corners of an image
PA and (u′

i , v
′
i ) denote the four corners in an overlapping

image PB . Then, �ui = u′
i − ui and �vi = v′

i − vi give the
displacement of the i th corner point, and the 4-point homog-
raphy parameterization 4pH is given by:

4pH =
[
�u1 �u2 �u3 �u4
�v1 �v2 �v3 �v4

]T

. (3)

A one-to-one mapping exists between the 4-point 4pH and
3 × 3 H homography parameterizations. With the (ui , vi )
and (u′

i , v
′
i ) known in Eq. 1, H can be computed by applying

direct linear transform [16] (Fig. 1).
DIH is a VGG-like [24] network (Fig. 2) which is used

for regressing the displacement between the four corner
points. The network consists of 8 convolutional layers and
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Fig. 2 DIH regression network with controlled data generation for training

2 fully connected layers. The input of the network is PA

and PB extracted at random from a single image, and out-
put is their relative homography 4pĤA

B . For the gradient
back-propagation during the training process (represented
by dotted line in Fig. 2), the network uses the Euclidean loss

L2 = 1

2

∥∥∥4pH −4p Ĥ
∥∥∥2 , (4)

where 4pH and 4pĤ are the ground-truth (GT) and pre-
dicted 4-point homographies. Note that [12] used the MS-
COCO dataset for training, where pair of patches were
extracted from a single static real-world image, free of arti-
facts (e.g., specular highlights, amniotic fluid particles) that
appear in sequential data.

Limitation of deep image homography

For the DIH model, the training data are generated by ran-
domly selecting an image patch PA of size 128× 128 from a
grayscale image and randomly perturbing all its four corners
by a maximum of 32 pixels to obtain PB and the relative
GT 4pHA

B . It is observed through experimentation that data
generation by performing random perturbation (as proposed
in [12]) results in scenarios that are difficult for the net-
work to learn, hence resulting in higher error. In the case
of mosaicking, where homography between frames Fk and
Fk+l is computed by accumulating the intermediate pairwise
homographies (Eq. 2), even a small error in pairwise homog-
raphy will accumulate over time resulting in increasing drift.
Therefore, this data generation model cannot be used as it is
for creating mosaics from sequential data.

Fetoscopic videomosaicking

An overview of the proposed fetoscopic video mosaick-
ing (FVM) is shown in Fig. 3, which can be divided into
two stages, (1) data generation for regression network train-
ing (Sect. 4.1) and (2) consistent homography estimation
(Sect. 4.2). To overcome the limitation of DIH, we propose

controlled data generation in which DIH is trained on pairs
of patches generated by introducing translation and rotation
transformations only on a single image. During testing, we
apply the median filter to decomposed homography estima-
tions from different patches of the same pair of consecutive
frames to get a robust estimate of the homography.

Data generation for regression network training

In sequential data, pairwise homography between two adja-
cent frames Fk and Fk+1 is related by affine transformations
including rotation, translation, scale, and shear, where the
scale can be considered as constant since fetoscopy is
performed at a fixed distance from the placental surface.
Moreover, the motion of the fetoscope is physically con-
strained by the incision point (remote center of motion),
making shear component extremely small compared to the
translation and rotation components. Therefore, scale and
shear components can be neglected. We assume that Fk and
Fk+1 are related by the translation and rotation components
only. This assumption helps in minimizing the error in rela-
tive homography between frames.

For controlled data generation, given a grayscale image I
of size 256 × 256, an image patch PA of size 128 × 128 is
extracted at a random location with corner points given by
(ui , vi ), where i = 1, 2, 3, 4. The four corners for PB are
then computed by applying a rotation by β and translation
by (dx , dy) to (ui , vi ):

[
u′
i

v′
i

]
=

[
cosβ sinβ
−sinβ cosβ

] [
ui
vi

]
+

[
dx
dy

]
, (5)

where β, dx and dy are empirically selected. 4pHA
B is then

obtained using Eq. 3. PA, PB , and 4pHA
B form the input of

the regression network. During training (Fig. 2), the relative
homography is learned between patches that are extracted
from a single image following the controlled data generation
process. During testing where the patches are extracted from
the consecutive frames, the homography estimate may not

123



International Journal of Computer Assisted Radiology and Surgery (2020) 15:1807–1816 1811

Fig. 3 Overview of the proposed FVM framework

always be accurate due to texture paucity and poor contrast
in fetoscopy.

Consistent homography estimation

Outlier rejection is performed during testing by applying
medianfiltering to the homographies estimates obtained from
random patches of the same pair of frames (Fig. 3). To
obtain a robust estimate of the homography, we first need to
decompose Ĥ. We apply singular value decomposition [19]
which decomposes H into a rotation, a non-uniform scale,
and another rotation, given by:

[
ĥ11 ĥ12
ĥ21 ĥ22

]
=

[
cosθ̂ sinθ̂
−sinθ̂ cosθ̂

] [̂
sg 0
0 ŝh

] [
cosγ̂ sinγ̂
−sinγ̂ cosγ̂

]
,

(6)

where θ̂ , γ̂ , ŝg and ŝh are the unknowns. Since the left-hand
side in Eq. 6 is known, we can solve the simultaneous equa-
tions for θ̂ , γ̂ , ŝg and ŝh (for derivation refer to [7]). The
translation components can be extracted directly from Ĥ as
t̂x = ĥ13 and t̂y = ĥ23. For affine transformation, the homog-
raphy parameters ĥ31 � 0 and ĥ32 � 0. In Eq. 6, the rotation
matrices are orthogonal and the scale matrix is diagonal.

For a pair of consecutive frames Fk and Fk+1, we compute
the homography nĤk

k+1 for N = 99 iterations such that at
each iteration, a new random pair of patches nPk and nPk+1 is
used. This results in slightly varying estimations at some iter-
ations due to varying visual quality across the sequence. For
each iteration, we obtain the decomposed parameters where
the rotation components can be represented as (θ̂n)

N
n=1 and

(γ̂n)
N
n=1. The variations in scale components are very small

due to fixed scale assumption during the training process. But
the variations in the rotation components are significant and

useful for outlier rejection. Hence, we compute the median
over all the iterations for (θ̂n)

N
n=1 to get its argument:

θ̂i = arg median
n

((θ̂i )
N
n=1), (7)

which gives the most consistent value for θ . The values of
θ̂i , γ̂i , ŝxi , ŝyi , t̂xi and t̂yi are then plugged into Eq. 6 to get
the consistent i Ĥk

k+1.

Experimental details

Dataset

For the experimental analysis, we use five fetoscopic videos
that captured phantom and real human placenta in ex vivo
and in vivo environments. Our video data include 2 videos
from the existing literature, namely synthetic (SYN)—a dis-
continuous version of this sequence was used in [26], and an
ex vivo in water (EX) data reported from [14]. We also cap-
tured twovideos using placenta phantom in in-house settings.
The first phantom video, referred as PHN1, was captured
using a rigid placenta model in air placed in a surgical trainer
box [17]. The second phantom video, referred as PHN2, was
captured using a TTTS phantom.1 PHN1 and PHN2 were
captured with Storz rigid 30◦ and 0◦ scopes, respectively,
having light source in one of theirworking channels. The fifth
video sequence is from an in vivo TTTS procedure (INVI)
that intraoperatively captured the human placenta. PHN1,
PHN2, and INVI differ significantly from SYN and EX as

1 Surgical Touch Simulator https://www.surgicaltouch.com/.
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Table 1 Main characteristics of the videos used for the experimental analysis

Video name Imaging
source

# Frames Frame resolu-
tion (pixels)

Cropped frame
resolution (pixels)

Camera view Motion type

Synthetic
(SYN) [26]

– 811 385 × 385 260 × 260 Planar Circular

Ex vivo in water
(EX) [14]

Stereo 404 250 × 250 250 × 250 Planar Spiral

Phantom without
fetus (PHN1)

Rigid 30◦ scope 681 1280 × 960 834 × 834 Non-planar Circular (freehand)

TTTS Phantom
in water (PHN2)

Rigid scope 350 720 × 720 442 × 442 Non-planar with
heavy occlusions

Exploratory (freehand)

In vivo TTTS
procedure (INVI)

Rigid scope 150 470 × 470 312 × 312 Non-planar with
heavy occlusions

Exploratory (freehand)

they captured non-planar views with freehand motion, thus
creating challenging scenarios for mosaicking methods.

Table 1 summarizes the main characteristics of the five
test videos, and representative images from these videos are
shown in Fig. 4. The visual quality, appearance, frame reso-
lution, and imaging source vary across all five videos. These
variations pose challenging scenarios for mosaicking meth-
ods. SYN and EX captured a planar view and followed a
circular loop closure and spiral motion, respectively. EXwas
captured using a KUKA articulated arm robot and followed a
pre-programmed fixed spiral trajectory [14]. PHN1 captured
non-planar views that followed a freehand circular trajectory
depicting a scenario with loop closure. PHN2 and INVI cap-
tured highly non-planar views containing heavy occlusions.

Experimental setup

The recorded videos are converted to frames using the FFm-
peg software.2 To extract a square frame from the circular
(Fig. 4), in order to use it as the input for the proposed
network, we detect the circular mask of the scope through
pixel-based image threshold and morphology. A square
cropped frame is then extracted such that it is an inscribed
square within the circular mask (Table 1). Note that the
resolution of frames varies as they were captured from dif-
ferent imaging sources. For training (Sect. 4.1), we extracted
600 frames at random from SYN, PHN1, PHN2, INVI, and
another in-house ex vivo still images dataset. Note that the
still image ex vivo dataset is not a video sequence; hence,
it was only used during training as it does not satisfy the
continuous video assumption. EX dataset (Table 1) was not
used during training; hence, it is a completely unseen data
used for testing the generalization of the proposed method
to an unseen dataset. We converted the training images to
grayscale and resized them to 256 × 256 resolution. We
use Keras with Tensorflow backend for the implementation

2 FFmpeg https://ffmpeg.org.

and train the regression network for 15 hours on a Tesla
V100 (32GB) using a learning rate of 10−4 and ADAM
optimizer. Pairs of patches with controlled data augmenta-
tion (Sect. 4.1) are generated at run time in each epoch by
randomly selecting β between (−5◦,+5◦), and dx and dy
between (−16, 16). The regression network is trained for
60,000 epochs with a batch size of 32. Same training settings
are used for training the regression model without controlled
data augmentationwhere each corner point of PA is perturbed
at random between (−16, 16).

Evaluation protocol

Weperform comparison of the proposed FVMwith a feature-
based (FEAT) [8] and DIH [12] methods. FEAT extract
speeded up robust features [6] from a pair of images and
performs an exhaustive search for feature matching to esti-
mate the homography. In fetoscopic videos, the GT pairwise
homographies between consecutive frames are unknown.
Hence, the accumulated error over time can mainly be
observe through qualitative analysis. The GT homographies
are only available for the SYN data. Therefore, we compute
the residual error for the evaluation on this data as:

eH = 1

SIW SI H

SIW SI H∑
i=1

∥∥∥(Ĥk
k+1)

−1xi − (Hk
k+1)

−1xi
∥∥∥2 , (8)

where xi is the coordinate of the i th position in the image,
Ĥk+1

k andHk+1
k are the estimated andGThomographies from

Fk to Fk+1, respectively, and SIW is the width and SI H is the
height of a patch.

For the quantitative evaluation of the remaining videos,
we report the root mean square error between the GT 4pHA

B
and estimated 4pĤA

B 4-point homographies obtained when
the two patches are extracted from a single image (Sect. 4.1).
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(a) Synthetic (SYN)

(b) Ex-vivo (EX)

(c) Phantom Placenta (PHN1)

(d) TTTS Phantom (PHN2)

(e) Invivo (INVI)

Fig. 4 Representative frames from the five videos under analysis

(a) GT (b) FVM (c) DIH (d) FEAT

(e) Residual error (f) Root mean square error Photometric error(g)

Fig. 5 a–d Visualization of mosaics for one circular loop (360 frames) of the SYN sequence. e–g Quantitative comparison of FEAT, DIH and FVM

This is given by:

eR =
(∑4

i=1

[
(�ui − �ûi )2 + (�vi − �v̂i )

2
]

4

)1/2

, (9)

where �ui and �vi are the GT displacements of the four
corners and �ûi and �v̂i are the estimated displacements.
Finally, we report the photometric error (PE) between patch
Pk+1 and reprojected patch P ′

k obtained by warping Pk using
the estimated homography Ĥk

k+1. The photometric error is
computed as:

eP = 1

SIW SI H

SIW SI H∑
i=1

∥∥P ′
k − Pk+1

∥∥ . (10)

We report the box plots for the three error metrics in the next
section.

Results and discussion

Figure 5a–d shows the qualitative comparison results on one
circular loop (360 frames) of the SYN sequence. Figure 5e–g
shows the quantitative comparison in terms of the residual,
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Fig. 6 Quantitative comparison of FVM, DIH, and FEAT on the test videos

root mean square and photometric errors for the complete
length of the SYN sequence. We can observe from these
visualizations that the drift is minimal in the case of FVM
compared to DIH and FEAT. In the case of DIH, tracking
is lost in just 30 frames mainly because of random per-
turbation of the four corners to generate the training data
(Sect. 3.2). This results in extremely highmean residual error
for DIH (Fig. 5e). Compared to DIH and FEAT, the three
error metrics (Fig. 5e–g) are low for FVM which correlates
with the observations from the visualizations. For FVM, the
median values for residual, root mean square, and photomet-
ric errors are 3.88, 0.29, and 2.42, respectively, which are
significantly better than FEAT median values (15.67, 7.6,
2.94).

Quantitative comparison of the proposed FVMwith FEAT
and DIH reporting the root mean square error is presented
in Fig. 6a for the EX, PHN1, PHN2, and INVI videos.
For the proposed FVM, the median value of the root mean
square error for EX is 0.30, PHN1 is 0.27, PHN2 is 0.30,
and INVI is 0.29. These values are significantly lower than
DIH and FEAT. Error for DIH is also low but not as low
as FVM. The root mean square errors for FVM and DIH
are particularly low because the optimization of these meth-
ods is done on the 4-point homographies, and root mean
square error is also calculated using this representation.How-
ever, the introduced error in DIH is higher, compared to
FVM, mainly because of the random perturbation of the
corner points during training. A similar performance trend
is observed from the photometric error (Fig. 6b) for which
FVM returned the median value of 0.90 in EX, 1.72 in
PHN1, 1.46 in PHN2, and 2.41 in INVI videos. Note that
the median in the case of FVM for all four test videos is
lower than the first quartile (25th percentile) of DIH and

FEAT. Moreover, the interquartile range is very small in the
case of FVM, depicting that the error at each frame is con-
centrated in a small range. Compared to FVM, the mean and
interquartile range of DIH and FEAT are high because of
inaccurate homography estimates resulting in higher repro-
jection error. These results and observations are in line with
the qualitative analysis that is presented in the subsequent
paragraphs.

Figure 7 shows the visualization result of the proposed
FVM for the EX, PHN1, PHN2, and INVI videos. The visu-
alization results for DIH and FEAT are presented in the
supplementary material. EX (unseen data) is of low reso-
lution with blurred frames and captures a spiral scanning
motion. FVM created a meaningful mosaic for EX video
with minimum drift accumulation over time. PHN1 is the
longest video under analysis and has non-planar views with-
out occlusionswith the camera following a circular trajectory.
FVM managed to generate reliable mosaics with minimum
drift which can be observed from frame 681 in Fig. 7b, where
loop closure with minimal drift can be seen. Unlike the exist-
ing methods that use external sensors for minimizing the
drift [26], FVM relies only on image data and generates
meaningful mosaics with minimum drift even for non-planar
sequences.

PHN2 represents a challenging scenario as it contained
highly non-planar frames with heavy occlusions, low reso-
lution, and texture paucity. None of the existing fetoscopic
mosaicking literature investigated such a scenario. DIH and
FEAT failed to register this sequence (refer to supplemen-
tary), while FVM gave promising results. We observe from
Frames 250 and 350 (Fig. 7c) that although the generated
mosaic can serve well for increasing the FoV, there is a
noticeable drift due to heavy occlusions and highly non-
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(a)

(b)

(c)

(d)

Fig. 7 Qualitative results of the proposed FVM

planar views. Such errors may be corrected by end-to-end
training using the photometric loss [20]. INVI is taken from
a TTTS fetoscopic procedure and contains occlusions due to
the appearance of the fetus in the FoV, reflection from float-
ing particles, illumination variation, and low resolution. DIH
failed to register consecutive frames in this sequence. FEAT
lost tracking around 50th frame due to inaccurate feature
matches (refer to supplementary). However, FVM (Fig. 7d)
managed to generate a meaningful mosaic for the complete
duration of the sequence with noticeable drift.

The quantitative and qualitative comparison on five
diverse fetoscopic test videos shows that the proposed FVM
is capable of handling several visual challenges such as
varying illumination, specular highlights/reflections, and low
resolution along with non-planar views with occlusions. The
proposed FVM solely relied on the image intensity data and
generated reliable mosaics with minimum drift even for non-
planar test videos.

Conclusion

Weproposed adeep learning-based fetoscopic videomosaick-
ing framework which is shown to handle fetoscopic videos
captured in different settings such as simulation, phantoms,
ex vivo, and in vivo environments. The proposed method
extended an existing image homography method to handle
sequential data. This is achieved by introducing a con-
trolled training data generation stage which assumed that
there is only a small change in rotation and translation
between two consecutive fetoscopic frames. Homography
estimates slightly vary between two consecutive frames
when selecting patch location randomly during testing due
to texture paucity and visual variations; hence, this can
introduce drifting error. To handle this issue, we intro-
duced the consistent homography estimation stage that
pruned the homography estimate between multiple pair of
patches extracted at random from two consecutive frames.

Quantitative and qualitative evaluations on five diverse feto-
scopic videos showed that, unlike existing methods that
are unable to handle visual variations and drift rapidly
in just a few frames, our method produced mosaics with
minimal drift without the use of any photo-consistency
(loop closure) refinement method. Such a method may
provide computer-assisted interventional support for TTTS
treatment to facilitate the localization of abnormal placen-
tal vascular anastomoses by providing an expanded FoV
image.
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