
Reduced mRNA Secondary-Structure Stability Near the
Start Codon Indicates Functional Genes in Prokaryotes

Thomas E. Keller1, S. David Mis2, Kevin E. Jia2, and Claus O. Wilke1,3,4,*
1Section of Integrative Biology, The University of Texas at Austin
2Department of Mathematics, The University of Texas at Austin
3The Institute for Cellular and Molecular Biology, The University of Texas at Austin
4Center for Computational Biology and Bioinformatics, The University of Texas at Austin

*Corresponding author: E-mail: wilke@austin.utexas.edu.

Accepted: 25 November 2011

Abstract

Several recent studies have found that selection acts on synonymous mutations at the beginning of genes to reduce mRNA

secondary-structure stability, presumably to aid in translation initiation. This observation suggests that a metric of relative

mRNA secondary-structure stability, ZDG, could be used to test whether putative genes are likely to be functionally important.

Using the Escherichia coli genome, we compared the mean ZDG of genes with known functions, genes with known

orthologs, genes where function and orthology are unknown, and pseudogenes. Genes in the first two categories

demonstrated similar levels of selection for reduced stability (increased ZDG), whereas for pseudogenes stability did not differ
from our null expectation. Surprisingly, genes where function and orthology were unknown were also not different from the

null expectation, suggesting that many of these open reading frames are not functionally important. We extended our

analysis by constructing a Bayesian phylogenetic mixed model based on data from 145 prokaryotic genomes. As in E. coli,
genes with no known function had consistently lower ZDG, even though we expect that many of the currently unannotated

genes will ultimately have their functional utility discovered. Our findings suggest that functional genes tend to evolve

increased ZDG, whereas nonfunctional ones do not. Therefore, ZDG may be a useful metric for identifying genes of potentially

important function and could be used to target genes for further functional study.
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Introduction

Synonymous mutations, which do not cause changes to the

protein encoded by a gene, are often referred to as silent

mutations. Evidence has accumulated, however, that these

mutations can have an important effect on phenotype

(Chamary et al. 2006; Kimchi-Sarfaty et al. 2007; Zhang

et al. 2010, see Plotkin and Kudla 2011; Sauna and

Kimchi-Sarfaty 2011 for recent reviews). One recently dis-

covered selective force on synonymous mutations arises

from the mRNA secondary structure of transcribed genes.

Using variants of green fluorescent protein that differed only

by synonymous mutations, Kudla et al. (2009) found that

variants with high levels of mRNA secondary structure pro-

duced lower amounts of protein. Indeed, mRNA secondary

structure was the main source of variation in protein ex-

pression for that study. A second experimental study

constructed ribosomal protein mutants containing different

nonsynonymous and synomymous mutations and, subse-

quently, measured fitness via growth and competition
assays (Lind et al. 2010). The distribution of fitness effects

for both types of mutations were surprisingly similar, with

most mutations being mildly deleterious. The conclusion

from that study was that the similarity in the fitness distri-

bution was due to the same underlying cause previously

suggested by Kudla et al. (2009): changes in mRNA second-

ary structure. Although these studies suggest that there is

a strong link between mRNA secondary structure and pro-
tein abundance, a third experimental study (Welch et al.

2009) found a much weaker effect and argued for codon

usage bias as the primary determinant of protein abun-

dance. Computational evidence for the importance of

mRNA secondary structure includes a study by Gu et al.

(2010), who analyzed the mRNA stability at the beginning
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of genes in a wide variety of cellular organisms spanning the
tree of life; they found a general pattern of reduced mRNA

stability at the beginning of coding sequences relative to null

expectations. Tuller et al. (2010) found similar results in

Escherichia coli and Saccharomyces cerevisiae, whereas

Zhou and Wilke (2011) found a similar pattern in dsDNA

viruses. Collectively, these studies suggest that mRNA

stability at the 5# coding region of genes is an important trait

under selection in a wide variety of organisms.
Since the completion of the E. coli genome, biologists

have amassed an incredible amount of functional knowl-

edge about what its approximately 4,300 open reading

frames (ORFs) are used for (Blattner et al. 1997). Of these

ORFs, 86% are annotated with their known or believed

function. Most of the remaining ORFs are believed to code

for functional proteins because orthologous genes have

been found in other organisms. There is only a small number
of ORFs—about 100—for which it is not known whether

a protein is made and, if so, whether it has a function. In

other genomes, functional knowledge is much less com-

plete. A survey of GenBank files for 310 prokaryotic ge-

nomes finds that 28% of genes are purely hypothetical,

meaning that they have start and stop codons but nothing

else is known about them. Thus, it would be useful to have

a metric to identify which putative genes are likely to be
functionally important, so they can be studied further.

We investigated whether genes of various categories dis-

played different levels of selection for reduced mRNA stabil-

ity near the start codon. As expected, we found for E. coli
that genes with known function generally had reduced lev-

els of mRNA stability, whereas known pseudogenes dis-

played no evidence of selection. Genes with orthologs

but no identified function displayed selection similar to
genes with known function. By contrast, the remaining

ORFs lacking functional knowledge and orthology had

mRNA secondary-structure stability similar to the ORFs of

known pseudogenes. We validated our finding of reduced

selection in genes of unknown function using data from 145

prokaryotic genomes; in general, ORFs with a known or pre-

dicted function had less stability compared with genes of

unknown function.

Materials and Methods

Data Sources

We obtained 126 bacterial and 19 archaeal annotated ge-

nomes from the NCBI FTP server (ftp://ftp.ncbi.nih.gov/). We

selected genomes that had previously been analyzed by

Gu et al. (2010) and for which 16S ribosomal RNA was

available in the Comparative RNA website (Cannone
et al. 2002). A list of the 145 genomes analyzed is provided

as supplementary table 1, Supplementary Material online.

As in Gu et al. (2010), we focused on coding sequences

longer than 50 bases.

We obtained mRNA abundance data for E. coli from
Ragavan et al. (2011). This data set reported mRNA expres-

sion level per individual nucleotide.We converted these data

into gene expression levels by calculating the mean mRNA

expression level over all nucleotide positions in the coding

sequence of each gene. We considered genes with expres-

sion level below the genome-wide median as lowly

expressed and all others as highly expressed.

We calculated codon adaptation index (CAI) values for
E. coli genes using the CodonW program (http://codonw.

sourceforge.net/). We considered genes with CAI below

the genome-wide median as low-CAI genes and all others

as high-CAI genes.

We obtained the E. coli core genome from Touchon et al.

(2009).

RNA Secondary Structure Stability

The folding free energy of RNA (DG), a measure of how

much secondary structure is present, was estimated by RNA-

fold (Hofacker et al. 1994) using default parameters. We
compared the observed secondary structure stability to

1,000 randomly permutated mRNA sequences to obtain

a statistical deviation from a null sequence distribution,

denoted as ZDG. Within coding sequences, permutations

were performed such that the protein sequence for a given

gene was maintained, but synonymous codons within the

gene were reshuffled (Gu et al. 2010). This method controls

for codon usage, GC content, and the protein sequence.
ZDG is simply the difference between the observed mRNA

secondary structure stability and the mean stability of

1,000 randomly reshuffled coding sequences, normalized

to the standard deviation of the stability null distribution.

For E. coli, we generally consideredmRNA stability for the

first 30 bases of a coding sequence, as Gu et al. (2010) had

previously shown that lowered stability occurred primarily

in this region. For the remaining genomes, we collected
the ZDG values for the first 30 bases in each ORF from Gu

et al. (2010), available at http://openwetware.org/wiki/Wilke:

Data_Sets.

In certain analyses, we also examined ZDG for regions up-

stream of a coding region, using a sliding window approach

for 30 base windows starting 10, 20, and 30 bases upstream

of the coding region. The reshuffling method used to gen-

erate the null stability distribution in noncoding regions was
different from that used for ORFs: the 30 bases upstream of

an ORF were reshuffled at random, whereas in ORFs synon-

ymous codons were reshuffled throughout the ORF.

Programmingwas done using a combination of the Python

and Cython (Behnel et al. 2011) programming languages.

Gene Function Categorization

We parsed the E. coli GenBank file using Biopython (Cock

et al. 2010), assigning genes a functional category based on
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their annotation. Due to E. coli’s long use as a model organ-
ism, the E. coli gene annotation was fairly standardized. In-

formation about the function of a gene was typically

contained in the ‘‘product’’ annotation. Genes were desig-

nated as conserved if orthologs were known but no func-

tional annotation was available. Putative genes were

coding regions with no functional knowledge or evidence

of homology. Finally, we identified known pseudogenes

as a separate class.
The remaining genomes used in this study were less

consistently annotated. Thus, for the remaining organisms,

we considered only genes of known or predicted function,

conserved genes, and genes of unknown function.

Our raw data for E. coli, including functionality annota-

tion and ZDG values, are provided as supplementary table 2,

Supplementary Material online. The contents of the table

columns is explained in the supplementary text, Supplemen-
tary Material online.

Comparative Phylogenetics

We obtained alignments for the highly conserved 16S ribo-

somal RNA from the Comparative RNA website (Cannone
et al. 2002). If multiple sequences were available for a spe-

cies, we generated a consensus sequence. We then built

a maximum-likelihood tree in RAxML, using the combined

bootstrap-treesearching method (Stamatakis 2006). We

then constructed an ultrametric tree from the RAxML output

by using a semiparametric penalized likelihood approach

implemented in the R package ‘‘ape’’ (Sanderson 2002;

Paradis et al. 2004; R Development Core Team 2010). This
method uses a smoothing parameter, k, to control how

much evolutionary rates vary across a tree. As suggested

in Sanderson (2002), we used a range of k values; our final

tree was generated with the k that minimized a cross-

validation statistic. The cross-validation statistic was calcu-

lated by eliminating each tip in succession and taking the

sum of squared differences between the branch lengths

in the reduced tree and the full tree (Paradis et al. 2004).
The final phylogenetic tree is provided as supplementary file,

Supplementary Material online.

We constructed Bayesian phylogenetic mixed models

(BPMMs) based on Markov chain Monte Carlo estimates us-

ing our ultrametric tree and the R package ‘‘MCMCglmm’’

(Hadfield 2010; Hadfield and Nakagawa 2010; R Develop-

ment Core Team 2010). Priors for all parameters were un-

informative. MCMC chains were run for a total of 60,000
iterations, discarding the first 10,000 generations as

the burn-in period. We then sampled every 25 iterations

to generate a posterior distribution of 2,000 samples. We

assessed convergence visually using the R ‘‘coda’’ package

(Plummer et al. 2006), as well as formally diagnosing con-

vergence with the Heidelberger–Welch and Geweke tests

(Heidelberger and Welch 1983; Geweke 1992).

Predicting Gene Functionality

We constructed logistic regression models in R (R Develop-

ment Core Team 2010) to assess the ability of various pre-

dictors to classify E. coli genes as putatively functional versus
putatively nonfunctional. To test the predictive power of

these models, we used the E. coli core genome plus pseu-
dogenes as the test data set and all other genes as the train-

ing data set. We considered as the core genome the genes

common to 28 distinct E. coli genomes (Touchon et al.

2009). We evaluated predictive power by calculating the

area under the curve (AUC) of receiver operating character-

istic (ROC) curves for a given model.

Results

Reduced Structural Stability Generally Occurs in Genes
of Known or Predicted Function

We began by assessing differences inmRNA stability between

genes in the E. coli genome. For each gene, we calculated the
change in free energy (DG) for the first 30 bases of the 5#
mRNA. We then compared this observed value with a null

distribution of DG values calculated from random mRNA

sequences that encoded the same protein, yielding a Z-score,
ZDG. Positive values indicate reduced mRNA secondary-

structure stability relative to null expectations based on codon

usage and GC content, whereas negative values indicate

increased mRNA secondary-structure stability.
On average, we found that larger ZDG values corre-

sponded to less negative DG values (i.e., less stable second-

ary structure), as previously reported by Gu et al. (2010). For

example, the average DG for a ZDG window of width 1 cen-

tered around 0 was �3:18. This value rose to �1:51 as we

centered thewindow around 1 and to�1:09 as we centered

the window around 2.

Our analysis included a total of 4,163 E. coli genes. The
function of a large percentage of these genes is well under-

stood. For other genes, their exact function is unknown but

structural similarities to other proteins indicate some core

functionality, such as being a repressor, transporter, or

ligase. We classified all genes for which function was known

or reasonably obvious to infer as genes of known or pre-

dicted function. There were 3,651 such genes. For other

genes, no functional annotation is available but they have
orthologs in other species. We refer to these genes as con-

served genes and found 285 such genes. Finally, there were

127 genes of unknown function that lacked orthologs (we

refer to these as genes of unknown function) and 100

known pseudogenes.

We calculated the mean ZDG for all four of these subsets

of genes (fig. 1). The mean ZDG for genes of known or pre-

dicted function was 0.39, significantly higher than the null
expectation (one-sample t test; t524:92, degrees of

freedom [df] 5 3,650, P,10�15) and consistent with prior
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observations of reducedmRNA stability in the translation ini-

tiation region (Kudla et al. 2009; Gu et al. 2010). Likewise,

the mean ZDG in conserved genes was 0.28, significantly

higher than zero (one-sample t test; t54:95, df5284,

P51:3� 10�6) and not significantly different from genes

of known function (two-sample t test; t51:77,

df5327:42, P50:079). This result was as expected, since
evolutionarily conserved genes likely are expressed and have

a function.

If a positive mean ZDG indicates selection for efficient

translation, then we would expect that the mean ZDG for

pseudogenes should not differ from zero. Indeed, the mean

ZDG for the 100 known pseudogenes was not significantly

different from zero (one-sample t test; mean ZDG50:032,

t50:30, df599, P50:76). Similarly, the 127 genes of un-
known function, on average, had ZDG values that were

not significantly different from the null expectation (one-

sample t test; mean ZDG50:068, t50:73, df5126,

P50:47). Although it is possible that some of the genes

in this category are functional, overall these results suggest

that most are nonfunctional.

Collectively, we found that ZDG was similar in genes with

a known or predicted function and in genes with known or-
thologs but lacking a predicted function (fig. 1). Conversely,

therewas no evidence of selection for reducedmRNA stability

in genes of completely unknown function or in pseudogenes.

Selection for Reduced mRNA Stability Extends Upstream
of Genes

Certain noncoding regions before the beginning of a cod-
ing sequence are known to be important for translation

initiation, most notably the Shine–Dalgarno sequence

(Shine and Dalgarno 1975). We used a sliding window

approach to determine whether the noncoding sequence

upstream of ORFs contributed to mRNA destabilization.

Sequences in these upstream regions were randomized

by shuffling bases rather than codons. As in our earlier
analysis, ORFs with a known or predicted function and

conserved ORFs showed elevated ZDG values, whereas

genes of unknown function and pseudogenes were similar

to randomized coding sequences (fig. 2). These trends

were qualitatively similar when only the noncoding region

was shuffled (data not shown).

ZDG Results Are Largely Independent of Gene Expression
Level or Codon Usage Bias

We gathered information on gene expression levels to

investigate whether expression levels correlate with ZDG.
As a measure of expression level, we used mRNA abun-

dance measured by Ragavan et al. (2011). There was no

overall correlation between expression level and ZDG
(Spearman’s q50:006, P50:68). Additionally, none of

the correlations for the four class subsets were significant

(known genes: Spearman’s q50:006, P50:74; conserved

genes: Spearman’s q50:032, P50:59; genes of unknown

function: Spearman’s q50:02, P50:82; pseudogenes: Spear-
man’s q5� 0:003, P50:98).

We also tested whether ZDG was correlated with

codon usage bias. We assessed codon usage bias with

the CAI (Sharp and Li 1987). In bacteria, codon usage bias

is strongly correlated with expression level, and CAI is often

Gene type
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FIG. 1.—Average ZDG for different gene categories in Escherichia

coli. Error bars are ±1 standard error. The dashed line is the null

expectation of ZDG for coding sequences with randomly chosen codons.

ZDG is significantly different from 0 for known and conserved genes but

not for unknown genes or pseudogenes.
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FIG. 2.—Selection for reduced stability continues upstream of

coding regions in Escherichia coli. Error bars are ±1 standard error. (Error

bars for genes of known function are smaller than the symbol size.) The

dashed line is the null expectation of ZDG for coding sequences with

randomly chosen codons.
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used as a proxy for expression level. We found a significant
but weak overall correlation between ZDG and CAI

(Spearman’s q50:10, P54:9� 10�10). This correlation held

up only in genes of known function (known genes:

Spearman’s q50:09, P51:3� 10�8; conserved genes:

Spearman’s q50:01, P50:86; genes of unknown

function: Spearman’s q50:04, P50:63; pseudogenes:

Spearman’s q50:02, P50:83).

Next, we examined the ZDG values of genes with high and
low expression levels. It is possible that genes with known

function tend to be highly expressed compared with the

other genes classes, and thus ZDG in highly expressed genes

would be higher than in lowly expressed genes solely for

that reason. However, the mean ZDG was 0:36 for lowly

expressed genes and 0:37 for highly expressed genes; the

difference between these two groups was not significant

(two-sample t test, t5� 0:312, df54161, P50:76). Addi-
tionally, almost half (63) of genes with no known function or

orthology were in the highly expressed group. By contrast,

when comparing ZDG values for genes with high and low

CAI, we found a significant difference. The mean ZDG
was 0:28 for genes with low CAI and 0:45 for genes with

high CAI; the difference between these two groups was highly

significant (two-sample t test, t5� 5:91, df54; 159,

P53:6� 10�9). Approximately, a quarter (28) of genes with
no known function or orthology were in the high-CAI group.

After subsetting the E. coli genes into either genes of high
or low expression level or genes of high or low CAI, we again

tested whether the four gene classifications were signifi-

cantly different from 0. In all cases, the prior findings re-

mained the same (genes of known function or orthology

had elevated ZDG, pseudogenes, and genes of unknown

function did not).
In summary, although there was a weak correlation be-

tween ZDG and CAI, our conclusions were largely indepen-

dent of gene expression level or codon usage bias.

Analysis of Stability Difference Yields Comparable
Results

It is generally known that the majority of mRNA, outside
the initial 40–50 nucleotides, is more stable than expected

(Chamary et al. 2006; Gu et al. 2010). Thus, the difference

between the beginning of a gene and a downstream section

might also indicate whether an ORF corresponds to a func-

tional protein. We calculated this difference between the

stability of the first 30 bases and bases 101–130. We found

that this difference, Zdiff, was also correlated with gene

functionality in E. coli (fig. 3). The statistics were comparable
to the case of considering just ZDG: genes of known function

and conserved genes had a significantly nonzero Zdiff (one-
sample t test; t519:78, df53; 650, P,10�15 for genes

of known function, t55:48, df5284, P59:3� 10�8

for conserved genes); genes of unknown function and

pseudogenes did not (one-sample t test; t50:67,
df5126, P50:50 for genes of unknown function,

t50:60, df599, P50:55 for pseudogenes).

ZDG Is Consistently Higher for Annotated Versus
Unknown Proteins in Prokaryotes

Although we found multiple lines of evidence suggesting

that E. coli genes lacking orthologs or functional annotation

are not under selection for reduced mRNA secondary-

structure stability, the generality of this finding was unclear.

Therefore, we performed similar comparisons in 126 bacte-

rial and 19 archaeal genomes. Given our previous finding of
similar ZDG values for ORFs with a known function and for

conserved ORFs, we binned these two categories together

and compared themwith genes of unknown function; pseu-

dogenes were not consistently marked in most genomes

and thuswere excluded from this analysis. ZDG was generally

higher for genes of known or predicted function compared

with genes of unknown function (fig. 4). Note that most of

the overall variation in ZDG is associated with genomic GC
content (Gu et al. 2010).

However, this analysis failed to consider phylogenetic

relationships in the comparative analysis, which may con-

found interpretation because species cannot be assumed

to be independent data points (Felsenstein 1985, 2003).

Therefore, we constructed a BPMM to account for

relatedness between species (Hadfield 2010; Hadfield and

Nakagawa 2010). BPMMs control for phylogeny by incorpo-
rating into the regression model, the covariance structure
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FIG. 3.—Average Zdiff for different gene categories in Escherichia

coli. Error bars are ±1 standard error. The dashed line is the null

expectation of Zdiff for coding sequences with randomly chosen codons.

Zdiff is significantly different from 0 for known and conserved genes but

not for unknown genes or pseudogenes.
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given by the input tree, and the branch lengths between

species. Although this type of analysis does not appear to

be widely used in genomic analyses (but see Naya et al.

2006), it is a powerful method for analyzing variation within

and between species.

Using an alignment of 16S ribosomal RNA sequences
from the Comparative RNA website (Cannone et al. 2002),

we constructed a maximum-likelihood tree for the prokar-

yotes used in this study (see Materials and Methods). The

estimated relationships between species were then used as

a random effect in a phylogenetic mixed model. After

controlling for phylogeny and species identity, there was still

a large difference between the average ZDG of genes with

a known or predicted function versus genes where function
has not been identified (table 1). The ZDG of genes with

a known or predicted function (ZDG50:201) was on average

twice as large as the ZDG of genes with unknown function

(ZDG50:201� 0:10550:096). This difference was highly
significant (table 1).

ZDG Can Serve as Predictor of Gene Functionality

Finally, we wanted to determine to what extent ZDG could
actually serve as a predictor of gene functionality. To address

this question, we developed logistic regression models that

predicted gene functionality from ZDG and other predictor

variables.We fitted thesemodels to the E. coli data.We clas-

sified genes of known function or conserved genes as func-

tional and all other genes (i.e., pseudogenes and genes of

unknown function) as nonfunctional.

For the simplest model, we considered only ZDG as a pre-
dictor variable; both ZDG and the intercept were significant

(Model I in table 2). In the second model, we used CAI and

log-transformed mRNA expression levels as predictor varia-

bles. In this model, CAI and expression were significant,

whereas the intercept was not (Model II in table 2). Finally,

we fitted a model using ZDG, CAI, and expression levels. In

this model, all three predictor variables were significant,

whereas the intercept was not (Model III in table 2). We
fit identical models to a reduced E. coli data set that had

the core genome removed. The results were very similar

to those obtained for the whole genome. The main differ-

ence was that mRNA expression level was not significant for

any model on the reduced genome (table 3). In aggregate,

these results show that ZDG is a significant predictor of gene

functionality, even when used jointly with other predictors

and that it performs better than mRNA expression level.
However, the statistical significance in a regression model

does not quantify the predictive power of a given variable.

To quantify predictive power, we used the logistic regression

models to predict gene functionality and then calculated

ROC curves for these predictors. We used the E. coli core
genome plus pseudogenes as the training data set and all

other genes as the test data set. In the test data set, we con-

sidered genes of known function and conserved genes as
functional and genes of unknown function as nonfunc-

tional. As our previous logistic regressionmodels would sug-

gest, gene expression level as measured by mRNA

abundance was a poor predictor of gene functionality. In
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FIG. 4.—Comparison of ZDG for genes of known function versus

genes of unknown function in 145 prokaryote genomes. Each point

represents a genome; 126 bacterial and 19 archeal genomes were used.

The dashed line is the 1:1 null expectation of equal ZDG values for the

two gene types. The mean ZDG for unknown genes tends to be lower

than for known genes, especially for genomes with high mean ZDG.

Table 1

BPMM Fit of ZDG to Gene Function (Known/Predicted or Unknown) While Controlling for Phylogeny and Species (126 Bacterial and 19 Archeal

Genomes)

Fixed Effect Parameter Estimatea 95% Credible Interval P Value

Known/predicted function 0.201 0.049–0.329 0.006

Unknown function �0.105 �0.112 to �0.098 ,5�10�4

Random Effect Estimated Variance 95% Credible Interval

Phylogeny 0.029 0.013–0.049

Species 0.018 0.011–0.027

Residual 1.016 1.011–1.020

a
The parameter estimate for known/predicted function is the mean ZDG for genes in this category. The parameter estimate for unknown function is the change in mean ZDG

relative to known/predicted function.
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fact, for false-positive rates below approximately 0.4, it per-

formed worse than random guessing (fig. 5). We therefore

did not consider it any further. By contrast, ZDG performed
somewhat better than random guessing (AUC 5 0.594),

and CAI performed substantially better than random guess-

ing (AUC 5 0.689, fig. 5). The combined predictor of ZDG
and CAI performed approximately 1 percentage point better

than CAI alone (AUC 5 0.699). Note that most of the im-

provement was obtained in the region of interest, at low

false-positive rates (fig. 5). In summary, these results recapit-

ulated the earlier logistic-regression models: CAI by itself is
the best individual predictor of gene functionality but ZDG by

itself also has significant predictive power. In combination,

ZDG and CAI perform slightly better than CAI alone.

Discussion

We have compared the level of mRNA secondary-structure

stability near the start codon for genes with different

functional annotations. In E. coli, we found that two

broad classes (genes with known function and genes

with known orthologs in other species) had similar levels
of reduced mRNA secondary-structure stability. There was

no evidence that the remaining genes of unknown function

were under selection for reduced mRNA stability. Indeed,

their ZDG scores were similar to those of pseudogenes, sug-

gesting that many of the remaining unannotated ORFs are

nonfunctional.

We then extended our analysis to include 144 other

prokaryote genomes. We found that genes with a known
function have generally higher ZDG than genes with no pre-

dicted function. Thus, there seems to be a general trend in

prokaryotes that lower ZDG indicates reduced probability of

gene functionality. However, since few organisms have been

studied as extensively as E. coli, we expect that many of the

unknown genes in other organisms will ultimately turn out

to be functional. In fact, in 2002 nearly one-third of E. coli
ORFs lacked functional annotation or orthology in other
genomes (Jackson et al. 2002). As of 2010, only 5% of

ORFs remain unidentified at any level. Likewise, although

our analysis suggests that in E. coli the majority of these

5% of ORFs are nonfunctional, we cannot exclude the

possibility that some of the genes that we currently

classify as being of unknown function will eventually be

found to have a specific function as well. For this reason,

Table 2

Logistic Regression of Gene Functionality Against Predictor Variables,

Using the Full Escherichia coli Genome

Predictor Estimate Standard Error z Value P Value

Model I

ZDG 0.315 0.065 4.83 1:35� 10�6

Intercept 2.79 0.069 40.3 ,2� 10�16

Model II

CAI 10.9 1.12 9.79 ,2� 10�16

Expression 0.099 0.045 2.19 0.028

Intercept �0.60 0.32 �1.90 0.056

Model III

ZDG 0.245 0.067 3.64 2:7� 10�4

CAI 10.5 1.12 9.42 ,2� 10�16

Expression 0.099 0.045 2.19 0.029

Intercept �0.546 0.32 –1.72 0.085

Table 3

Logistic Regression of Gene Functionality Against Predictor Variables,

Using a Reduced Escherichia coli Data Set in Which the Core Genome

Has Been Removed

Predictor Estimate Standard Error z Value P Value

Model I

ZDG 0.385 0.092 4.18 2:92� 10�5

Intercept 2.89 0.098 29.4 ,2� 10�16

Model II

CAI 10.7 1.62 6.62 3:56� 10�11

Expression 0.116 0.067 1.74 0:083

Intercept �0.436 0.46 �0.95 0:342

Model III

ZDG 0.305 0.094 3.24 1:21� 10�3

CAI 10.2 1.63 6.27 3:73� 10�10

Expression 0.112 0.067 1.68 0:093

Intercept �0.327 0.46 –0.71 0:476
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FIG. 5.—ROC curves for gene-functionality prediction. We trained

logistic regression models on the Escherichia coli core genome plus

pseudogenes and tested the predictors on genes outside the core

genome (excluding pseudogenes). We considered genes of known

function and conserved genes as functional and genes of unknown

function as nonfunctional. The solid line corresponds to a model with

ZDG and CAI as predictors. The AUC is 0.699. The dashed line

corresponds to a model where CAI is the only predictor (AUC 5

0.689). The dotted line corresponds to the model where ZDG is the

only predictor (AUC 5 0.594). The dot-dashed line corresponds to

a model where expression level is the only predictor (AUC 5 0.540).
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our analyses both of E. coli and of other prokaryotes are pos-
sibly biased, since we may have included functional genes in

the nonfunctional category. However, this bias can only

weaken our conclusions, making our study conservative.

Our finding that genes with unknown function generally

have lower ZDG values suggests that ZDG may be a useful

diagnostic to target ORFs with an unknown function that

are likely to be functionally important. Thus, researchers in-

terested in understanding which novel genes in a genome
are functionally important might begin by selecting genes

with high ZDG scores. However, one possible problem with

using ZDG as a tool for choosing genes for further study is

that individually it is a noisy statistic. Thus, while most

genomes overall show reduced mRNA secondary structure

stability, there are many genes (including ones with a known

and important function) that have increased stability

compared with null expectations. Indeed, several genes
of known function had extremely high levels of mRNA

secondary-structure stability (more than 3 standard devia-

tions below null expectations). It is unclear whether these

ZDG values indicate selection for increased mRNA stability

or are merely a by-product of a noisy statistic.

To assess the possibility of ZDG as a predictor of function,

we fit logistic regression models that used ZDG alone or in

conjunction with expression and CAI. We found that ZDG
alone had moderate predictive power and CAI had substan-

tial predictive power. Expression level (as measured by

mRNA abundance) performed poorly as predictor. A model

that combined ZDG and CAI performed slightly better than

the model using just CAI. These results show that ZDG is

a useful predictor of gene functionality and that it provides

some information not captured by CAI.

It is not surprising that CAI would be useful to predict
gene functionality. After all, if a gene is functional it needs

to be translated efficiently, whereas if the gene is not func-

tional then the organism will likely benefit if translation of

that gene’s transcripts is inhibited. It was more surprising

that mRNA abundance was not useful at all to predict gene

functionality. This finding seems to indicate that in E. coli,
a substantial portion of expression regulation occurs at

the translation stage, via translation initiation and/or trans-
lation efficiency, rather than at the transcription stage. It is

not clear why CAI was a better predictor than ZDG. One pos-
sibility is that CAI is simply a more precise estimator, since it

averages over all codons in a transcript, whereas ZDG is cal-

culated from the first 10–15 codons only. Alternatively,

gene-wide codon usage may be more important for overall

translation efficiency than mRNA stability near the initiation

site is, as argued by Welch et al. (2009).
Several recent experimental studies have shown that syn-

onymous mutations can have dramatic effects on pheno-

type. Two studies found that the function of a protein

can be altered due to differences at synonymous sites

(Kimchi-Sarfaty et al. 2007; Zhang et al. 2010). Other

studies have demonstrated that the expression level of a pro-
tein can also be affected by synonymous mutations (Kudla

et al. 2009;Welch et al. 2009; Allert et al. 2010). Yet another

experimental study demonstrated that the fitness of a bacte-

rium can be altered via synonymous mutations in ribosomal

proteins (Lind et al. 2010). Changes in codon usage

and changes in themRNAsecondary structure are twomech-

anistic hypotheses that can potentially explain these expe-

rimental results. Indeed, both factors seem to contribute to
these experimental findings. The synonymous mutation un-

derlying functional differentiation in the Kimchi-Sarfaty et al.

(2007) study results in a changeof a frequently used codon to

a rarely used codon. Kudla et al. (2009) found that mRNA

stability at the beginning of genes was the primary determi-

nant of protein expression, not codon usage; others argue

that the gene constructs used exhibit more secondary struc-

ture than generally found in organisms, which may have ob-
scured the effect of codon usage (Tuller et al. 2010). Allert

et al. (2010) found that both mRNA secondary structure

andcodonusagewere important, thoughsecondary structure

had a larger effect. Finally, Lind et al. (2010) and Zhang et al.

(2010) suggested that their results were likely due to changes

in mRNA secondary structure rather than codon usage.

In the age of genomics, it will become increasingly com-

mon to analyze signatures of selection over a large number
ofgenomes (aswedidhere). For suchanalyses,weneedpow-

erfulstatistical toolsthatenableustofitcomplexmodelswhile

properly controlling for phylogeny and other extraneous var-

iables. Phylogeneticmixedmodels (Lynch1991)areanappro-

priate tool for many such analyses. However, they have been

used infrequently (Housworth et al. 2004; Naya et al. 2006),

likelybecause theyweredifficult to implement. The releaseof

the R package MCMCglmm removes much of the technical
obstacles to carry out such analyses (Hadfield 2010; Hadfield

and Nakagawa 2010). We hope that it will lead to a more

wide-spread utilization of phylogenetic mixed models in fu-

ture comparative genomics studies.

Supplementary Material

Supplementary tables 1 and 2 are available at Genome
Biology and Evolution online (http://gbe.oxfordjournals.org/).
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