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There are several oxidative stress-related pathways interconnecting Alzheimer’s disease and type II diabetes, two public health
problems worldwide. Coincidences are so compelling that it is attractive to speculate they are the same disorder. However, some
pathological mechanisms as observed in diabetes are not necessarily the same mechanisms related to Alzheimer’s or the only ones
related to Alzheimer’s pathology. Oxidative stress is inherent to Alzheimer’s and feeds a vicious cycle with other key pathological
features, such as inflammation andCa2+ dysregulation.Alzheimer’s pathology by itselfmay lead to insulin resistance in brain, insulin
resistance being an intervening variable in the neurodegenerative disorder. Hyperglycemia and insulin resistance from diabetes,
overlapping with the Alzheimer’s pathology, aggravate the progression of the neurodegenerative processes, indeed. But the same
pathophysiological background is behind the consequences, oxidative stress.We emphasize oxidative stress and its detrimental role
in some key regulatory enzymes.

“Diabetes is a disease which often shows itself in families in which insanity prevails.”
Sir Henry Maudsley, The Pathology of Mind, 1879.

1. Introduction

Three hundred forty-seven million people worldwide have
diabetes [1], and forty-four million people live with dementia
[2].

An inadequate glucose metabolism in the brain resulting
from insulin resistance, the reduced ability of insulin to
stimulate glucose utilization, is at the center of new thera-
peutic avenues to treat the most common cause of demen-
tia worldwide, that is, Alzheimer’s disease (AD). A recent
study showed that over a maximum 11 years of follow-up,
diabetic patients experienced a higher incidence of AD than
nondiabetic subjects [3]. Moreover, it is postulated that AD
represents a neuroendocrine disorder that resembles a unique
form of type 2 diabetes mellitus (T2D) accompanied by
neurodegeneration, which is sometimes considered type III

diabetes [4]. Derived from this hypothesis, some agents that
improve insulin sensitivity and reduce hyperinsulinemia have
been proposed to aid cognitive functioning for patients with
T2D or AD.

Oxidative stress (OxS) plays a major role in T2D [5]. At
the same time, all the proposed mechanisms to explain AD
pathology have a common factor: OxS. Additionally, there
is a well-known connection between the main pathological
features of AD, such as amyloid-beta (A𝛽) protein and hyper-
phosphorylated tau, with glucose metabolic intermediates,
insulin receptors, and insulin transporters, all in the same
context: OxS. In fact, the chemical depletion of insulin and
insulin-like growth factor (IGF) signaling mechanisms plus
oxidative injury seem to be sufficient to cause AD-type
neurodegeneration, as demonstrated in vivo using a model of
intracerebral streptozotocin administration [6].
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Figure 1: Hyperglycemia and insulin resistance induce free radicals
which are responsible for tissue damage. The main sources for
free radicals are mitochondrial dysfunction, cytosolic free Ca2+, the
vicious cycle between inflammation and OxS, and the activity of
advance glycation end products, which promote the innate immune
response through their receptors. These conditions produce a
significant pool of free radicals, sufficient to cause OxS in the
brain. Excessive amounts of ROS/RNS break the delicate regulation
of key signaling and effector proteins required to maintain the
homeostasis in the brain. ROS: reactive oxygen species; AGEs:
advanced glycation end products.

Hyperglycemia and insulin resistance likely have an
impact on OxS pathways and neuroinflammatory signals in
the brain, thereby connecting diabetes to neurodegeneration.
Four pathological-free radical sources in the brain have been
described which also feed the OxS in diabetes: mitochondrial
dysfunction, inflammation, advanced glycation end products
(AGEs), and high cytosolic ionic-calcium levels. A particular
issuewith regard toOxS is the redox-dysregulation, a relevant
condition which demands more attention (Figure 1).

It is the purpose of this review on the basis of these obser-
vations, to analyze the interrelationships between OxS and
redox-regulation in T2D-related pathways and AD pathol-
ogy.

2. Consuming the Antioxidant Substrates

It has been hypothesized that OxS could be the common
pathogenic factor leading to insulin resistance and 𝛽-cell
dysfunction in T2D [7], as well as the vascular events [8]
associated with this global epidemic disease [9]. Reactive
oxygen species (ROS) derived from an uncontrolled T2D
come mainly from the polyol pathway flux, which consumes
the equivalent reducers, essential cofactors for redox systems
responsible for scavenging free radicals.

The first enzyme in the polyol pathway, aldose reductase
(AR), reduces glucose to sorbitol, which is then transformed
to fructose by sorbitol dehydrogenase (SDH) [10]. AR has low
substrate affinity for glucose, such that high concentrations
of glucose are needed. Hyperglycemia pushes the polyol
pathway and AR consumes NADPH to transform glucose
into sorbitol. NADPH, nonetheless, is essential for reducing
glutathione disulfide (GSSG, the oxidized glutathione) to
glutathione (GSH) in a critical reaction to control free rad-
ical levels within cells; this is carried out by the enzyme

glutathione reductase. The impaired cognitive function asso-
ciated with hyperglycemia may be corrected by inhibiting
the polyol pathway and normalizing sorbitol and taurine in
the brain, even without correcting the extracellular hyper-
glycemia, as demonstrated experimentally in vivo [11].

GSH depletion reduces the capability of cells to remove
ROS, making the oxidative processes irreversible [12]. A
negative linear correlation betweenGSSG levels and cognitive
status in AD patients has been found [13, 14]. This is such an
important correlation that GSHhas been considered useful as
a biomarker for AD progression [15], and a measurable GSH
deficiency is found in T2D [16], as explained below.

GSH is synthesized from glutamate, cysteine, and glycine
and diabetic patients have been shown deficient in both
cysteine and glycine [17]. It is suggested that such a deficiency
is due to a combination of impaired protein turnover and
dietary deficiency [17]. Patients with uncontrolled T2D have
74% lower erythrocyte-reduced glutathione concentrations
than nondiabetic control subjects, and a higher concentration
of erythrocyte-oxidized GSSG. Once the GSH synthesis
is restored by dietary supplementation with cysteine and
glycine, reactive oxygen metabolites and lipid peroxides may
be significantly lowered [18].

GSH demand, without replenishment, leads to GSH
depletion. The restoration of GSH levels depends on the
cysteine into cells via an amino acid antiporter system Xc−1
to import extracellular l-cystine and export intracellular l-
glutamate across the cellular plasma membrane. It is worth
remembering that glutamate excitotoxicity is a key protago-
nist in AD pathogeny [19–21], and the source of glutamate
comes precisely from this cystine-glutamate antiporter. In
fact, microglia may release glutamate by system Xc−1 altering
glutamate homeostasis, as shown both in oligodendrocytes
and in isolated optic nerve fibers [22]. The transportation of
cystine into cells, rate limiting for glutathione synthesis and
catalyzed by the glutamate cysteine ligase (GCL), as well as
the antiporter system Xc−1 itself, is significantly affected in
T2D [23–25], particularly during ketoacidosis [26].

Another important source of NADPH for antioxidant
systems comes from the main energy-transducing metabolic
systems. A major source of NADPH is the glucose-6-
phosphate dehydrogenase (G6PD), which converts glucose
to ribose-5-phosphate. During hyperglycemia, G6PD activity
decreases significantly; this correlates with low levels of
NADPH and reduced glutathione (Figure 2), as observed
in kidney cells. The inactivation of G6PD is strongly cor-
related with phosphorylation of its serine residues by the
protein kinase A (PKA) [27]. This cAMP-dependent kinase
phosphorylates serine/threonine residues, it is dependent of
hyperglycemia, and it is also related to phosphorylation of tau
in the AD brain [27, 28]. It is worth mentioning that PKA is a
ubiquitous enzyme and its dependence on hyperglycemia is a
relevant condition to memory processes in the brain. This is
particularly relevant to the AD brain, since PKA is involved
in the development of long-term potentiation via cAMP
response element-binding protein (CREB) phosphorylation.
In fact, cAMP/PKA/CREB enhancers, such as rolipram and
forskolin (PKA activators), have been proposed as useful
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Figure 2: Mitochondria are the main source of free radicals in neurodegenerative diseases, which is particularly true in the Alzheimer
brain. The tripeptide GSH is formed in the cytosol from cysteine, glutamate, and glycine as substrates (glutamate reacts with cysteine in
the presence of 𝛾-glutamylcysteine ligase to produce 𝛾-glutamylcysteine, which in turn reacts in a second step catalyzed by the enzyme
GSH synthetase with glycine, to produce GSH). From the cytosol, GSH is distributed to the nucleus, endoplasmic reticulum (ER), and
mitochondria. GSH is a key, abundant antioxidant system to control free radical overproduction in the central nervous system. As long
as GSH can be replenished, a reducing intracellular environment prevails, depending on the amount of substrates for its synthesis and
the proper functioning of the antiporter system, Xc−1. In T2D, the polyol pathway consumes NADPH to transform glucose into sorbitol,
affecting the GSH system. Conversely, the two important substrates for GSH replenishment, cysteine and glycine, are reportedly diminished
in T2D. SOD: superoxide dismutase; GR: glutathione reductase; GPx: glutathione peroxidase; GSH: 𝛾-l-glutamyl-l-cysteinyl-glycine; GSSG:
oxidized glutathione; NADPH: reduced form of NADP+ nicotinamide adenine dinucleotide phosphate; AR: aldose reductase; SDH: sorbitol
dehydrogenase.

to memory impairment [29] and also for AD treatment
since one of the main protagonists in this neurodegenerative
disorder, amyloid-beta (A𝛽), also inhibits the PKA/CREB
pathways and long-termpotentiation [30]. Additionally, PKA
modulates NMDA receptors as well, and this is relevant
to excitotoxic neurotransmission and calcium homeostasis,
since PKA activates calcium release channels [31, 32].

Another important metabolic source of NADPH to
replenish antioxidant systems comes from the NADP+-
dependent isocitrate dehydrogenase (IDH). However, IDH is
particularly susceptible to fragmentation and carbonylation
when exposed to reducing sugars, such as glucose, glucose-
6-phosphate, and fructose [33] (Figure 2). Thus, glycation-
induced inactivation of NADP+-dependent IDH during T2D
progression ultimately leads to failure to produce NADPH,
as it should occur during the oxidation of isocitrate to the
intermediate oxalosuccinate in the tricarboxylic acid cycle.
The reduced amount of NADPH correlates with significant
increases in ROS generation, DNA fragmentation, lipid
peroxidation, and concurrent mitochondrial damage with a
significant reduction in ATP levels [34].

Mitochondrial ATP production in T2D is significantly
diminished indeed. An evaluation of mitochondrial phos-
phorylation using proton 1(H) magnetic resonance spec-
troscopy in muscle of lean, prediabetic insulin resistant

subjects, showed that mitochondrial phosphorylation and
thus ATP production may be only 30% of controls [35].

A causal relationship between the mitochondrial over-
production of free radicals plus lipid peroxidation and hyper-
glycemia was shown in vitro with cultured bovine aortic
endothelial cells. ROS overproduction exhibited a positive
correlation with intracellular AGEs generation, an effect
prevented by using antioxidants [36]. Years later in similar
experiments, after normalizing mitochondrial superoxide
production, AGEs overproduction, protein kinase C (PKC)
activation, increased glucose flux through the aldose reduc-
tase pathway, and NF-𝜅B activation, were blocked [37].

Another important source of free radicals in AD comes
from their rapid release during the respiratory burst, particu-
larly from activated microglia. Again, the AR enzyme from
the exacerbated polyol pathway in T2D could be involved,
since the transformation of sorbitol to fructose by the enzyme
sorbitol dehydrogenase reduces NAD+ to NADH. NADH in
turn is essential as a reducing equivalent for the NADPH
oxidase, which orchestrates the respiratory burst. Thus, it
is feasible to speculate that the polyol pathway may feed
the NADPH-oxidase [38]. All of these signs of OxS are
key pathogenic events during AD progression [21]; they are
actually intrinsic to AD pathology.
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Another source of NADPH is the malic enzyme (ME,
L-malate: NADP oxidoreductase (decarboxylating)) which
catalyzes the reversible formation of pyruvate, CO

2
, and

NADPH from malate and NADP. Malic enzyme has been
studied mostly in liver where it supplies reducing equivalents
from NADPH for fatty acid biosynthesis. In the brain,
cytosolic ME is located in oligodendrocytes where it might
deliver NADPH for myelin lipid biosynthesis, whereas in
astrocytes it is presumed to participate in the catabolism of
excessive Krebs cycle intermediates [39]. Interestingly, the
mitochondrial isoform of ME is abundant in neurons, which
allows the speculation that it serves as a GSH regeneration
system [40–42]. Finally, ME levels are reportedly diminished
in T2D, probably linked to a depressed lipogenesis [43]
(Figure 3). Thus, after this brief analysis of NADPH sources
in brain, it is clear that the high demand of NADPH in T2D,
plus a failure to replenish the GSH system, favor OxS, and the
progression of AD and/or T2D pathologies (Figure 3).

GSH depletion also induces apoptosis on hippocam-
pal neurons by perturbing calcium (Ca2+) homeostasis, as
demonstrated in aged mice [31]. Apoptosis and alterations of
ionic calcium are intrinsically linked to AD [21].

3. Thioredoxin (Trx)

Working at the expense of NADPH as well, Trx with its active
sequence –Cys-Gly-Pro-Cys- is essential to reduce oxidized
proteins by cysteine thioldisulfide exchange. It is abundant in
brain, particularly in those regionswith high energy demands
[44]. Trx reduces peroxidases, methionine sulfoxide reduc-
tases, sulfate reductases, or the ribonucleotide reductase,
acting as an electron donor [Trx(SH)

2
+ ROOH → TrxS

2
+

ROH + H
2
O]. NADPH further reduces the oxidized Trx.

This small oxidoreductase enzyme is essential tomaintain the
redox status [12].

Activity and availability of Trx, however, can be controlled
by alkylating agents such as 4-hydroxynonenal (HNE) which
forms thiol adducts, as observed in AD pathology [45].
In T2D, the OxS mediator thioredoxin-interacting protein
(TxNIP) plays a key role in Trx inactivation, linking OxS
to glucotoxicity. During that process, TxNIP triggers the
inflammasome activity as well.

The TxNIP gene appears elevated in insulin resis-
tance/T2D and it is upregulated by glucose [46]. It is
implicated as a disease-driver in both pancreatic islets by
mediating glucose-induced cell death [47]. In brain, TxNIP is
induced in neurons after OxS, chronic hyperglycemic stress,
endoplasmic reticulum stress, or ischemia and causes cells to
undergo apoptosis [48, 49].

Hyperglycemic signals activate TxNIP through the tran-
scription factor carbohydrate response element-binding pro-
tein (ChREBP), which translocates to the nucleus to bind
the carbohydrate responsive element (ChoRE) [50] located
in the promoter regions of both glycolytic (L-PK) and
lipogenic genes (ACC and FAS). Under glucose stimulation,
ChREBP uses a tandem ChoRE and CCAAT motifs with
the collaboration of the nuclear factor Y (NF-Y) to regulate
TxNIP [51].

Impaired insulin signaling in AD brain seems to be
related to TxNIP as well. This major intracellular regulator
of inflammatory activation and redox stress has been found
early overexpressed very early in the brain of the 5XFAD
Alzheimer mice model. Thus, TxNIP is also considered a
key factor in the insulin resistance and can be induced in
astrocytes, endothelial, and neuronal cells in vitro, by adding
A𝛽 to the medium [52].
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4. Amplifying the Inflammatory Response

The link between the nucleotide-binding domain, leucine-
rich-repeat-containing family, pyrin domain-containing
3 (NLRP3) inflammasome assembly, and TxNIP, readily
induced by hyperglycemia, seems to be a transmembrane
sensor protein with both kinase and ribonuclease activity
known as the inositol-requiring protein-1 alpha (IRE1𝛼).
IRE1𝛼 is a highly conserved ER sensor and plays a key role
during the unfolded protein response in the brain [53]. It
is related to Ca2+ homeostasis and cell survival during ER
stress [54], this latter process is a relevant phenomenon in the
pathogenesis of AD [49, 54–57].Thus, under ER stress IRE1𝛼
becomes active and it is required to promote TxNIP [49].
TxNIP activates the NLRP3 inflammasome and promotes
programmed cell death under unremediated ER stress.

Via stimulation of G protein-coupled calcium sensing
receptors, extracellular Ca2+ may amplify the inflammatory
response activating the NLRP3 inflammasome assembly, as
shown in monocytes and macrophages [58]. The process
occurs via the inositol/Ca2+ pathway leading to the release
of high levels of interleukin 1𝛽 and other proinflammatory
cytokines, such as IL-1𝛼, IL-6, and TNF. A kinetic curve of
proinflammatory cytokines during A𝛽-induced OxS in brain
shows the samepattern of cytokines as a function of time [59].

TLR (toll-like receptor) is the priming step to activate
NF-𝜅B transcription factor, which initiates the NLRP3 mul-
tiprotein complex. Stimulation by extracellular ATP may be
the second signal to culminate in the complete organization
of these large cytosolic complexes of NOD-like receptors,
adaptor protein (which is an apoptosis-associated speck-like
protein containing a CARD), and caspase-1. In AD brain, the
appearance of extracellular ATP, which assumes a role as a
damage-associated molecular pattern molecule (DAMP), is
linked to bioenergetic dysfunction [60]. NLRP3 culminates
in the activation of caspase-1 and releases IL-1𝛽 and IL-18,
proinflammatory cytokines [58, 61, 62].

NLRP3 induces metabolic inflammation and, impor-
tantly, insulin resistance. By deactivating it as happens in
obese diabetic patients with a significant loss of weight,
insulin resistance diminishes [62]. Furthermore, the elim-
ination of Nlrp3 expression may prevent the activation of
caspase-1 as observed linked to obesity and activation of IL-1𝛽
and IL-18. Free fatty acids in obese subjects also may induce
DAMP, which are linked to the amplification of the innate
immune response as occurs in T2D. Free fatty acids also
induce insulin-resistance [63] and extracellular ATP [64].

In AD, ATP molecules are also delivered to the extracel-
lular space assuming a new role as DAMP.Thus, extracellular
ATP takes part in the innate immune receptor surveillance, as
occurs with the amyloid-induced inflammasome [65]. In this
manner, extracellular ATP molecules may elicit Ca2+ waves
(ATP-dependent glial-transmission) and DAMP-mediated
activation of microglia, which in turn activate the phagocytic
NADPH-oxidase [66]. This multimeric membrane-bound
enzyme complex links redox control to the neuroinflamma-
tory signaling pathways [67]. Similar actions are observed for
the T2D-induced inflammasome.

Hyperglycemia in T2D produces a nonenzymatic glyca-
tion and oxidation of proteins and lipids which are known
as AGEs. In the AD brain, both AGE and A𝛽 are abundant
and both utilize scavenger receptors (SR) and the receptor for
AGE (RAGE). SR and RAGE may define microglia activity
[68], but they are also expressed in astrocytes. Also neurons
may express RAGE [69]. This calls the attention to the fact
that RAGE appears overexpressed in AD brain [70], while
RAGE’s activation in vessels may result in amplification
and perpetuation of a loop for OxS and dysregulation of
proinflammatory cytokines [71].

The key target of these receptors is NF-𝜅B, the transcrip-
tion factor where the neuroinflammatory pathways converge.
RAGE and NF-𝜅B are upregulated during hyperglycemia,
as observed in the hippocampus of rat brain [58, 69, 72,
73]. Upregulation of RAGE and NF-𝜅B is accompanied by
overactivation of inflammatory factors such as TNF-𝛼, IL-1𝛽,
IL-2, and IL-6.

It is important to remember that insulin, acting on its
own insulin receptor kinase (IRK), may directly stimulate the
NADPH-oxidase pathway, generating anH

2
O
2
burst [74, 75].

Thus, insulin itself may feed OxS, contributing to the vicious
cycle of OxS-inflammation.

5. Calcium

The disturbed Ca2+ homeostasis is relevant to AD. Ca2+ is
related to acetylcholine expression and its metabolism as
well as the activity of its receptor [76]. Ca2+/calmodulin
regulate protein phosphorylation and there are specific
calcium-dependent signal transduction pathways in AD
neurodegeneration implicating key protein effectors, such as
calmodulin-dependent protein kinases (CaMKs), mitogen-
activated protein kinases (MAPK), and CREB. Importantly,
Ca2+ waves are a kind of communication between cells in
the brain during neuroinflammationwhich regulate glial cells
[21, 65]. A𝛽, as part of AD pathology, also enhances the
acetylcholinesterase (AchE) activity and induces significant
elevations of intracellular Ca2+ by increasing calcium entry
through L-type voltage-dependent calcium channels [77–79].
AchE releasing is a Ca2+-dependent phenomenon [77, 80].

Ca2+ in AD is related to multiple effects: (1) amyloido-
genic processing of the amyloid precursor protein (APP)
seems to be a Ca2+-dependent process; (2) A𝛽 facilitates Ca2+
uptake using a variety of calcium channels; (3) conversely,
Ca2+ accelerates A𝛽 aggregation; (4) the massive entrance of
extracellular Ca2+ into cells causes excessive accumulation of
Ca2+ within the endoplasmic reticulum and mitochondria;
(5) dysregulated intracellular Ca2+ activates a number of
enzymes including CaM, which in turn activates CaM-
dependent kinases responsible for tau phosphorylation; (6)
cytosolic phospholipase-A2 (PLA2) is also a Ca2+-dependent
enzyme which, when activated, causes arachidonic acid
release and the subsequent activation of the neuroinflam-
matory pathway via COX-2. Additionally, the massive influx
of Ca2+ promotes proteolytic calpains and neuronal death
through the Ca/CaM dependent kinase II and a divergent
number of enzymes (reviewed in [21]).
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It is feasible to reproduce Ca2+ mobilization linked to
glutamate exocytosis in T2D [81]. The proposed mechanism
is that T2D enhances a K+- or 4-AP-evoked Ca2+-dependent
glutamate release by increasing the concentration of free
cytosolic Ca2+ via stimulation of Ca2+ entry through both P-
and N-type Ca2+ channels [81]. In T2D, in addition to the
mentioned Ca2+ influx into cytosol through P- and N-type
Ca2+ channels, hyperglycemia also may cause hyperglycosy-
lation of Ca2+ channel CaV3.2 and/or membrane lipids that
affect channel function causing an increase in current density
[82].

The increased cytosolic concentration of Ca2+ is related
to mitochondrial damage and overproduction of free radi-
cals. Ca2+ uptake into mitochondria induces neuritic abnor-
malities in a dose- and time-dependent manner or the
opening of the mitochondrial permeability transition pore
coupled to inhibition of respiratory complexes [83]. Another
means by which OxS-induced Ca2+ may be relevant to both
pathologies, AD and T2D, is by amplifying the inflammatory
response, a ROS-induced phenomenon where extracellular
Ca2+ may have a key role, as seen before.

6. Redox Regulation of Key Enzymes

Proinflammatory pathways are redox-regulated processes
aided by redox sensors. These thiol-based redox sensors con-
vey information about localized changes in redox potential
induced by physiologic or pathologic situations. However,
the persistence of OxS keeps progressive pressure on the
effective reduction potential of these sensors. The NADPH-
dependent GSH/GSSG and the thioredoxin system work
as redox sensors, but there are thousands of peptidyl-Cys
residues that are redox-sensitive and may work as redox-
regulators [84].

The insulin receptors themselves are tyrosine kinases with
critical thiol groups which are necessary for the beta-subunit
autophosphorylating activity, and they are redox-regulated
enzymes. A reduced expression of insulin/IGF receptors
in AD, as well as their receptors and their substrates, has
been observed [4, 85]. Such a deficiency may be attributed
to a progressive loss of insulin/IGF responsive neurons,
or to impaired insulin/IGF ligand-receptor binding, due to
pathological alterations in membrane lipid composition [86].
However, in a study of brain insulin receptors, following the
intracerebroventricular injection of streptozotocin, insulin
receptor levelswere shown to be diminished.The low IRK lev-
els were inversely correlatedwith the degree ofOxS, indicated
by malondialdehyde (MDA) and GSH levels. By reducing
OxS with melatonin, a powerful antioxidant and free radical
scavenger, it was possible to reverse the IRK diminishing [87].
Also, an insulin-independent “basal” insulin receptor kinase
activity has been described and is strongly enhanced byH

2
O
2

or by an oxidative shift in the redox status [88].
This redox-regulatory effect on IRK seems to respond

to a positive feedback; this is an autoregulatory mecha-
nism, since IRK is capable of inducing H

2
O
2
by activat-

ing NADPH-oxidase. However, in opposition to low, reg-
ulatory H

2
O
2
levels, OxS inhibits insulin signaling with

the consequent inactivation of the Akt/PKB signaling path-
way, plus the impairment of GLUT4 translocation, all
resulting in insulin resistance [89, 90]. By employing the
same redox-regulatory mechanism, H

2
O
2
may also inhibit

key components of the IP3/DAG pathway (Inositol 1,4,5-
trisphosphate/diacylglycerol), such as the protein tyrosine
phosphatase (PTP1B) and the protein phosphatase and tensin
homolog (PTEN) [91].

PTP is a negative regulator of insulin and leptin signal
transduction, considered a novel target for T2D treatment
[92]. IRK phosphorylates the insulin receptor substrate
(IRS), which displays binding sites for numerous signal-
ing partners, thereafter a complex set of reactions, orches-
trated by phosphatidylinositol-3-kinase (PI3K) connect to
the Akt/PKB signaling pathway and PKC. PTEN catalyzes
the reverse reaction of PI3K regulating the phosphorylation
state of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), a
membrane lipid second messenger; PIP3 is therefore a key
mediator of the AKT/PKB pathway. These intermediates in
turn connect insulin to vital processes such as, mitogenic and
stress pathways (IRK → Ras → MAPK → ERK), and
metabolic pathways (IRK → PI3K → PDK1 → AKT).

PTP dephosphorylates and inactivates the IRK, reversing
the adapter function of the IRS. In fact, the specific PTP-1𝛽
has become a prime candidate for therapeutic intervention
in diabetes and obesity [74]. These phosphatases have highly
conserved cysteine residues within the active site domain,
with a low-pKa (4.7 to 5.4), in such a manner that differ-
ent reactive oxygen species, including H

2
O
2
, oxidize and

inactivate the PTP. However, thiol donors, such as GSH,
glutaredoxin (Grx), and Trx may rescue thiol groups from
irreversible oxidation; via thismeans the enzyme inactivation
can be reversed. Thus, PTP are redox-regulated enzymes
[93, 94].

Interestingly, insulin by itself may generate a burst of
intracellular H

2
O
2
as a result of its stimulation of the

NADPH-oxidase pathway. H
2
O
2
, in turn, induces to a sig-

nificant reduction in overall PTP activity and enhances the
abovementioned insulin cascade. The effect has been shown
to be reversed in vitro by suppressing H

2
O
2
with the addition

of catalase (2H
2
O
2
→ 2H

2
O + O

2
) [75].

Beyond tuning and redox regulation, it is important to
highlight that as long as the oxidative pressure increases,
the effective redox reduction potential of the redox sensors
diminishes.This shifts cell signaling toward proinflammatory
pathways, leading to inflammation, apoptosis, andmoreOxS.
Ultimately, a vicious cycle between OxS and neuroinflam-
mation develops [12]. One of the main prooxidant pathways
related to hyperglycemia is the PKC signaling pathway;
however, the role for this redox sensitive serine/threonine
kinase is controversial in AD neurodegeneration.

PKC contains six conserved cysteine and two conserved
histidine residues tetrahedrally coordinated by two Zn2+ ions
into a composite zinc finger [95]. There are variations among
the different PKC isozymes related to their responses to
OxS; some become active and others became inactive in the
same tissue and under a similar context. However, all PKC
proteins dissociate from Zn2+ after H

2
O
2
treatment [96].
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Zn

Zn

Figure 4: Coordinated Zn bindings with cysteine residues in the
catalytic and the regulatory domain of PKC. This figure was gener-
ated from pdb entry 1PTQ [95] using the UCSF Chimera package
[136].

Furthermore, cysteine-rich regions present in the regulatory
domain are the sites of phorbol ester/diacylglycerol binding
[97] (Figure 4).

PKC can be S-glutathiolated and inactivated during OxS
in brain. In an oxidizing microenvironment, disulphide
formation due to an oxidative attack dissociates Zn2+, which
becomes uncoupled [98]. Zn2+ is required to maintain the
redox homeostasis, and it must be rapidly buffered to reestab-
lish its levels in neurons. By occurring on oxidation within
the kinase domain the inactivation of PKCmay be reversible,
as an adaptive mechanism in response to stress. However, a
severe oxidation with disulfide bond formation can be irre-
versible, leading to protein degradation and apoptosis [99].

PKC has cysteine thiols susceptible to redox-regulation
in both the regulatory domains as in the catalytic domain
[100] (Figure 4). Examined in tumorigenesis, the oxidation
of these thiols may cause an opposite response: oxidation
of thiols on the regulatory domain and stimulation of PKC,
leading to tumor promotion and cell growth. In contrast,
oxidation of thiols in the catalytic domain inhibits PKC
activity, interfering with tumor promoters.

In PC12 cells, OxS causes direct redox activation of PKC-
𝜀, which in turn leads to a rapid and sustained activation
of ERK, necessary and sufficient for neurite outgrowth in
these cells [101]. ERK activation in diabetes is linked to
diabetic microvascular disease related to the activation of the
transcription factor hypoxia inducible factor-1 (HIF-1) [102].

There are many isoforms of PKC and every isoform has
some particular mechanisms of regulation and its specific
downstream signalingmechanisms [74, 95, 96, 99, 101].There
are classical PKCs (𝛼, 𝛽I, 𝛽II, and 𝛾), novel PKCs (𝜀, 𝛿, 𝜂, and
𝜃) which depend on DAG alone without the participation of
Ca2+, and also atypical PKCs (𝜁 and 𝜄). The specific roles and
themechanisms of activation or deactivation for each isoform
are not completely clarified. This explains, perhaps, some
discrepancies about how PKC become involved in certain
pathologies.

Hyperglycemia activates different PKC isoforms through
OxS or by employing the DAG/IP3 pathway. Additionally,
insulin induces superoxide anion via direct stimulation of the
NADPH-oxidase, as mentioned above. Superoxide anion is
dismutated to H

2
O
2
via SOD and it has been demonstrated

that H
2
O
2
directly activates PKC𝛾, a classical PKC, acting

through the oxidation of the Cys residues within the C1
domain. This may occur independently of elevations in cel-
lular DAG, the natural PKC activator [103]. In the DAG/IP3
pathway, Ca2+ from different intracellular sources reacts with
DAG to directly activate PKC, while the phospholipase C
(PLC) cleaves the phospholipid phosphatidylinositol 4,5-
bisphosphate (PIP2) into IP3 and DAG.This in turn activates
PKC with or without the participation of Ca2+, as mentioned
before. IP3, in turn, triggers the opening of calcium channels
to release Ca2+ into the cytosol. Atypical PKCs (𝜁 and 𝜄)
are independent of Ca2+ and DAG. One or several of the
abovementionedmechanisms could be involved in AD brain.

Hyperglycemia-induced PKC (𝛽 and 𝛿 isoforms) have
pathogenic consequences (reviewed at [104]) related to (1)
activation of proinflammatory pathways through the NF-
𝜅B transcription factor; (2) blood-flow abnormalities from
the overexpression of eNOS and the ET-1 pathway; (3)
angiogenesis and vascular permeability derived from VEGF
overexpression; (4) capillary occlusion, as a consequence of
collagen overproduction and excessive fibronectin due to
TGF-𝛽1 signaling; (5) reduced fibrinolysis related to PAI-1
activity; (6) OxS, as a consequence of ROS overproduction
leaded by increased NADPH-oxidase activity.

There is no a consensus, however, about PKC activ-
ity in brain during neurodegeneration. In the AD brain,
PKC may block the amyloidogenesis by phosphorylating
and inactivating the glycogen-synthase kinase-3𝛽 (GSK-3)
which stimulates the amyloidogenic pathway [105]. PKC also
promotes the 𝛼-secretase activity to mediate cleavage of APP,
favoring the nonamyloidogenic pathway [106]. As reported
elsewhere, by activating the Ca2+-dependent 𝛼 isoform of
PKC, the antioxidant melatonin restores neurite formation,
microtubule enlargement, and microfilament organization
in microspikes and growth cones in cells damaged with
H
2
O
2
[107]. A PKC agonist, phorbol 12-myristate 13-acetate,

causes cytoskeletal reorganization in the presence of H
2
O
2

in vitro. On the contrary, by using the PKC inhibitor,
bisindolylmaleimide, neurite formation, and microfilament
reorganization can be blocked [108].

There are additional related to PKC as a neuroprotector;
for example, the activation of PKC in brain tissues appears to
prevent brain ischemia and is a target for ischemic precondi-
tioning.Once again, the oxidation of PKC𝛾byH

2
O
2
on theC1

domain activates the enzyme causing it to become active and
possibly inhibiting gap junctions which provide a protection
of cells against OxS [103]. There is an obligatory role for
PKC in the induction of brain-derived neurotrophic factor
(BDNF) and neurotrophin-3 (NT-3), molecular mediators of
neuronal growth and homeostatic synapse activity, which are
demonstrated decreased in AD brain [109]. By inhibiting in
vitro PI3K and PKC in N2a cells, it is possible to induce
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GSK-3 overactivation, which further strengthens and pro-
longs the Alzheimer-like tau hyperphosphorylation [110].

Interestingly, A𝛽, the pathological hallmark inAD, affects
PKC activity. At low concentrations A𝛽 stimulates PKC, con-
tributing to neurite generation. But higher concentrations of
A𝛽 inhibit PKC activity, leading first to memory impairment
and then to neuronal loss [111]. Some other protective effects
attributed to PKC have been reviewed by Etcheberrigaray et
al. [112] with the suggestive title “Therapeutic Effects of PKC
Activators in Alzheimer’s Disease Transgenic Mice.” Indeed,
opposite to the idea that the activity of PKC is accompanied
by a chain of deleterious effects during neurodegeneration,
rather the inactivity of PKC is the real threat for the progres-
sion of AD [12].

PKC is implicated in vascular alterations, however, as
observed in diabetes. In AD also A𝛽 deposits in vascular
endothelium inhibit the activity of endothelial nitric oxide
synthase (eNOS), because of a PKC-mediated phosphoryla-
tion on Ser660, a key step in the activation of eNOS. Indeed,
using a selective inhibitor of calcium-dependent PKC inves-
tigators have rescued eNOS and NO production, allowing
vasorelaxation [56]. Vascular alterations in diabetes along
with cognitive impairment are the visible result of diabetes-
induced brain damage. By usingmagnetic resonance imaging
(MRI) scans, a cortical atrophy in T2D patients which
resembles preclinical AD patterns has been observed [113].

It is also known that some specific PKCs (-𝛼, -𝛿, -𝜀, and
-𝜁) are directly involved in multiple steps of TLR promoting
neuroinflammation [114]. It is worth noting that PKC-𝛿 and -𝜀
do not require Ca2+, only DAG for their activation.Moreover,
PKC-𝜁 does not require either Ca2+ or DAG to be activated.
TLR leads the priming step to activate NF-𝜅B transcription
factor which initiates the NLRP3 multiprotein complex.

The insulin-degrading enzyme (IDE) is a highly con-
served zinc metallopeptidase, particularly abundant in brain;
this suggests a significant association between T2D and AD.
Importantly, IDE degrades insulin, IGF-1, and A𝛽, and it is
also a redox-regulated enzyme.

Briefly, once insulin or IGF-1 bind their corresponding
receptors in brain cells, the activation of IRS induces a cascade
of events leading to the neuroprotective phosphoinositide-
3-kinase–protein kinase B/Akt (PI3K/PKB/Akt) pathway.
PKB/Akt signaling may (1) phosphorylate and inactivate
GSK-3, (2) induce CREB, and (3) activate IDE. It is widely
known that under oxidative conditions, GSK-3 generates
A𝛽 and becomes involved in tau phosphorylation, both AD
landmarks [105, 115, 116].

In the context of two overlapping pathologies, with the
same oxidative background as it is the case for T2D and AD,
it is difficult to attribute some interference with a pathway
to only one mechanism. For example, in addition to all
the mentioned mechanisms, A𝛽 may directly interfere with
the PI3K/PKB/Akt pathway by preventing the interaction
between PDK and Akt. Such an interaction would allow
the activation of Akt and a very complex chain of events
linked to Akt [117]. A𝛽 oligomers, particularly A𝛽-derived
diffusible ligands (ADDL), may compete for the insulin
receptor, transforming cells into insulin-resistant cells [118].

Thus, the insulin receptor and other cognate receptors, as well
as IGF-1, are documented to be dysregulated in AD brain
[119], in such a manner that they can be intrinsic defects
linked to A𝛽 pathology.

A𝛽 activatesNF-𝜅B-dependent neuroinflammatory path-
ways as well as oxidative stress. This latter response is
mediated by microglia and astrocytes and intracellularly
mainly by mitochondrial failure. The two metallopeptidases
capable of degrading A𝛽 are neprilysin and IDE. The latter
is directly related to insulin resistance, and it is also a redox-
regulated enzyme.Thus, it is possible to speculate that theA𝛽-
induced oxidative stress itself might directly downregulate
IDE, facilitating the accumulation of A𝛽.

Five months of exposure to a high-fat diet resulting in
a noninsulin dependent form of diabetes-like insulin resis-
tance was demonstrated to cause a >2-fold elevation in
amyloidogenic A𝛽1–40 and A𝛽1–42 peptide content in the
hippocampus of 9-month-old Tg 2576 mice, relative to
normoglycemic Tg 2576 mice [120]. The effect was attributed
to insulin resistance which is responsible for an increased
overactivity of the amyloidogenic 𝛾-secretase in addition to
reduced activity of IDE. The importance of IDE has been
revealed in IDE−/− mice, which accumulate A𝛽 in brain and
become hyperinsulinemia and glucose intolerant [121]. There
is a direct interaction of IDEwithA𝛽 for effectively degrading
it [122].

The inhibition of IDE can be an intrinsec phenomena
related to AD, since the overproduction of free radicals
as observed in this neurodegenerative disorder may affect
directly IDE. Oxidizable thiol residues of IDE have been
located to the C178, C812, and C819 amino acid residues
as reported in a comprehensive mutational analysis of 13
cysteine residues within IDE [123]. This ubiquitous zinc-
metalloprotease is a thiol-sensitive enzyme which can be
inhibited by nitric oxide, as well as by oxidized glutathione
through glutathionylation [124]. H

2
O
2
also may interact

directly with and deactivate IDE [125]. HNE, a reactive
aldehyde,may form an adduct with IDE in order to deactivate
it [125]. HNE is a lipid peroxidation derivative and also a
powerful alkylating agent, commonly found in AD brain
[21]. The diminished IDE activity, as observed in aged rats
[126], is also related to long-chain free fatty acids which
exhibit an inhibitory effect on this highly conserved zinc
metallopeptidase, as observed in vitro [127].These facts allow
the speculation that OxS is a prerequisite for decreasing
IDE activity, as happens in AD and T2D; this facilitates the
progression toward memory impairment [128].

Finally, another oxidizable enzyme, important to both
of these overlapping degenerative pathologies, T2D and AD,
is the glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
During T2D, the overproduction of superoxide anion asso-
ciated with hyperglycemia suppresses the redox-sensitive
GAPDH whose primary role in glycolysis is to cat-
alyze the conversion of glyceraldehyde-3-phosphate to 1,3-
bisphosphoglycerate. GAPDH suppression is a poly (ADP-
ribose) polymerase- (PARP-) mediated mechanism [129].
In this manner, the glycolytic pathway is interrupted and
deviates toward the hexosamine pathway, PKC activation,
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and the AGE pathway. On the other hand, GAPDH has been
also linked to neurodegeneration.

Apart from its classical role in glycolysis, new roles for
the redox-regulatable GAPDH have been described [130]. A
relevant one is in neuronal cell death triggered by oxidative
stress. Its translocation to the nucleus is considered an impor-
tant step in glucose-induced apoptosis, as observed in retinal
Muller cells [131]. GAPDH translocates into the nucleus
under a variety of stressors, particularly oxidative stress, and
it is considered a sensor of nitric oxide (NO) stress [132].
GAPDH has been shown to interact with neurodegenerative
disease-associated proteins, including APP [133].

It is under oxidative stress, as observed in neurodegener-
ation, that oxidative modifications may impart a toxic gain-
of-function in GAPDH [134]. GAPDH has several oxidizable
cysteines, one of which is located in the catalytic domain
where it may undergo oxidation (S-nitrosylation) by NO, and
binds to Siah1, an E3 ubiquitin ligase. Thereafter the complex
GAPDH-Siah1 translocates to the nucleus where it causes a
degradation of Siah1 substrates, which are cytotoxic. [132].
Indeed, S-nitrosylation of GAPDH and 𝛼-enolase, another
key glycolytic and multifunctional enzyme related to neu-
rodegeneration (its classical role is to catalize the dehydration
of 2-phosphoglycerate to phosphoenolpyruvate), have been
found in brains of AD and multiple sclerosis patients [134].

7. Concluding Remarks

Two degenerative mechanisms exist in the same organ,
the brain. Both pathological processes produce excessive
amounts of free radicals, leading to OxS, which in turn
worsens the pathological progression for both AD and T2D.
By using the same oxidative stress-dependent mechanisms,
diabetes and Alzheimer may feedback on each other, acceler-
ating the neurodegenerative process.

The neurotoxic A𝛽 tends to accumulate in brain in line
with insulin accumulation. A𝛽 by itself contributes to insulin
resistance in brain cells which feeds the vicious cycle between
OxS and neuroinflammation [21]. It is a cause and conse-
quence of increasing OxS.There are many hypotheses related
to the causes of AD, and the cascade of A𝛽 is only one of
them. Conversely, hyperphosphorylation of tau in AD brain
responds to GSK-3, which is identified with insulin resistance
in diabetes. Tau may also be phosphorylated by cyclin-
dependent protein kinase 5 (cdk5), cAMP-dependent protein
kinase (PKA), and stress-activated protein kinases [135]. Tau
hyperphosphorylation depends heavily on oxidative stress
and Ca2+ dysregulation, both intrinsic to AD pathogeny [21].
OxS andCa2+ dysregulation, the same as neuroinflammation,
are dysfunctional mechanisms related to multiple signaling
pathways in addition to insulin resistance. But it is important
to note that these phenomena feedback on each other,
forming a pathological vicious cycle. Oxidative stress is the
common factor for AD and T2D. Oxidative stress is a key
factor which determines the extent and the progression of
damage. T2D and AD might not necessarily be the same
pathologies; they do share some insulin resistance-related
mechanisms, and they are two pathologies that overlap

each other in the same organ, under the same pathogenic
background: oxidative stress.
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