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Immunotherapy, including immune checkpoint blockade and chimeric antigen receptor T cells, is
one of themost promising approaches to treat cancer. Vaccines have been effective in preventing
cancers like liver cancer and cervical cancer with a viral etiology. Instead of preventing disease,
therapeutic cancer vaccines mobilize the immune system to attack existing cancer. p53 is
dysregulated in themajority of humancancers and is a highly promising target for cancer vaccines.
Over twenty clinical trials have targeted p53 inmalignant diseases using vaccines. In this work, we
review the progress of vaccinations with p53 or its peptides as the antigens and summarize the
clinical and immunological effects of p53-targeting vaccines from clinical trials. The delivery
platforms include p53 peptides, viral vectors, and dendritic cells pulsed with short peptides or
transduced by p53-encoding viruses. These studies shed light on the feasibility, safety, and clinical
benefit of p53 vaccination in select groups of patients, implicating that p53-targeting vaccines
warrant further investigations in experimental animals and human studies.
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INTRODUCTION

TP53 gene encodes the transcription factor p53, one of the most important tumor suppressors.
Under physiological conditions, p53 expression is tightly controlled and maintains a low level due to
rapid degradation by the ubiquitin-mediated proteolysis. The E3 ubiquitin ligase MDM2 and its
structural homolog MDMX (also known as MDM4) are the best known negative regulators of p53
(Manfredi, 2021). MDM2 polyubiquitylates p53 and results in proteasome-mediated degradation
and monoubiquitylates p53 lead to export p53 out of the nucleus (Wu and Prives, 2018).
Furthermore, MDM2 direct interacts with p53 to disrupt the transcriptional activity (Wu and
Prives, 2018). Finally, MDM2 is a p53 target gene, thus creating an auto-regulatory feedback loop.
MDMX has no ubiquitylation activity, but it binds p53 and inactivates it directly or heterodimerizes
with MDM2 to aid MDM2 in p53 ubiquitylation (Wade et al., 2010; Karni-Schmidt et al., 2016; Yang
et al., 2021). Under cellular stress, p53 becomes activated and stabilized to transcriptionally regulate
target genes that are pivotal to various cellular processes, including cell cycle arrest, apoptosis, and
DNA repair (Janic et al., 2018; Boutelle and Attardi, 2021).

P53 IN CANCER

Germline or somatic mutation in the TP53 gene is frequently found in human cancers (Malkin et al.,
1990; Hollstein et al., 1991). Missense mutations are the most common mutation type in cancer
tissues, leading to mutant p53 accumulation in tumor cells (Petitjean et al., 2007; Mantovani et al.,
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2019). Mutations occur throughout the p53 protein but
predominantly are located at exons 4–9 that encode the DNA
binding domain, including six “hotspot” residues, namely R175,
G245, R248, R249, R273, and R282 (Leroy et al., 2014; Bouaoun
et al., 2016). Missense TP53mutations are classified as contact or
structural mutations. Contact mutations, such as R248Q, R273H,
and R273C, disrupt p53 DNA binding, resulting in loss of
essential protein-DNA contacts. Structural mutations, such as
R175H, G245S, Y220C, and R249S, destabilize the p53 structure
and reduce its thermostability (Joerger and Fersht, 2007). Most
p53mutants not only lose wild-type (WT) p53 activity (i.e., loss of
function [LOF]) but also obtain dominant-negative (DN)
functions to antagonize the remaining WT p53 (Nakayama
et al., 2020; Tang et al., 2020). Furthermore, many p53
mutants acquire gain of function (GOF) activity (Nakayama
et al., 2020; Tang et al., 2020), though this is debated
(Boettcher et al., 2019). Thus, mutant TP53 acts as an
oncogene that promotes tumor cells’ survival, proliferation,
invasion, and metastasis. However, the TP53 mutation rates
differ significantly in anatomical tumor sites (Wang and Sun,
2017). A Pan-Cancer cohort showed TP53 was the most
frequently mutated gene (42% of samples); it is mutated in
95% serous ovarian cancer, but only in 2.2% renal clear cell
carcinoma (Kandoth et al., 2013). The incidence of the LOF p53
mutations is associated with increased chemotherapy resistance
and lower efficacy of anti-tumor agents (Keshelava et al., 2001).
OverexpressWT p53 in tumor cells increase p53 protein level and
lead to cell growth arrest or apoptosis (Ramqvist et al., 1993;
McIlwrath et al., 1994). Furthermore, mouse models have
demonstrated that the significance of p53 as a regulator of
tumor suppression and therapy in vivo (Iwakuma and Lozano,
2007). p53 upregulates the expression of CDKN1A, BAX, PUMA,
and NOXA, resulting in cell-cycle arrest, apoptosis, and
senescence in vivo (Brady et al., 2011; Li et al., 2012).

p53 also plays a pivotal role in regulating inflammation in
cancer through its activities in non-cancer cells. Lowe and
colleagues showed that in the presence of chronic liver
damage, ablation of a p53-dependent senescence program in
hepatic stellate cells enhanced the transformation of adjacent
epithelial cells into hepatocellular carcinoma by skewing
macrophage polarization towards a tumor-promoting M2-state
(Lujambio et al., 2013). Mice with a targeted deletion of p53 in
myeloid cells selectively lost the Ly6c+CD103+ population and
became unresponsive to immunotherapy and immunogenic
chemotherapy, supporting that p53 drives differentiation of
monocytic precursor cells into dendritic cells and macrophages
for cross-presentation of tumor antigens (Sharma et al., 2018).
MDM2 promoted T cell-mediated anti-tumor immunity by
preventing c-Cbl-mediated STAT5 degradation; targeting the
p53-MDM2 interaction with a pharmacological agent (APG-
115) augmented MDM2 in T cells, boosted T cell immunity,
and synergized with cancer immunotherapy (Zhou et al., 2021).

Multiple p53-targeting therapeutic strategies have been
attempted. For tumors with WT p53, the approach is to
suppress the interaction between p53 and MDM2/MDMX,
inhibit the degradation of WT p53, and maintain the needed
levels of p53 in cells, thus promote tumor suppression. For

tumors with mutant p53, therapeutic agents are developed to
reactivate mutant p53 or promote its degradation (Chen et al.,
2021). Targeting the p53 signaling pathway has been extensively
reviewed by a number of investigators (Hernández Borrero and
El-Deiry, 2021; Huang, 2021; Liu et al., 2021; Salomao et al.,
2021). At least theoretically, therapeutic restoration of inactivated
tumor suppressors is more challenging than inhibiting an
oncogenic target. Indeed, no therapy has successfully
reactivated a mutated tumor suppressor in a clinical setting.
Furthermore, p53 is an intracellular protein, making it
inaccessible to antibodies.

CANCER IMMUNOTHERAPY

Cancer immunotherapy manipulates the immune system to
recognize and destroy cancer cells. Therapeutic cancer
vaccines are an exciting development in cancer
immunotherapy by eliciting specific immune responses to
tumor antigens. CD8+ cytotoxic T lymphocytes (CTLs) are
preferred effector cells for anti-tumor immune responses
(Hossain et al., 2021). CD8+ CTLs act as the key player in
mediating tumor suppression through recognition of tumor-
specific or associated antigens. T lymphocytes recognize
antigens presented by antigen-presenting cells (APCs) in a
major histocompatibility-restricted manner. Dendritic cells
(DCs), discovered and characterized by Steinman and Cohn in
1973, are the most efficient APCs (Steinman and Cohn, 1973;
Steinman and Cohn, 1974; Steinman et al., 1975). DCs participate
in a variety of immunological processes, including initiating
immune responses and sustaining effective T-cell-mediated
anti-tumor immune responses (Marciscano and
Anandasabapathy, 2021). DCs are classified into immature and
mature according to their developmental stage. When immature
DCs recognize, uptake, and cross-present the antigens released by
tumor cells, they shift to secondary lymphoid organs, where they
activate CD4+ T cells or CD8+ T cells to trigger specific CTLs
responses against target cells (Wang et al., 2020a).

VACCINES TARGETING P53

Both WT and mutant p53 epitopes can be presented on the cell
surface in the context of MHC I molecules by APCs for CD8+

T cell recognition (Houbiers et al., 1993). CTLs recognizing the
WT p5325–35, p53110–124, p53108–122, p53149–157, and p53264–272
epitopes have been reported, and many are used for developing
potentially broadly applicable cancer vaccines (Chikamatsu et al.,
1999; Chikamatsu et al., 2003; Rojas et al., 2005; Ito et al., 2006).
p53110–124 specific CD4+ T cells promote the generation and
function of tumor-specific CD8+ CTLs (Chikamatsu et al., 2003).
Short peptides from a mouse mutant p53 are recognized by CD4+

and CD8+ T cells, and vaccination with a mutant peptide
emulsified in incomplete Freund’s adjuvant leads to tumor
inhibition (Noguchi et al., 1994; Theobald et al., 1995). p53
mutations are associated with overexpression of mutant p53 in
cancer cells, which may lead to the abnormal presentation of p53
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TABLE 1 | Clinical trials with p53-targeting vaccines in human Cancers.

Author Year Phase Vaccine
platform

Antigena,b Disease Patient
no

Disease
state

Previous
treatment

Immunizations
(x)

Kuball 2002 Pilot
study

Recombinant
adenovirus

WT FL p53 Urogenital, lung cancer,
malignant schwannoma

6 Advanced
disease

Unknown 4

Menon 2003 I/II Recombinant
canarypox virus

WT FL p53 Colorectal cancer 16 Metastatic
disease

Chemotherapy/
radiation
therapy/other

3

Svane 2004 I Short peptide-
pulsed DC

WT p53 peptide HLA-A2+ breast cancer 6 Metastatic
disease

Chemotherapy/
radiotherapy/
endocrine

10

Lomas 2004 I Short peptides
plus GM-CSF

Short peptides
derived from
human anti-p53
(WT denatured)
antibodies

Breast, colorectal, non-
small-cell lung, renal,
prostate, head- and neck,
hemangiopericytoma,
esophageal cancer

14 NED/metastatic
/recurrent
disease

Yes 4

Antonia 2006 I/II Recombinant
adenovirus-
transduced DC

WT FL p53 Small cell lung cancer 29 Extensive/
recurrent disease

Chemotherapy 3 or 6

Herrin 2007 II Short peptide-
pulsed DC

Short WT p53
peptide

HLA-A2+ ovarian cancer 21 Advanced/
recurrent disease

Yes >3

Svane 2007 II Short peptide-
pulsed DC

3 WT p53
peptides + 3
mutant p53
peptides (to
enhance HLA-
A2 binding

HLA-A2+ breast cancer 26 Metastatic Regimens/
endocrine

10

Leffers 2009 II Long peptide 10 long
peptides
covering WT
p53 (70–248)

Ovarian cancer 20 Recurrent
disease

Surgery/
chemotherapy

4

Speetjens 2009 I/II Long peptide 10 long
peptides
covering WT
p53 (70–248)

Colorectal cancer 10 Metastatic
disease

Surgery/
chemotherapy

2

Yoo 2009 II Recombinant
adenovirus

WT FL p53 Squamous Cell Carcinoma 13 Advanced
disease

No 2

Trepiakas 2010 I/II Short peptide-
pulsed DC

Short peptides
for p53
(mutated to
enhance HLA-
A2 binding),
survivin, and
telomerase

Melanoma 46 Metastatic
disease

Chemotherapy 1–29

Long peptide
Rahma 2012 II Short peptide

pulsed-DC
Short WT p53
peptide

HLA-A2+ ovarian cancer 21 Advanced/
recurrent disease

Yes 4

Vermeij 2012 II Long peptide 10 long
peptides
covering WT
p53 (70–248)

Ovarian cancer 12 Recurrent
disease

Chemotherapy 4

Iclozan 2013 II Recombinant
adenovirus-
transduced DC

WT FL p53 Small cell lung cancer 56 Advanced
disease

Chemotherapy/
radiotherapy

3

Zeestraten 2013 I/II Long peptide
plus IFN-α

10 long
peptides
covering WT
p53 (70–248)

Colorectal cancer 11 Metastatic
disease

Surgery/
chemotherapy/
radiotherapy

2

Hardwick 2014 I Recombinant
vaccinia Ankara
virus

WT FL p53 Pancreatic cancer, colon
cancer

12 Unresectable
and
chemotherapy-
resistant disease

Chemotherapy/
radiotherapy

3

Schuler 2014 I Short peptide-
pulsed DC

Short WT p53
peptides
(mutated to

HLA-A2+ HNSCC 16 Advanced
disease

Surgery/
chemotherapy

3

(Continued on following page)
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peptides by APCs. p53264–272 or p53149–157 tetramer+ CD8+ CTLs
have been detected in the circulation of head and neck squamous
cell carcinomas (HNSCC) patients and negatively correlated with
p53 expression in tumor tissues and tumor stage (Albers et al.,
2018). These reports suggest that p53-specific CD8+ CTLs could
eliminate tumor cells, as the immune system has the ability to
recognize the p53 epitopes represented on the surface of cancer
cells and APCs. Based on this evidence, a growing number of
clinical trials targeting p53 have been conducted (Vermeij et al.,
2011; DeLeo and Appella, 2020). This work comprehensively
reviews these clinical trials with therapeutic vaccines against p53.
Table 1 contains the clinical trial enrollment information such as
vaccine platform, antigen type, and cancer type, and Table 2
provides the information on induced immune and clinical
responses in cancer patients.

Peptide Vaccines
Lomas et al. conducted a phase I trial with up to four doses of a
pool of eight short peptides derived from the complementarity
determining regions of human anti-p53 antibodies (Lomas et al.,
2004). In this trial, 14 patients with solid tumors were enrolled,
and six received all four idiotypic vaccinations. The serum anti-
vaccine antibodies were mainly IgG. One patient had increased
titers of anti-p53 antibodies. Two patients showed responses in
the thymidine proliferation assay to immunized peptides. In
contrast to the proliferation assays, no patients had vaccine-
specific, IFN-γ-secreting T cells as assessed by the enzyme-linked
immune absorbent spot (ELISpot) assay (Lomas et al., 2004).

Leffers et al. conducted a phase II trial with a p53 synthetic
long peptide (p53-SLP) vaccine in 20 ovarian cancer patients
(Leffers et al., 2009). The p53-SLP vaccine contains 10 25–30
amino acid long peptides coveringWT p53 from position 70–248.
Before immunization, eight of 20 patients had p53 auto-
antibodies associated with p53 expression in primary tumors.

After immunization, nine presented p53-autoantibodies. Before
immunization, responses against peptides included in the vaccine
were present in three patients. After completing the
immunization scheme, all patients had detected vaccine-
induced IFN-γ producing p53-specific T-cells. These p53-
specific IFN-γ T cells were CD4+CD8−. Two of the total 20
patients had stable disease as evaluated by CA-125 and
computerized tomography (CT) and they had vaccine-induced
p53-specific responses. Eighteen of 20 patients had clinical,
biochemical, and/or radiographic evidence of progressive
disease (Leffers et al., 2009). The authors concluded that the
p53-SLP vaccine does not affect responses to secondary
chemotherapy or survival and that p53-specific T cells do
survive chemotherapy (Leffers et al., 2012).

The p53-SLP vaccine combined with cyclophosphamide
therapy is evaluated by Vermeij et al. for treating patients with
recurrent ovarian cancer in a single-arm phase II study (Vermeij
et al., 2012). Twelve patients were administered four doses of the
p53-SLP vaccine at a 3 week interval. Two days before each
immunization, patients were treated with cyclophosphamide
infusion. After four immunizations, seven of eight evaluable
patients displayed vaccine-induced IFN-γ-producing p53-
specific T cells, and five produced both T-helper 1 and
T-helper-2 cytokines. The p53-SLP vaccine and
cyclophosphamide combination therapy had no effect on Treg

cells. Two patients had stable disease as evaluated by serum CA-
125 measurement and CT scan, and vaccine-induced p53-specific
responses were present in both patients (Vermeij et al., 2012).

Speetjens et al. conducted a phase I/II trial with two doses of
the p53-SLP vaccine in 10 metastatic colorectal cancer patients
(Speetjens et al., 2009). Six of nine vaccinated patients with p53-
SLP had p53-specific immune response detected by IFN-γ
ELISpot. Furthermore, two showed detectable p53 specific
CD3+CD4+CD137+ cell responses, none had

TABLE 1 | (Continued) Clinical trials with p53-targeting vaccines in human Cancers.

Author Year Phase Vaccine
platform

Antigena,b Disease Patient
no

Disease
state

Previous
treatment

Immunizations
(x)

enhance HLA-
A2 binding)

Dijkgraaf 2015 I/II Long peptide 10 long
peptides
covering WT
p53 (70–248)

Ovarian cancer 8 Platinum-
resistant disease

Chemotherapy 2

Hardwick 2018 I Recombinant
vaccinia Ankara
virus

WT FL p53 Ovarian cancer 12 Platinum-
resistant disease

Chemotherapy 3

Soliman 2018 I/II Recombinant
adenovirus-
transduced DC

WT FL p53 Breast, colon, gastric, lung,
tongue, ovarian,
chondrosarcoma cancer

194 Metastatic
disease

Chemotherapy 4

Chiappori 2019 II Recombinant
adenovirus-
transduced DC

WT FL p53 Small cell lung cancer 78 Recurrent
disease

Chemotherapy 3

Chung 2019 I Recombinant
vaccinia Ankara
virus

WT FL p53 Breast, pancreatic,
hepatocellular, or head and
neck cancer

11 Recurrent
disease

Chemotherapy 3

aWT, wild-type.
bFL, full-length.
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TABLE 2 | Immune and clinical response p53-targeting vaccines.

Author Year Humoral
responsea

ELISpot CD137
assay

p53-specific
proliferationb

Treg
frequency
decrease

MDSC
frequency
decrease

Immunohistochemistryc Clinical
responsed,e

Adverse
events
(Grade)

Kuball 2002 0/6 0/6 Not
analyzed

Not analyzed Not
analyzed

Not
analyzed

3/6 positive 4/6 SD, 2/
6 PD

1

Menon 2003 Pre 7/15
post 10/15

Not
analyzed

Not
analyzed

Not analyzed Not
analyzed

Not
analyzed

Not analyzed 1/16 SD, 15/
16 PD

1/2

Svane 2004 Not
analyzed

4/6 PR Not
analyzed

Not analyzed Not
analyzed

Not
analyzed

3/6 positive 2/6 SD, 2/6
PD, 2/6
MR/UR

1/2

Lomas 2004 Pre 0/6
post 1/6

0/6 PR Not
analyzed

2/6 VIR Not
analyzed

Not
analyzed

14/14 positive Not analyzed 1/2

Antonia 2006 Pre 10/22
post 10/22

16/28 PR Not
analyzed

Not analyzed No Not
analyzed

Not analyzed 1/29 PR, 7/29
SD, 21/29 PD

1/2

Herrin 2007 Not
analyzed

14/20 PR Not
analyzed

Not analyzed Not
analyzed

Not
analyzed

Not analyzed Not analyzed 1–4

Svane 2007 Not
analyzed

8/22 PR Not
analyzed

Not analyzed Not
analyzed

Not
analyzed

11/26 positive 8/19 SD, 11/
19 PD

1/2

Leffers 2009 Pre 8/20
post 9/20

18/18 PR Not
analyzed

14/17 PR Not
analyzed

Not
analyzed

9/20 positive 2 SD, 18 PD 1/2

Speetjens 2009 Not
analyzed

6/9 PR 2/10
CD4+ PR,
0/10
CD8+ PR

7/10 VIR No Not
analyzed

7/10 positive 5/10 NED, 5/
10 RD

1/2

Yoo 2009 Not
analyzed

Not
analyzed

Not
analyzed

Not analyzed Not
analyzed

Not
analyzed

Not analyzed 3/13 RD 1–4

Trepiakas 2010 Not
analyzed

1/4 PR Not
analyzed

Not analyzed No Not
analyzed

Not analyzed 11/36 SD 1/2

Rahma 2012 Not
analyzed

14/20 PR Not
analyzed

Not analyzed No Not
analyzed

Not analyzed 4/20 NED, 16/
20 RD

1–4

Vermeij 2012 Not
analyzed

7/8 PR Not
analyzed

5/8 VIR No Not
analyzed

5/12 positive 2/10 SD, 8/
10 PD

1/2

Iclozan 2013 Not
analyzed

3/15 PR, 5/
12 PR

Not
analyzed

Not analyzed No No Not analyzed Not analyzed Not
reported

Zeestraten 2013 Pre 7/8
post 7/8

11/11 PR Not
analyzed

4/9 VIR Not
analyzed

Not
analyzed

8/11 positive Not analyzed 1/2

Hardwick 2014 Pre 0/5
post 5/5

6/6 PR 8/12
CD4+ PR,
10/12
CD8+ PR

Not analyzed No 5/9 Not analyzed Not analyzed 1/2

Schuler 2014 Not
analyzed

4/16 PR,
11/16 PR
(Tetramers)

Not
analyzed

Not analyzed 12/15 Not
analyzed

8/16 positive 13/16 NED 1/2

Dijkgraaf 2015 Not
analyzed

8/8 PR Not
analyzed

0/8 VIR No No Not analyzed 3/6 PD, 1/6
SD, 2/6 PR

1–4

Hardwick 2018 Not
analyzed

Not
analyzed

5/11
CD4+ PR,
6/11
CD8+ PR

Not analyzed 7/11 6/11 Not analyzed 3/11 SD, 1/
6 PR

1–4

Soliman 2018 Not
analyzed

7/23 PR Not
analyzed

Not analyzed Not
analyzed

Not
analyzed

44/94 positive 4/39 SD 1–5

Chiappori 2019 Not
analyzed

13/38 PR Not
analyzed

Not analyzed Not
analyzed

Not
analyzed

Not analyzed 2/61 NED, 13/
61 SD, 1/61
PR, 35/61 PD

1–3

Chung 2019 Not
analyzed

Not
analyzed

2/11
CD4+ PR,
2/11
CD8+ PR

Not analyzed Not
analyzed

Not
analyzed

Not analyzed 3/11 SD, 6/
11 RD

1–4

aPre- and post-immunization levels of anti-p53-specific antibodies.
bp53-specific T-lymphocytes induced by immunizations. PR, positive response; VIR, vaccine-induced response.
cp53-staining of primary tumor samples.
dSD, stable disease; PD, progressive disease; MR, mixed response, UR, unconfirmed regression; PR, partial response; RD, recurrent disease; NED, no evidence of disease.
eAll according to Response Evaluation Criteria in Solid Tumors.
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CD3+CD8+CD137+ cell responses. One patient showed a p53-
specific proliferative response before vaccination; seven of 10
patients displayed vaccine-induced p53-specific reactivity after
vaccination. Vaccination has no effects on the induction of p53-
specific Treg cells. After vaccination, five had no evidence of
disease, five showed recurrent disease (Speetjens et al., 2009).

In an ensuing phase I/II clinical trial, the combination of
interferon IFN-α and p53-SLP was evaluated in 11 colorectal
cancer patients (Zeestraten et al., 2013). The patients were treated
with metastasectomy, chemotherapy, and/or radiofrequency
ablation (RFA) for disease metastasis. p53-specific IgG
antibody responses were detected in seven of eight patients
who had serum samples from pre- and post-vaccination. In all
patients, p53-SLP vaccination combined with IFN-α treatment-
induced p53-specific T-cell responses. The toxicity of the
combination was limited to Grade 1 or 2. After the two
vaccinations, four of nine patients showed vaccine-induced
proliferative responses (Zeestraten et al., 2013).

A phase I/II trial combining gemcitabine, IFN-α and the p53-
SLP vaccine was conducted in patients with platinum-resistant
ovarian cancer by Dijkgraaf et al. (2015). Patients were
sequentially treated in three groups: the first three patients
received gemcitabine alone, the following six patients received
gemcitabine and IFN-α and the remaining six received
gemcitabine, IFN-α, and additionally p53 SLP vaccine. Patients
who received gemcitabine/IFN-α/p53 SLP treatment showed
profound T-cell activation and increases in activated T-cell/
Treg cell ratios. All p53 SLP vaccinated patients showed
detectable p53-specific T-cell responses (Dijkgraaf et al., 2015).
Eleven Grade 3/4 adverse events were observed, most likely due to
chemotherapy and/or IFN-α (Dijkgraaf et al., 2015).

From the above studies, we can conclude that the p53-SLP
vaccine is safe and capable to induce p53-specific T-cell responses
in patients treated for multiple cancers, yet improved survival is
yet to come. Most studies are underpowered to demonstrate
efficacy in the specific cancer population.

Recombinant Viral Vaccines
Recombinant viral vaccines aim to use a live virus or attenuated
virus to induce an immune response against the viral-encoded
antigen (Nascimento and Leite, 2012). There are a number of
viral platforms in vaccinations for many pathogens that have
thwarted efforts towards control using conventional vaccine
approaches (Ewer et al., 2016; Nasar et al., 2017), many of
which are used to target p53 in cancer.

In a pilot clinical trial, six advanced-stage cancer patients were
immunized with four doses of rAd/hup53 particles (Kuball et al.,
2002). rAd/hup53 is a recombinant replication-defective
adenoviral vector encoding human full-length WT p53, and it
is capable of priming A2.1-restricted and hup53 epitope-specific
CTLs in vivo but unable to induce p53-specific antibodies. After
vaccinations, adenoviral backbone induced CD4+ T cells and
CD8+ T cells in six and two patients, respectively. The treatment
was well tolerated, yet no evidence for objective tumor responses
was observed (Kuball et al., 2002).

The canarypox virus (ALVAC) is a well-characterized viral
vector capable of infecting without replicating in mammalian

cells. A phase I/II study was performed on 16 colorectal cancer
patients with three intravenously injections of increasing dose of
ALVAC encoding the human WT p53 gene (ALVAC-p53) at
3 week intervals (Menon et al., 2003). All patients had metastatic
disease of p53-overexpressing colorectal cancer. Fever was the
only vaccination-related adverse event. Before the vaccination,
seven patients had IgG responses against p53; after vaccination,
IgG responses against p53 were induced in three more patients
(Menon et al., 2003). Following vaccinations, only one patient
showed stable disease, while others showed progressive disease
(Menon et al., 2003). No anaphylactic reaction or unwanted
autoimmune reactions were observed (Menon et al., 2003).

Modified vaccinia virus Ankara (MVA) is a highly attenuated
cytopathic strain replication-competent virus, a well-established
vaccinia virus that the Food and Drug Administration has
approved as a smallpox vaccine. In a phase I trial of p53MVA
(an MVA virus carrying the WT p53 gene), 12 patients with
refractory pancreatic and colon cancer were treated with three
increasing doses of p53MVA every 3 weeks (Hardwick et al.,
2014). Activation-induced CD137 expression is a common
marker for antigen-triggered T cell responses. In this study,
four patients had CD137+CD4+ T cells, and 10 had
CD137+CD8+ T cells upon stimulation with the p53 peptide
library. An MVA antibody neutralization assay showed that all
patients had a low anti-MVA response before vaccination,
whereas vaccination increased T cell reactivity and neutralizing
activity against MVA. Patients with lower frequencies of PD1+

CD8+ T cells had greater p53-reactive CD8+ T cells after
immunization, and antibody blockade of PD-1 in vitro
increased the p53 immune responses (Hardwick et al., 2014).
This first-in-human single-agent trial showed the p53MVA
vaccine is well tolerated and immunogenic, but it showed no
significant clinical responses.

Hardwick et al. conducted a dose de-escalating phase I trial of
p53MVA vaccine in combination with the gemcitabine
chemotherapy (Hardwick et al., 2018). Twelve patients with
platinum-resistant ovarian cancer were enrolled in this trial
and treated with gemcitabine before three p53MVA
vaccinations. Five patients had CD137+ CD4+ T cells, and six
had CD137+ CD8+ T cells after vaccination. In 11 patients
evaluated for toxicity of the p53MVA/gemcitabine
combination therapy, clinical outcome, and immunologic
response, none had complete responses, three had stable
disease, and one had a partial response on the second post-
therapy CT scan (Hardwick et al., 2018).

Chung et al. conducted a phase I trial with the combination of
p53MVA and pembrolizumab (anti-PD-1) to treat patients with
advanced solid tumors (Chung et al., 2019). Eleven patients with
advanced breast, pancreatic, hepatocellular, or head and neck
cancer received up to three dose vaccines combined with
pembrolizumab at a 3-week interval. They observed clinical
responses in three patients who maintained stable disease for
up to 49 weeks. Two of them showed increased p53 specific
CD137+CD4+ and CD137+CD8+ T cells and upregulated
multiple immune response genes (Chung et al., 2019).

Advexin (INGN 201, Ad5CMV-p53) is a replication-impaired
adenoviral vector that carries the p53 gene under the
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cytomegalovirus (CMV) promoter and is a well-tolerated and
efficacious treatment, both as a monotherapy and in combination
with radiation and/or chemotherapy agents (Zhang et al., 1994).
Yoo et al. conducted a phase II trial of surgery with perioperative
INGN 201 gene therapy. Thirteen patients with advanced,
resectable squamous cell carcinoma of the oral cavity and
oropharynx were treated with INGN 201 along with surgery
and chemoradiotherapy. After surgery, all patients received
perioperative INGN 201 injections in the primary tumor bed
and the ipsilateral neck. In addition, three patients received
injections in the contralateral neck. All but three patients
received chemoradiotherapy (Yoo et al., 2009). Of the 10
patients with evaluable data, two experienced Grade 4 adverse
events and three died with observed relapses before death (Yoo
et al., 2009). Overall, the estimate of 1 year progression-free
survival was 92%, yet no definitive conclusion can be made
with this small sample size.

DCs Pulsed With p53 Peptides
Schuler et al. conducted a randomized phase I trial with
p53 peptide-pulsed DCs in patients with HNSCC (Schuler
et al., 2014). Both class I and class II peptides from p53 are
used in this study: p53-sequences 149–157 with T150L and
264–272 with F270W are HLA-A2.1+ restricted (p53-I), and
p53-sequence 110–124 are DR4+ restricted (p53-II). A
T-helper [Th] tetanus toxoid peptide (Tt-II) is used as a
control for p53-II. 16 HLA-A2.1+ patients were randomized
into three arms: six in arm 1 (DCs with p53-I peptides), four
in arm 2 (DCs with p53-I peptides + Tt-II peptide), and six in arm
3 (DCs with p53-I peptides + p53-II peptide). Vaccine-pulsed
DCs were delivered to inguinal lymph nodes at the third time
point. After vaccination, 12 of 15 patients showed decreased Treg

cells, and 13 had no evidence of disease in a median follow-up of
32 months. Eight patients had p53-positive tumors, but there was
no difference in disease-free survival between patients with p53-
positive versus p53-negative tumors (Schuler et al., 2014). There
were no Grade 2–4 adverse events.

Svane et al. conducted a phase I trial of vaccination with
p53 peptide-pulsed DCs in patients with advanced breast cancer
(Svane et al., 2004). Six HLA-A2-associated p53 short peptides
were used (3 WT and three were mutated to enhance HLA-A2
binding), along with and a pan-MHC class II peptide, PADRE.
Nine patients received 10 immunizations with p53- and PADRE-
peptide–pulsed autologous DCs. Before vaccination, two of them
had T-cell reactivity against p53 peptides. After four or six
vaccinations, four patients showed increased specific T-cell
responses against p53 peptides. In three patients with vaccine-
induced reactivity, T-cell responses were declined at late time
intervals. Two patients maintained stable disease for more than
6 months (Svane et al., 2004).

A phase II trial of vaccination with the same p53 peptide-
pulsed DCs for patients with advanced breast cancer was
conducted by Svane et al. (2007). This phase II trial enrolled
26 patients with progressive metastatic breast cancer patients.
Eight of 22 evaluated patients had p53-specific CTLs after
immunization. p53 was frequently expressed in tumors from
patients achieving stable disease. Five of six patients with stable

disease expressed p53, whereas only six of 18 with progressive
disease. Overall, among 19 patients available for first evaluation
after six vaccinations, eight had stable disease, and 11 had
progressive disease, supporting an effect of p53-specific
vaccination (Svane et al., 2007).

Trepiakas et al. conducted a phase I/II trial with DCs pulsed
with multiple tumor peptides from p53, survivin, and telomerase
in 46 patients with malignant melanoma (Trepiakas et al., 2010).
The p53 peptides (and the PADRE peptide) were the same as
above. One out of four patients had increased lysate-specific IFN-
γ response as detected by ELISpot, and six of 10 showed
detectable antigen-specific T cell response as assessed by MHC
multimer assays. After six vaccinations, compared to patients
with progressive disease, patients with stable disease displayed
significantly lower Treg cells. Thirty-six patients had a clinical
response: 11 had stable disease, six had continued stable disease
after 16 weeks, and six had continued stable disease after 19 weeks
(Trepiakas et al., 2010).

In an ensuing phase II study, metastatic melanoma
patients were treated with p53 peptides-pulsed DC
vaccination with interleukin-2, metronomic
cyclophosphamide, and a Cox-2 inhibitor. The same six
p53 peptides and the PADRE peptide were used. Among
28 patients evaluated: 16 had stable disease, and 12 had
progressive disease (Ellebaek et al., 2012). The authors
concluded that DC vaccination in combination with IL-2,
cyclophosphamide, and the Cox-2 inhibitor was safe and
tolerable, and a general increase in immune responses was
observed upon fourth vaccination; however, a correlation
between clinical benefit and a vaccine-induced T-cell
response could not be determined (Ellebaek et al., 2012).

Herrin et al. conducted a randomized phase II trial with p53
vaccine to compare subcutaneous direct administration with
intravenous peptide-pulsed DCs in high-risk ovarian cancer
patients (Herrin et al., 2007). A single WT p53 epitope
(264–272) with high HLA-A2.1 affinity was used for
vaccination. Twenty-one patients were enrolled in this phase II
study. On the subcutaneous arm, nine of 13 patients had an
immunologic response. On the intravenous arm, five of seven had
an immunologic response. Mean overall survival on the
subcutaneous and intravenous arm is 70.4 and 72.9 months,
respectively (Herrin et al., 2007).

DCs Transduced With Virus
Antonia et al. tested a cancer vaccine based on adenovirus-
transduced DCs (Ad.p53-DC) in a phase I/II study (Antonia
et al., 2006). The virus expressed a full-length WT human p53.
Twenty-nine patients with late-stage small cell lung cancer
(SCLC) enrolled and received three vaccinations every 2 weeks.
Ten patients had a detectable level of anti-p53 antibody before
vaccination, and only three had a significantly increased anti-p53
antibodies level after immunization. p53-specific T cell responses
were detected in 13 of 25 patients who underwent the IFN-γ
ELISpot assay (Antonia et al., 2006). Among evaluated patients
treated with this vaccine, one achieved a partial response, seven
showed stable disease, and 21 developed progressive disease
(Antonia et al., 2006).
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Forkhead box protein P3 (FOXP3) expressing regulatory T
(Treg) cells are a subset of CD4+ T cells with high
immunosuppressive activity, which is critical cells for
maintaining dominant self-tolerance and immune homeostasis
(Togashi et al., 2019). Treg cells exert their immunosuppressive
activity through various cellular and humoral mechanisms,
including cytotoxic T lymphocyte antigen 4 (CTLA-4)-
mediated suppression of APCs, consumption of IL-2, and
production of immune inhibitory cytokines and molecules
(Spolski et al., 2018; Tekguc et al., 2021). Treg cells can
suppress anti-tumor immunity, and Treg cells dysregulation is
associated with a poor prognosis in human cancer patients
(Wang and Ke, 2011; Saito et al., 2016). There are two types
of antigens presented in tumor cells, including non-self-antigens,
also known as neoantigens, derived from either oncogenic viral
proteins or mutant proteins, and self-antigens, which are
generated from highly or aberrantly expressed endogenous
proteins. Self-antigens reactive CD8+ T cells exhibit an anergic
phenotype owing to suppression by Treg cells, while non-self-
specific CD8+ T cells showed resistance to Treg cells mediated
suppression in humans (Maeda et al., 2014). Thus, Treg cells exert
more effective suppression in immune responses against self-
antigens than non-self-antigens. Programmed cell death 1 (PD-1)
is a negative regulator of Treg cells as well as effector T cells,
suggesting that PD-1 blockade enhances the suppressive function
of Treg cells (Kamada et al., 2019; Kumagai et al., 2020). The
effects of p53-targeting vaccination on Treg cells were estimated in
this Ad.p53-DC phase I/II study (Antonia et al., 2006). Before or
after vaccination, there was no significant change of these cells in
healthy subjects and patients with SCLC, and no statistically
significant link between the presence of these cells in the patients’
blood and p53-specific T cell responses (Antonia et al., 2006).

Myeloid-derived suppressor cells (MDSCs) are a
heterogeneous population of cells. MDSCs are pathologically
activated myeloid progenitors and immature myeloid cells
with potent immunosuppressive activity (Hegde et al., 2021;
Veglia et al., 2021). A number of studies have demonstrated
that MDSCs are implicated in T cell suppression and are closely
associated with poor clinical outcomes in cancer (Wang et al.,
2020b; Imazeki et al., 2021). Mouse experiment also
demonstrated that MDSC depletion with antibodies or
different compounds could substantially improve anti-tumor
immune responses to exert anti-tumor effects (Gabrilovich
et al., 2012). Iclozan et al. conducted a randomized phase II
trial in patients with late-stage SCLC using the Ad.p53-DC
vaccine (Iclozan et al., 2013). Fifty-six patients were
randomized into one of three arms: 18 to arm A (control), 19
to arm B (the Ad.p53-DC vaccine alone), and 19 to arm C (the
Ad. p53-DC vaccine plus all-trans retinoic acid (ATRA). ATRA
substantially decreases MDSC. Patients were administrated with
the Ad.p53-DC vaccine three times at 2 week intervals. The
Ad.p53-DC vaccine alone showed no effect on the frequency
of MDSC and Treg, while the p53 vaccine combined with ATRA
significantly decreased MDSCs (Iclozan et al., 2013). In addition,
three patients in arm B had p53-specific immune response, and
five in arm C had detectable p53 response (Iclozan et al., 2013). In
a following article, Chiappori reported the clinical results of a

randomized-controlled phase II trial of patients with recurrent
SCLC with the same three arms (Chiappori et al., 2019). No
immune response was detected in arm A (control), three of 15
patients showed positive immune responses in arm B, and 10 had
positive immune response in arm C. In arm B, two patients
maintained complete response, four had stable disease, 13 had
progressive disease, and one had partial response. In arm C, nine
patients had stable disease and 22 had progressive disease
(Chiappori et al., 2019).

A phase-I/II study of the Ad. p53-DC vaccine in combination
with indoximod in metastatic tumors were reported by Soliman
et al. (2018). Forty-four patients with p53-positive by
immunohistochemistry were enrolled in this trial. Seven of 23
patients had increased CD8+ T cell positive response, and six
showed increased CD8+CD69+ T cells at week 3. During the
vaccination period, no objective responses occurred; stable
disease was observed in four patients at week 7 (Soliman
et al., 2018). Overall, the Ad.p53-DC vaccine is safe and elicits
immune responses, yet it fails to improve the overall response to
chemotherapy.

CONCLUSION

p53 is mutated in about half of all cancers and has attracted great
interest in the development of cancer vaccines. An increasing
number of studies on p53 vaccines, either peptide-, virus-, or DC-
based for cancer immunotherapy, have been reported. Several
vaccines have been tested in multiple clinical trials: p53-SLP,
p53MVA, DCs with six p53 peptides and the PADRE peptide,
and DCs transduced with Ad.p53. Key findings from these
published clinical trials are summarized (Tables 1, 2). First,
the p53 vaccines themselves are safe, albeit patients may have
high-grade adverse events when they have adjunctive
chemotherapy. Second, p53 vaccines elicit p53-specific
immune responses. Third, current p53 vaccines do not
improve patient survival to justify even a phase III trial,
let alone approved to treat patients. Finally, current p53
vaccines are largely dependent on WT p53 full-length protein
or peptides, which may circumvent the avidity of the CTLs due to
self-tolerance (Theobald et al., 1997; Kuball et al., 2002). As
vaccination technologies have unprecedented progress and
successes during the COVID-19 pandemic, we call for further
development of personalized p53-targeting vaccines with the
following provocative questions. 1) Should we include
antibodies in assays testing the B cell responses in addition to
T cell activation? Mutant p53 is known to be released into the
circulation of cancer patients (Sobhani et al., 2020). It is unclear
whether the elicited antibodies from vaccines targeting mutant
p53 in the serum or within the tumors offer therapeutic benefits.
At a minimum, these antibodies may attract APCs to the tumor
sites wheremutant p53 antigens enrich. 2) Should we worry about
autoimmune reactions targeting the endogenous WT p53 in
physiologic tissues? Current p53 vaccines do not show
widespread anaphylactic and autoimmune toxicities. It is
notable that the R175H neoantigen is only presented 1.3–2.4
copies per cell in several tumor cell lines carrying the R175H
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mutation (Hsiue et al., 2021). It is unlikely that low endogenous
WT p53 within normal tissues pose a serious challenge for T cell
autoimmune response. 3) Will improved delivery methods help?
mRNAs encapsulated in lipid nanoparticles (LNP) elicit about 5-
fold neutralizing antibodies against the antigen (Spike) compared
to adenoviral vectors (Khoury et al., 2021). mRNA-LNP may
deliver mutant p53 better than outdated delivery approaches. 4)
Will enhanced immunogenicity of p53 help? Structural changes
in p53, via either stabilizing mutants (Boeckler et al., 2008) or
adding self-assembling modules (He et al., 2021), could maximize
the host’s p53 expression, presentation, and immunogenicity. 5)
Shall we construct one vaccine for one p53 mutant? Each amino
acid substitution in p53 may alter the p53 conformation
differently (Wang and Fersht, 2015; Joerger and Fersht, 2016),
so the final degradation products from one p53mutant may differ
considerably from another mutant or the WT p53 that is rarely
overexpressed in cancer. The human T cell repertoire is not
necessarily devoid of low- and even residual high-avidity p53-
specific CTLs, yet self-tolerance certainly limits the number of
high-avidity CTLs binding to MHC-restricted WT p53 peptides
(Theobald et al., 1997; Kuball et al., 2002). Rational design of
next-generation personalized p53 vaccines requires an in-depth
understanding of mutant p53 structure and function, proteolysis,

B and T cell elicitation, vaccine trafficking and retention, antigen
expression and presentation, germinal center reactions, and self-
tolerance. Such knowledge is essential to achieve the most
effective precision vaccine candidates to be tested in clinical
trials, in order to reduce cancer mortality from p53 mutation.
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