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Abstract

Background: The Drosophila melanogaster gene CG11501 is up regulated after a septic injury and was proposed to act as a
negative regulator of the JAK/STAT signaling pathway. Diedel, the CG11501 gene product, is a small protein of 115 residues
with 10 cysteines.

Methodology/Principal Findings: We have produced Diedel in Drosophila S2 cells as an extra cellular protein thanks to its
own signal peptide and solved its crystal structure at 1.15 Å resolution by SIRAS using an iodo derivative. Diedel is
composed of two sub domains SD1 and SD2. SD1 is made of an antiparallel b-sheet covered by an a-helix and displays a
ferredoxin-like fold. SD2 reveals a new protein fold made of loops connected by four disulfide bridges. Further structural
analysis identified conserved hydrophobic residues on the surface of Diedel that may constitute a potential binding site. The
existence of two conformations, cis and trans, for the proline 52 may be of interest as prolyl peptidyl isomerisation has been
shown to play a role in several physiological mechanisms. The genome of D. melanogaster contains two other genes coding
for proteins homologous to Diedel, namely CG43228 and CG34329. Strikingly, apart from Drosophila and the pea aphid
Acyrthosiphon pisum, Diedel-related sequences were exclusively identified in a few insect DNA viruses of the Baculoviridae
and Ascoviridae families.

Conclusion/Significance: Diedel, a marker of the Drosophila antimicrobial/antiviral response, is a member of a small family
of proteins present in drosophilids, aphids and DNA viruses infecting lepidopterans. Diedel is an extracellular protein
composed of two sub-domains. Two special structural features (hydrophobic surface patch and cis/trans conformation for
proline 52) may indicate a putative interaction site, and support an extra cellular signaling function for Diedel, which is in
accordance with its proposed role as negative regulator of the JAK/STAT signaling pathway.
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Introduction

The innate immune system is our first line of defense against

invading organisms while the adaptive immune system acts as a

second line of defense. The innate immune system includes

defenses that, for the most part, are constitutively present and

ready to be mobilized upon infection. It is not antigen-specific and

reacts equally well to a variety of organisms. Historically, the focus

of most immunological studies has been on the adaptive response

and its hallmarks, namely the generation of a large repertoire of

antigen-recognizing receptors and immunological memory. Re-

cently, however, more effort has been expended on understanding

the innate immune system, as it became clear that innate

immunity is an evolutionarily ancient defense mechanism, which

governs the initial detection of pathogens and stimulates the first

line of host defense. Invertebrates have proven to be a good model

organism to study innate immunity as illustrated by the initial

genetic identification of signaling pathways mediating antimicro-

bial peptide gene expression in Drosophila [1]. The induction of

Toll and Imd pathways upon microbial detection leads to the

activation of transcription factors of the NF-kb family [2] and then

to the expression of hundreds of genes [3,4]. Ex vivo and in vivo

studies have shown that the JAK/STAT pathway also contributes

to inducible gene expression following infection, in particular in

the case of viral infections [5–8]. The JAK/STAT signal

transduction pathway is conserved from insects to mammals and

is involved in a wide variety of biological processes such as the

cellular proliferation, the stem cell maintenance, the haematopoi-

esis and the innate immunity responses [9]. This pleiotropic

cascade is the principal signaling mechanism for a large array of

cytokines and growth factors in mammals.

In Drosophila, this pathway is composed of the JAK kinase

Hopscotch and the STAT factor STAT92E and is activated by the

receptor Domeless, which is related to the gp130 subunit of the

receptor for cytokines of the interleukin-6 family. Domeless is

activated by cytokines of the Unpaired family (Upd, Upd2, Upd3).
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These cytokines are expressed during development but also in

response to stress, in particular during infections [9] [10]

In 2002, Perrimon and colleagues have used genome-wide

expression profiling to analyze the contribution of different

signaling pathways to the innate immune response. They reported

that the Drosophila melanogaster gene CG11501 is up-regulated after

septic injury and that the JAK/STAT signaling pathway is

involved in this induction [5]. This initial study was followed in the

Boutros’ lab by a genome-wide RNA interference screen in

Drosophila cells to identify novel genes involved in the regulation

of the JAK/STAT pathway [11]. The CG11501 gene was

identified as a negative regulator of the JAK/STAT signaling

pathway in this study, although its precise molecular function is

still unknown [11].

The CG11501 gene encodes a small cysteine-rich protein that

we named Diedel. Diedel is 115 amino acids long and contains 10

cysteines. It displays a strong homology with the products of two

other Drosophila melanogaster genes, CG34329 and CG43228. Diedel

does not seem to be conserved in living organisms outside

drosophilids apart from the aphid Acyrtosiphon pisum. Curiously

however, orthologues of this gene are present in the genome of

insect DNA viruses of the Baculoviridae and Ascoviridae families.

In our effort to decipher the molecular mechanisms of the

innate immune responses in Drosophila [12–15], we determined

the crystal structure of the Diedel protein in two crystal forms at

1.15 Å and 1.45 Å resolution, respectively.

Results

Structure determination
The Diedel protein crystallized in two crystal forms. Form A

crystals belonged to the orthorhombic space group P212121, with

unit-cell parameters a = 29.83 Å, b = 44.30 Å and c = 58.54 Å.

Assuming the presence of one molecule in the asymetric unit, the

Matthews coefficient (VM value) was calculated to be

1.83 Å3.Da21 that gave an estimated solvent content of 33%

[16]. The structure was solved by the SIRAS method using an

iodo derivative and was refined to an R factor of 12.9% and an R-

free factor of 15.1% to 1.15 Å resolution. Form B crystals

belonged to the orthorhombic space group P21212, with unit-cell

parameters a = 49.43 Å, b = 78.29 Å and c = 21.72 Å. Assuming

the presence of one Diedel molecule in the asymmetric unit, the

VM value was calculated to be 1.99 Å3.Da21 with an estimated

solvent content of 38% [16]. The structure in this crystal form was

solved at 1.45 Å resolution by molecular replacement using the

form A crystal structure as the starting model and was refined to

an R factor of 16.0% and an R-free factor of 19.6%.

Overall structure of Diedel
The final model for form A includes the entire expressed protein

from residue 25 to 115, the 24 first residues being the signal

peptide that is cleaved upon exportation, two extra residues (116

and 117) being cloning artifacts, one thiocyanate molecule, one

ethylene glycol molecule and 144 water molecules.

The overall structure shows a relatively elongated shape with

approximate dimensions of 60640640 Å3 (Figure 1A), which can

be divided into two sub-domains referred as SD1 and SD2

(Figure 1B). The SD1 sub-domain is made of two segments 29–59

and 90–117, and is composed of a four stranded anti parallel b-

sheet (30–35, 48–49, 55–59, 109–113), one a-helix (92–99) and

two 310 turns (43–46 and 100–103). The SD2 sub-domain is

formed by the first four N-terminal residues (25–28) and by a long

loop (residues 60 to 89) connecting the strand b3 and the a-helix of

the sub-domain SD1. This domain is highly reticulated with four

disulfide bridges; two of them tether the loop 60–89 to the N-

terminal residues.

Difference between Form A and Form B structures
The structures solved with the crystal forms A and B have been

superimposed with the program Turbo-Frodo. This superimposi-

tion indicates that the two structures are nearly identical with 76

Ca among the 92 (82%) of the model displaying equivalent

positions in both molecules with distance between the superim-

posed Ca atoms less than 1 Å. As expected the differences occur in

the N- and C-termini and in the tip of the loops. The main

structural difference is located in the loop 51–54 with a distance

between the Ca atoms of more than 5 Å for the residue 53. The

change in the main chain trace is the result of a difference of

peptidyl isomerization for the proline 52. Indeed this residue is in

cis conformation in form A and in trans conformation in form B

(Figure 2A). The residue P52 is not involved in crystal contact in

both crystal forms A and B. Only one distance below 3.5 Å is

found between Pro52 and the symmetry related molecules (3.41 Å

between Pro52 CB and Gly85 C in form B). Nevertheless

positioning the structure found in form A in the crystal packing of

form B leads to several clashes (distance below 1.5 Å) between

Pro52 and Gly85 of a symmetry related molecule. This is also the

case, but in a lesser extend, when putting form B structure in form

A crystal packing with few short contacts between Y51 and I48 of

a symmetry related molecule. The remaining question is to know

whether the different conformations are due to the crystal packing

or alternatively if the crystallization leads to the separation of the

two coexisting isomers. Unfortunately for the moment we have no

data that allow us to answer this question.

Structural comparisons
A structural similarity search within the Protein Data Bank

using the pairwise structural comparison server DALI [17] of the

complete Diedel gave no statistically significant global similarities.

Searching with the individual subdomains revealed that the overall

architecture of SD1 is that of a ferredoxin-like fold (an antiparallel

b-sheet covered on one side by two a-helices) with the highest Z-

score of 5.4 for a domain of phosphomevalonate (PDB 1K47) with

a core RMSD of 2.6 Å. The particularity of Diedel within the

ferredoxin-like fold family is the presence of only one a-helix, the

first a-helix of the standard fold being replaced by a short 310

helix. Therefore the secondary structure signature of Diedel SD1

domain is b310bbab. A Dali search for similar structures to SD2

resulted in no hit.

Phylogenetic analyses
The genome of D. melanogaster contains two other genes coding

proteins homologous to Diedel, namely CG43228 (Diedel-2) and

CG34329 (Diedel-3). Diedel and CG43228 are located very close to

each other on the chromosome 3R whereas CG34329 is located on

the X chromosome. The synteny of these three genes is conserved

among the melanogaster group (D. melanogaster, D. similans, D.

sechellia, D. yakuba and D. erecta) with some exceptions: (i) a fourth

gene is present in D. yakuba; (ii) the gene located on the X

chromosome in D. sechellia displays a mutation making it

inoperative (unless it is a sequencing error); and (iii) only two

genes have been retrieved in D. erecta, for which the annotation is

not fully completed (Figure 3A). Interestingly, phylogenetic

analyses indicate that these three genes originated between the

speciation events in the melanogaster group (Figure 3B). A similar

situation is found for the obscura, the replete and the virilis groups.

This suggests that the common ancestor of drosophilids had a
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single Diedel gene, which was subsequently duplicated indepen-

dently in the different Drosophila groups.

Diedel molecules are not found in the sequenced genomes of

other insects, with the exception of the pea aphid Acyrthosiphon

pisum. Surprisingly, the two A. pisum genes encoding Diedel-like

molecules are more closely related to the Diedel genes found in the

melanogaster group than those found in the other drosophilids.

Apart from Drosophila and pea aphid, Diedel related sequences were

only identified in some insect DNA viruses of the Baculoviridae

(Pseudalatia unipuncta granulovirus, Helicoverpa armigera granulovirus

and Heliothis armigera granulovirus) and Ascoviridae (Spodoptera

frugiperda ascovirus) families (Figure 3B). Strikingly all these viruses

infect lepidopterans and not dipterans. The independent acquisi-

tion of Diedel genes in two distinct families of DNA viruses [18]

strengthens the connection between Diedel and the field of

infectiology.

Figure 4A shows the sequence alignment of members from three

subfamilies of Diedel-related molecules, namely, Diedel, CG34329

and the viral homolog encoded by the genome of the Pseudalatia

unipuncta granulovirus. By contrast with the SD1 domain that

displays sequence divergences, the SD2 domain is highly

conserved in the three subfamilies. Indeed 22 out of 29 residues

display high level of conservation. Among them 9 are strictly

conserved. Interestingly the loop 76–81 that is highly conserved

exposes hydrophobic residues (Ile78-Phe79 in Diedel). The

conformation of the loop 76–81 seems not to be induced by the

crystal packing as the residues of the loop are not involved in

crystal contact and the conformation remains similar in the two

crystal forms. The peculiar position of these hydrophobic residues

at the tip of the loop (figure 2B) may suggest a possible protein-

protein interaction site, mediating association to a cellular receptor

or a microbial/viral molecule.

Discussion

We have solved the crystal structure of Diedel in two crystal

forms at 1.15 Å and 1.45 Å resolution, respectively. The structure

is composed of two subdomains, one of these belonging to the

ferredoxin family fold. The other one displays a particular fold

highly reticulated by three disulfide bridges and not found in any

other structure of the protein data bank. The name Diedel, which

is the german translation of Tweedle, comes from the presence of

two domains in such a little protein. Indeed, Tweedle-dum and

Tweedel-dee are two little twins in Alice’s adventures in

wonderland by Lewis Carroll. The lack of functional data for

Diedel impedes a structure-function relationship analysis. Howev-

er several molecular and structural features may be pointed out.

Diedel is an extracellular protein, which presents a high level of

stability certainly due to the presence of five disulfide bridges.

Protein disulfide bonds are formed in the endoplasmic reticulum of

eukaryotic cells upon exportation. All the sequences of Diedel-like

proteins from Drosophila and aphids and most of viral sequences

display a signal peptide for exportation. To the best of our

knowledge, there is only one exception in the sequence from

Figure 1. Overall crystal structure of Diedel. (A) Overall structure of Diedel. The structure is colored according to its secondary structure
elements: a-helices (blue), 310 helices (pink), b-strands (green), and loops (brown). The 10 cysteine residues involved in five disulfide bridges are
displayed in yellow and labelled. The N and C terminus residues are mentioned. The figure was generated with PyMOL (http://www.pymol.org). (B)
Topology diagram of Diedel. The color code for the secondary structure elements is similar to that in figure 1A. Diedel is composed of two sub
domains named SD1 and SD2. While SD1 belongs to the ferredoxin-like fold family, SD2 display a quite original fold highly reticulated with four
disulfide bridges.
doi:10.1371/journal.pone.0033416.g001
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Xestia nigum granulovirus. In this case, the disulfide bonds may be

formed in the intracellular medium upon the control of a

sulfhydryl oxidase, an enzyme present in baculoviruses [19].

Diedel overall structure somewhat resembles that of certain

cytokines of the CC or CXC chemokine families with a b-sheet

covered by an a-helix. The conservation of several hydrophobic

residues at the molecular surface may be the indication of a

protein-protein interface. The existence of two conformations for

the proline 52 may also have some significance. Indeed, an

increasing number of reports indicate that peptidyl prolyl cis-trans

isomerisation can play the role of a molecular switch in numerous

physiological mechanisms [20]. In some proteins, proline isomer-

ization may confer conformer-specific properties to a native

protein fold by modulating the features its molecular surface [21].

All these features suggest an extra cellular signaling function for

Diedel, which would be in accordance with its proposed role as

negative regulator of the JAK/STAT signaling pathway. The

determination of the tridimensional structure of Diedel paves the

way for further studies at both the functional and structural levels

to assess its role in the immune response of Drosophila.

Materials and Methods

Cloning, expression, and purification
Diedel overexpression and purification were performed as using

protocols previously described [22]. Briefly, the amplified cDNA

fragments of the CG11501 gene were subcloned into the SpeI/MseI

site of the pMT/V5-His A plasmid (Invitrogen). The recombinant

protein with its own signal peptide was overexpresssed by

induction of S2 cells with CuSO4 at a cell density of 3.106

cells.ml21. After five days, cells were aseptically centrifuged,

resuspended in fresh medium and induced again for five days. Up

to ten inductions could be done using the same cells. The insoluble

material was removed from the harvested medium by centrifuga-

tion at 4uC and 4,000 g for 5 min. The supernatant was clarified

by filtering through 0.45 mm filter and loaded onto a chelating

column (Chelating sepharose FF, GE Healthcare) equilibrated in

20 mM Na-phosphate pH 7.4 and 500 mM NaCl. Diedel was

eluted with equilibration buffer containing 200 mM imidazole.

Fractions containing Diedel were pooled, concentrated and buffer-

exchanged into 20 mM Hepes pH 7.2 and 150 mM NaCl using a

Millipore Ultrafree-15 spin concentrator with a 3 kDa molecular-

weight cutoff. The V5-His tag used for purification was removed

by an overnight trypsinolysis at 4uC using a trypsin:Diedel (w/w)

ratio of 1:200. The cleavage product was then loaded onto a

HiLoad 16/60 Superdex 75 gel-filtration column (GE Healthcare)

equilibrated with 20 mM Hepes pH 7.2, 150 mM NaCl and

0.05% NaN3. The purified protein showed a single band with a

molecular weight around 10,000 Da in SDS-PAGE as expected

after cleavage. Maldi-Tof mass spectrometry analysis showed a

main peak at 10,565 Da corresponding to a cleavage site between

residues L119 and E120 of the V5-His tag.

Crystallization and data collection
The JCSG+ crystal screen (Molecular Dimensions) was used to

search for the initial crystallization conditions using the hanging-

Figure 2. Special features of the Diedel structure. (A) Pro52 displays either trans or cis conformation. The structure obtained with the crystal
form A (space group P212121) is colored in brown and that coming for the form B (space group P21212) is colored in cyan. The main structural
difference is located in the loop 51–54 and is due to the cis-trans isomerization of the residue Pro52. (B) The loop 76–81 forms a conserved
hydrophobic surface patch. The hydrophobic residues Ile78 and Phe79 located on the tip of the loop 76–81 are fully exposed. A network of hydrogen
bonds involving the main chain nitrogen of residues 79 and 81 and the OE1 atom of the strictly conserved Asn77 maintains the loop in an extended
conformation and contributes in the solvent exposure of the two hydrophobic residues.
doi:10.1371/journal.pone.0033416.g002
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drop vapor-diffusion method at 20uC with a protein concentration

of 6 mg.ml21 in 20 mM Hepes pH 7.2, 150 mM NaCl, 0.05%

NaN3. After several days, two crystal forms A and B appeared in

conditions 14 and 4, respectively.

The thin plate-like crystals stacked on each other of form A

appeared in 200 mM NaSCN, 20%(v/v) PEG 3350. Subsequent

optimization of parameters such as precipitant and protein

concentrations, pH range and additives led to thicker plate-like

polycrystals with a final well solution of 50 mM CH3COONa

pH 5.5, 200 mM NaSCN, 18–25%(v/v) PEG 3350. Crystals grew

within one week to maximum dimensions of 0.560.460.08 mm.

Form B crystals grew in 20 mM CaCl2, 100 mM CH3COONa

pH 4.6, 30% (v/v) MPD and subsequent optimisation gave crystals

of 0.360.360.05 mm after one week.

Single crystals of form A were separated from each other using

Micro-ToolsTM (Hampton Research). A native crystal from

optimized conditions was transferred to a cryoprotectant com-

posed of reservoir solution with 20% (v/v) ethylene glycol prior to

data collection. A NaI-derivatized crystal was prepared according

to the quick-cryosoaking procedure [23]. A native crystal was

soaked for 30 s in a drop containing 0.8 M NaI in the same

cryogenic solution used for native crystal data collection.

Diffraction data sets from native and NaI-derivatized crystals

were collected in-house using a MAR 300 image plate detector

and a Rigaku RU200 rotating anode generator. Later on, a 1.15 Å

resolution data set was collected at ESRF-Grenoble on beamline

ID23. Crystals of form B were picked up directly from the

crystallization droplets, mounted in nylon loops and flash-frozen in

liquid nitrogen since the 30% MPD in the mother liquor served as

a cryoprotectant. The X-ray data collection at 1.45 Å resolution

was performed at station ID14, ESRF Grenoble. All the data sets

were integrated using XDS [24] and scaled using SCALA [25] from

the CCP4 package [26]. Data processing statistics for all crystals

are shown in Table 1.

Structure determination and refinement
To obtain experimental phases, we first considered using the 11

sulfur atoms present in the native crystals to conduct a sulphur

SAD experiment. A highly redundant data set was collected in-

house and show good statistics (table 1, Form A native) but was not

suitable to give a clear solution to the phase problem. Therefore

the quick-cryosoaking method was used. A crystal soaked in a

solution containing 0.8 M NaI was collected in-house (table 1, NaI

quick soak). The structure of Diedel was solved by SIRAS using

SHELXD/E [27] as SAD on the NaI quick soak data set alone

also failed to give a clear solution. Initials phases were calculated at

2.3 Å resolution and improved by solvent flattening with DM [26]

. Using the program ARP/wARP [28], the majority of the model

was correctly automatically built. Incorrectly built remaining

residues were manually modeled using Coot [29] and the model

was refined in REFMAC [30].

The structure in the crystal form B was solved by molecular

replacement with the program AMoRe [31] using the structure

solved in crystal form A as starting model. Two strong peaks of

electron density were found and were attributed to calcium ions

due to the presence of 20 mM CaCl2 in the crystallization

solution. The first calcium ion is coordinated by Asp 41 and Glu

49 as well as by Glu 25 of a symmetry related molecule. The

second calcium ion stands on a crystallographic symmetry axis in

the vicinity of Asp 91. None of these residues displays high level of

conservation among the Diedel-related molecules.

The structures were analyzed with the program Turbo-Frodo

[32]. The statistics on the structure refinement are summarized in

Table 1.

Phylogenetic analyses
Sequences were retrieved from the National Center for

Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.

gov/) and Flybase (http://flybase.org/blast/) using the sequence

Figure 3. Phylogenetic analysis of Diedel. (A) Genome localization of Diedel and related genes in drosophilids. Genes are named according to
Flybase. The asterisk indicates that sequence has been been re-analysed and differs from the annotated one. For each Drosophila species are
indicated the orientation and the position of the gene or on the chromosome (3R, X, 2) or on a scaffold. The precise position is indicated by the
number at the beginning and the end of each base on the sequence given on fly base. When the distances are not too long, the position respect a
scale (for pseudoobscura, persimilis and virilis). In the case of virilis, the gene GJ11856 is duplicated. No new ID has been proposed. (B) Phylogeny of
Diedel-related molecules. The proteins are named according to Flybase for Drosophila species. IDs of the viral molecules can be found in Text S1. In
red the melanogaster subgroup, in green the obscura group, in blue the repleta and the virilis groups, in purple the sequences from viruses. The
sequences are listed in Text S1.
doi:10.1371/journal.pone.0033416.g003

Figure 4. Amino acid sequence alignment of Driedel and other homolous proteins. The Diedel protein of Drosophila melanogaster was
aligned to homologous gene products from Drosophila melanogaster (CG34329) and Pseudalatia unipuncta granulovirus (PuGV). The numbering is
that of Diedel in this study. Secondary structure elements, i.e. strands and helices, are indicated below the sequences as arrows and rectangles,
respectively. Conserved residues are boxed, and strictly conserved residues are shown in white with a red background. Note that the level of
sequence identity is much more higher in the SD2 sub-domain than in the SD1 sub-domain. The figure was generated with ESPript [36].
doi:10.1371/journal.pone.0033416.g004
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retrieval system or/and basic local alignment search tool (BLAST)

[33]. Not annotated sequences were found by similarity search and

predicted using the gene prediction tools ‘‘GENSCAN’’ (http://

genes.mit.edu/GENSCAN.html) and ‘‘Eukaryotic Gene-

Mark.hmm’’ (http://opal.biology.gatech.edu/GeneMark/

eukhmm.cgi) and by a manual and careful analysis. Alignments

were carried out using clustalW (ref), MUSCLE [34] (www.

phylogeny.fr) or COnstraint-Based multiple Alignment Tool

(COBALT) [35] (www.ncbi.nlm.nih.gov/tools/cobalt).

Phylogenetic trees were constructed on the basis of amino acid

differences using PhyML [34] (www.phylogeny.fr), Fast Minimum

Evolution, Neighbor joining and Cobalt Tree [35] (www.ncbi.nlm.

nih.gov/blast/treeview). Reliability of the trees was assessed by

bootstrapping and comparison between the methods. The number

of bootstraps cycles performed for the analysis was 100. The

median bootstrap values for the phylogenetic trees were not less

than 98%.

Data deposition
Atomic coordinates and structure factors have been deposited in

the RSCB Protein Data Bank under the accession codes 3ZZO

(Form A) and 3ZZR (Form B).

Table 1. Data collection and refinement statistics.

Data collection statistics Form A (Native) Form A (NaI quick soak) Form A (HR) Form B

Radiation source In-house In-house ESRF ID23-EH1 ESRF ID14-EH1

Wavelength (Å) 1.5418 1.5418 0.9834 0.9340

Spacegroup P212121 P212121 P212121 P21212

Cell dimensions a, b, c (Å) 29.83, 44.30, 58.54 29.82, 44.58, 59.03 29.92, 44.58, 59.01 49.43, 78.29, 21.72

Resolution range (Å) 26.58–1.90 (2.00–1.90) 22.85–2.30 (2.42–2.30) 19.00–1.15 (1.21–1.15) 49.43, 78.29, 21.72

Total observations 87402 (12028) 31543 (4535) 92621 (11406) 105291 (12056)

Unique reflections 6485 (907) 3811 (536) 28072 (3995) 15572 (2147)

Completeness (%) 99.5 (98.6) 99.9 (100.0) 98.0 (97.6) 99.5 (97.8)

Redundancy 13.5 (13.3) 7.8 (7.9) 3.3 (2.9) 6.8 (5.6)

Rmerge
a 6.7 (20.6) 3.7 (6.3) 8.6 (26.3) 6.8 (24.1)

Average I/s(I) 10.2 (3.5) 15.4 (10.4) 9.8 (3.1) 19 (6.4)

Refinement and model statistics Form A (HR) Form B

Resolution range (Å) 18.00–1.15 20.00–1.45

Number of reflections used 26611 14757

Rwork (%)b/Rfree (%)c 12.89 / 15.13 15.97 / 19.57

Average B values

All atoms (Å2) 12.34 14.78

Protein atoms (Å2) 10.37 12.48

Thiocyanate atoms (Å2) 7.73 -

Ethylene glycol atoms (Å2) 12.82 -

MPD atoms (Å2) - 24.76

Ca atoms (Å2) - 15.69

Water atoms (Å2) 22.42 23.90

Root mean square deviation from ideality

Bond lengths (Å) 0.018 0.021

Bond angles (u) 1.595 1.988

Torsion angles (u) 5.869 6.820

Ramachandran analysis

Favoured regions/ Allowed regions / Outliers (% of residues) 96.7 / 3.3 / 0.0 94.6 / 4.3 / 1.1

No. of atoms

Protein 731 732

Thiocyanate 3 -

Ethylene glycol 4 -

MPD - 32

Ca - 2

Water 144 150

aRmerge =ghgi|Ih,i2,I.h|/ghgi Ih,i where ,I.h is the mean intensity of the symmetry-equivalent reflections.
bRwork =ghIFo|2|FcI/gh|Fo| where Fo and Fc are the observed and calculated structure factor amplitudes, respectively, for reflection h.
cRfree is the R value for a subset of 5% of the reflection data, which were not included in the crystallographic refinement.
doi:10.1371/journal.pone.0033416.t001

Crystal Structure of Diedel

PLoS ONE | www.plosone.org 7 March 2012 | Volume 7 | Issue 3 | e33416



Supporting Information

Text S1 Protein sequences of analogues of CG11501.
(DOC)

Acknowledgments

We thank the European Synchrotron Radiation Facility (ESRF) at

Grenoble and in particular the beamline ID14 staff for their assistance.

We also thank Estelle Santiago for expert technical assistance.

Author Contributions

Conceived and designed the experiments: CH C. Kellenberger JLI AR.

Performed the experiments: FC C. Kemp VB CH. Analyzed the data: FC

CH JLI AR. Wrote the paper: FC C. Kellenberger JLI AR.

References

1. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster.

Annu Rev Immunol 25: 697–743.

2. Hedengren M, Asling B, Dushay MS, Ando I, Ekengren S, et al. (1999) Relish, a

central factor in the control of humoral but not cellular immunity in Drosophila.

Mol Cell 4: 827–837.

3. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The

dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent

antifungal response in Drosophila adults. Cell 86: 973–983.

4. Lemaitre B, Kromer-Metzger E, Michaut L, Nicolas E, Meister M, et al. (1995)

A recessive mutation, immune deficiency (imd), defines two distinct control

pathways in the Drosophila host defense. Proc Natl Acad Sci U S A 92:

9465–9469.

5. Boutros M, Agaisse H, Perrimon N (2002) Sequential activation of signaling

pathways during innate immune responses in Drosophila. Dev Cell 3: 711–722.

6. Agaisse H, Petersen UM, Boutros M, Mathey-Prevot B, Perrimon N (2003)

Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to

septic injury. Dev Cell 5: 441–450.

7. Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, et al. (2005)

The Jak-STAT signaling pathway is required but not sufficient for the antiviral

response of drosophila. Nat Immunol 6: 946–953.

8. Souza-Neto JA, Sim S, Dimopoulos G (2009) An evolutionary conserved

function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad

Sci U S A 106: 17841–17846.

9. Arbouzova NI, Zeidler MP (2006) JAK/STAT signalling in Drosophila: insights

into conserved regulatory and cellular functions. Development 133: 2605–2616.

10. Agaisse H, Perrimon N (2004) The roles of JAK/STAT signaling in Drosophila

immune responses. Immunol Rev 198: 72–82.

11. Muller P, Kuttenkeuler D, Gesellchen V, Zeidler MP, Boutros M (2005)

Identification of JAK/STAT signalling components by genome-wide RNA

interference. Nature 436: 871–875.

12. Leone P, Bischoff V, Kellenberger C, Hetru C, Royet J, et al. (2008) Crystal

structure of Drosophila PGRP-SD suggests binding to DAP-type but not lysine-

type peptidoglycan. Mol Immunol 45: 2521–2530.

13. Mishima Y, Quintin J, Aimanianda V, Kellenberger C, Coste F, et al. (2009)

The N-terminal domain of Drosophila Gram-negative binding protein 3

(GNBP3) defines a novel family of fungal pattern recognition receptors. J Biol

Chem 284: 28687–28697.

14. Basbous N, Coste F, Leone P, Vincentelli R, Royet J, et al. (2011) The

Drosophila peptidoglycan-recognition protein LF interacts with peptidoglycan-

recognition protein LC to downregulate the Imd pathway. EMBO Rep 12:

327–333.

15. Kellenberger C, Leone P, Coquet L, Jouenne T, Reichhart JM, et al. (2011)

Structure-function analysis of grass clip serine protease involved in Drosophila

Toll pathway activation. J Biol Chem 286: 12300–12307.

16. Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:

491–497.

17. Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic
Acids Res 38: W545–549.

18. Stasiak K, Renault S, Demattei MV, Bigot Y, Federici BA (2003) Evidence for
the evolution of ascoviruses from iridoviruses. J Gen Virol 84: 2999–3009.

19. Long CM, Rohrmann GF, Merrill GF (2009) The conserved baculovirus protein

p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase. Virology
388: 231–235.

20. Andreotti AH (2003) Native state proline isomerization: an intrinsic molecular
switch. Biochemistry 42: 9515–9524.

21. Mallis RJ, Brazin KN, Fulton DB, Andreotti AH (2002) Structural character-
ization of a proline-driven conformational switch within the Itk SH2 domain.

Nat Struct Biol 9: 900–905.

22. Mishima Y, Coste F, Bobezeau V, Hervouet N, Kellenberger C, et al. (2009)
Expression, purification, crystallization and preliminary X-ray analysis of the N-

terminal domain of GNBP3 from Drosophila melanogaster. Acta Crystallogr
Sect F Struct Biol Cryst Commun 65: 870–873.

23. Dauter Z, Dauter M, Rajashankar KR (2000) Novel approach to phasing

proteins: derivatization by short cryo-soaking with halides. Acta
Crystallogr D Biol Crystallogr 56: 232–237.

24. Kabsch W (2010) Xds. Acta Crystallogr D Biol Crystallogr 66: 125–132.
25. Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D Biol

Crystallogr 62: 72–82.

26. CCP4 (1994) The CCP4 suite: programs for protein crystallography. Acta
Crystallogr D Biol Crystallogr 50: 760–763.

27. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:
112–122.

28. Perrakis A, Morris R, Lamzin VS (1999) Automated protein model building
combined with iterative structure refinement. Nat Struct Biol 6: 458–463.

29. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics.

Acta Crystallogr D Biol Crystallogr 60: 2126–2132.
30. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular

structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystal-
logr 53: 240–255.

31. Navaza J (2001) Implementation of molecular replacement in AMoRe. Acta

Crystallogr D Biol Crystallogr 57: 1367–1372.
32. Roussel A, Cambillau C (1991) Turbo-Frodo. In: Graphics S, ed. Silicon

Graphics Geometry Partners Directory Mountain View, CA. 86 p.
33. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403–410.
34. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, et al. (2008) Phylogeny.fr:

robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:

W465–469.
35. Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool

for multiple protein sequences. Bioinformatics 23: 1073–1079.
36. Gouet P, Robert X, Courcelle E (2003) ESPript/ENDscript: Extracting and

rendering sequence and 3D information from atomic structures of proteins.

Nucleic Acids Res 31: 3320–3323.

Crystal Structure of Diedel

PLoS ONE | www.plosone.org 8 March 2012 | Volume 7 | Issue 3 | e33416


