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Abstract: This study investigated the effects of Brazilian Red Propolis (BRP) extract on seven-day-old
multispecies subgingival biofilms. Mixed biofilm cultures containing 31 species associated with
periodontal health or disease were grown for six days on a Calgary device. Then, mature biofilms
were treated for 24 h with BRP extract at different concentrations (200–1600 µg/mL), amoxicillin
(AMOXI) at 54 µg/mL (positive control) or vehicle (negative control). Biofilm metabolic activity
was determined by colorimetry, and bacterial counts/proportions were determined by DNA–DNA
hybridization. Data were analyzed by Kruskal–Wallis and Dunn’s tests. Treatment with BRP at
1600, 800 and 400 µg/mL reduced biofilm metabolic activity by 56%, 56% and 57%, respectively,
as compared to 65% reduction obtained with AMOXI. Mean total cell counts were significantly
reduced in all test groups (~50–55%). Lower proportions of red, green and yellow complex species
were observed upon treatment with BRP (400 µg/mL) and AMOXI, but only AMOXI reduced the
proportions of Actinomyces species. In conclusion, BRP extract was as effective as AMOXI in killing
seven-day-old multispecies biofilm pathogens and did not affect the levels of the host-compatible
Actinomyces species. These data suggest that BRP may be an alternative to AMOXI as an adjunct in
periodontal therapy. In vivo studies are needed to validate these results.
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1. Introduction

The main etiological factor of periodontal disease is a dysbiosis of the oral subgingival
biofilm associated with the presence of periodontopathogens, mainly Porphyromonas gingivalis,
Tannerella forsythia, Treponema denticola and Aggregatibacter actinomycetemcomitans. These microorganisms
release metabolic byproducts or components (e.g., lipopolysaccharides and fimbriae) into periodontal
tissues, causing an exacerbated inflammatory response which leads to tissue destruction [1].
Periodontal diseases are estimated to affect between 20 and 50% of the world population, with a
negative impact on the individual’s health-related quality of life [2].

The treatment of periodontal diseases consists of controlling the occurrence of periodontopathogenic
microorganisms to reduce or eliminate tissue inflammation. Mechanical removal of subgingival
biofilms by means of scaling and root planning (SRP) significantly improves all periodontal clinical
parameters. [3]. However, the mechanical therapy alone may not be fully effective to reverse the major
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dysbiosis associated with periodontitis, requiring the use of systemic antibiotics. Systemic administration
of amoxicillin (AMOXI) was shown to be an effective adjunctive treatment in the management of
periodontitis [4,5]. In addition, the combination of AMOXI and metronidazole (MTZ) with SRP has
proven an effective approach [6–8]. However, some essential questions associated with the use of these
antibiotics remain unanswered, such as potential systemic side effects and the risk of selecting resistant
strains [9].

Natural products, such as propolis, have attracted the interest of researchers and laypeople
worldwide due to the recent scientific evidence of their beneficial pharmacological properties [10,11].
Brazilian Red Propolis (BRP) has a unique chemical composition that differs from that of other types
of Brazilian propolis. BRP contains mostly polar compounds, which facilitates its dissolution in
aqueous vehicles and sustains the presence of several isoflavones—compounds with documented
beneficial properties for humans [12]. The main relevant pharmacological actions of BRP include
antimicrobial [13–15], anti-inflammatory [16–18], anti-tumoral [19], healing [20], antioxidant and
antiparasitic properties [15].

Recently, our research group reported that BRP extract is effective in reducing multispecies
subgingival biofilm formation [13], but its effects on mature biofilms remain to be determined.
Disruption of mature biofilms by antimicrobial agents is challenging and commonly ineffective since
mature biofilm cultures are more virulent than newly formed ones or than planktonic cells [21,22]. Thus,
in this study, we investigated the inhibitory effects of BRP extract on mature multispecies subgingival
biofilms comparatively to AMOXI.

2. Results

Figure 1 shows the effects of BRP extract and controls on the metabolic activity of multispecies
biofilm cells. Treatment with BRP extract at 1600, 800 and 400 µg/mL significantly reduced biofilm
metabolic activity by 56%, 56% and 57%, respectively, as compared to the vehicle control (p < 0.05).
However, there was no significant difference in metabolic activity between cultures treated with BRP
at 200 µg/mL and the vehicle (p > 0.05).
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Since the extract concentration of 200 µg/mL did not reduce biofilm metabolic activity, we did 
not include this treatment group in the checkerboard DNA–DNA hybridization analysis. Figure 2 
shows the mean total counts of biofilm cells treated with BRP (1600, 800 and 400 µg/mL) and AMOXI 
(54 µg/mL). All treatment groups were different from the vehicle control (p < 0.05), with no significant 
difference between them (p > 0.05). Interestingly, no significant difference in total cell counts was 
observed between biofilm cultures treated with BRP extract, regardless of the tested concentration, 
and those treated with the standard drug AMOXI (p > 0.05). 

Figure 1. Metabolic activity of multispecies biofilm cultures treated with the dilution vehicle (negative
control), Brazilian Red Propolis (BRP) ethanolic extract (1600, 800, 400 and 200 µg/mL) and amoxicillin
(AMOXI) (54 µg/mL). Vehicle-treated biofilms were considered as with 100% metabolic activity.
(*) indicates significant differences when compared to the control group (Kruskal–Wallis followed by
Dunn’s post-hoc test, p ≤ 0.05).

Since the extract concentration of 200 µg/mL did not reduce biofilm metabolic activity, we did
not include this treatment group in the checkerboard DNA–DNA hybridization analysis. Figure 2
shows the mean total counts of biofilm cells treated with BRP (1600, 800 and 400 µg/mL) and AMOXI
(54 µg/mL). All treatment groups were different from the vehicle control (p < 0.05), with no significant
difference between them (p > 0.05). Interestingly, no significant difference in total cell counts was
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Figure 2. Total bacterial counts (× 105) in biofilms treated with the BRP ethanolic extract at 1600,
800 and 400 µg/mL and amoxicillin (AMOXI) at 54 µg/mL. (*) indicates a significant difference when
compared to the control group (Kruskal–Wallis followed by Dunn’s post-hoc test, p ≤ 0.05).

As there was no statistical difference between the three tested concentrations of BRP extract,
the lowest effective concentration was selected for further analysis. Figure 3 shows that treatment
with BRP (400 µg/mL) and AMOXI (54 µg/mL) significantly reduced the proportions of red-complex
(disease-associated), green- and yellow-complex (health-associated) bacterial strains and that only
AMOXI decreased the proportions of Actinomyces species, as compared to the control group (p < 0.05).
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the proportion of bacterial complexes. The colors represent different microbial complexes as described
by Socransky et al., 1998. The data were analyzed by Kruskal–Wallis followed by Dunn’s post-hoc
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Figure 4 shows the mean total counts of each bacterial strain in treated biofilms. Treatment with
BRP (400 µg/mL) and AMOXI (54 µg/mL) reduced the mean counts of eight different species
(Actinomyces gerencseriae, Capnocytophaga ochracea, Capnocytophaga gingivalis, Prevotella intermedia,
Porphyromonas gingivalis, Tannerella forsythia, Streptococcus anginosus and Streptococcus mutans) when
compared to vehicle-treated biofilms (p < 0.05). Streptococcus sanguinis counts were significantly reduced
only in BRP-treated biofilms, whereas Streptococcus oralis, Streptococcus gordonii, Actinomyces israelii and
Fusobacterium nucleatum vincentii counts were reduced only in AMOXI-treated biofilms, as compared to
the control group (p < 0.05).
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Figure 4. Mean total counts of bacterial strains in biofilms treated with the vehicle control, BRP extract
(400 µg/mL) and amoxicillin (AMOXI) (54 µg/mL). The data were analyzed by Kruskal–Wallis followed
by Dunn’s post-hoc test (p < 0.05). Letter “a” indicates statistically significant differences between BRP
(400 µg/mL) and the vehicle-control but no difference between BRP (400 µg/mL) and AMOXI; letter “b”
indicates statistically significant differences between AMOXI and the vehicle-control but no difference
between AMOXI and BRP (400 µg/mL).

3. Discussion

Our study showed that BRP extract was effective in reducing the metabolic activity and total
cell counts of red-complex strains in mature biofilms similarly to AMOXI. Moreover, both substances
significantly reduced the mean counts of eight bacterial species, including well-known periodontal
pathogens, such as P. gingivalis, T. forsythia and P. intermedia, while the proportions of the host compatible
Actinomyces species were only reduced by AMOXI.
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Subgingival biofilms associated with periodontitis are classically categorized into color-coded
complexes, according to their role in periodontal health or disease. The red complex is composed by
microorganisms associated with disease; the orange complex is associated with the health–disease
transition, while the yellow, purple and green complexes as well as Actinomyces species are associated
with a healthy periodontal condition [23]. It has been well established that pathogens in the red
and orange complexes may trigger and/or sustain the dysbiosis state in biofilms associated with
periodontitis, thereby leading to a persistent, exacerbated and damaging inflammatory response [1].
Thus, the effects of BRP in reducing the proportion of red-complex pathogens, such as P. gingivalis and
T. forsythia, similarly to a potent antibiotic such as AMOXI, was considered a remarkable result.

A recent study showed that BRP extract was able to reduce the proportions of red and orange
bacterial complexes at the concentration of 1600 µg/mL, while chlorhexidine reduced only those from
the red complex [13]. The differences between our findings and those of Miranda et al. [13] can be
explained by the treatment regimen used in our studies. While Miranda et al. [13] performed two
1 min daily treatments during biofilm formation, we grew biofilm cultures for six days to a mature
state and then treated them for 24 h. This protocol was selected to mimic the systemic use of antibiotics,
which are normally administered for one/two week(s). Although mature biofilms are more resistant to
antimicrobials than immature biofilms, the effective concentration of BRP extract for a 24 h treatment
(400 µg/mL) was four-fold lower than that used for daily treatments (1600 µg/mL) [13]. Once the
contact period of the BRP extract with biofilm cells was longer in our study, we reasoned that testing
a lower effective concentration of the extract would be more appropriate, particularly because our
findings showed that increasing BRP extract concentration above 400 µg/mL does not augment the
inhibitory effects of the extract against mature biofilms.

An intriguing result observed in our study was that AMOXI-treated biofilms showed lower
proportions of beneficial Actinomyces species. Interestingly, a previous clinical study showed a
considerable decrease in the proportions of Actinomyces species up to one year after AMOXI
administration in a group of adults with periodontitis. This may be considered an undesired effect of
AMOXI since species of the genus Actinomyces have been closely related to rebiosis [4,6,24].

The combination of AMOXI and MTZ with SRP has been well studied and has shown
clinically relevant benefits for the treatment of severe periodontitis and killing of subgingival
pathogens [6]. However, another study using the same in vitro subgingival biofilm model showed that
administration of AMOXI alone or AMOXI plus MTZ for a period of 24 h has similar effects on biofilm
metabolic activity [25]. Therefore, in the present study, we used only AMOXI as a positive control.
The concentration of AMOXI (54 µg/mL) used in our study was the most effective one from a range of
concentrations previously tested in a 24 h treatment [25]. Consistent with the findings reported by
Soares et al., our study showed a very similar effectiveness of AMOXI in reducing biofilm metabolic
activity by 65%.

While systemic antibiotics are clinically effective, there have been reports of side effects [7] and,
more importantly, a significant increase in antibiotic resistance rates worldwide [26]. Altogether,
this scenario has encouraged researchers to constantly seek novel candidates for co-adjuvant periodontal
therapy, such as propolis, probiotics and resolvins [27–30]. The interplay between microbial dysbiosis
and inflammation on the onset and progression of periodontal diseases has been a topic of debate,
and apparently, BRP extract seems to have effectivity on both aspects. It has been recently shown
in vitro and in vivo that BRP can modulate the inflammatory process by inhibiting the Toll-like response
and the NF-κB pathway, an important inflammatory mediator [16–18,31]. In addition, our findings
and others reported elsewhere [13] indicate that BRP extract has an excellent killing effect against
periodontal pathogens during biofilm formation. These data suggest that BRP holds concomitant
anti-inflammatory and antibacterial properties. Its complex chemical composition, including the
presence of formonetin, medicarpin, neovestitol and vestitol, may explain the major antimicrobial and
anti-inflammatory properties displayed by the extract [14,32].
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Isolating and purifying fractions from natural products is a relevant and novel strategy in drug
discovery and development. Working with crude extracts may prove a challenging task due to their
complex chemical composition and the common presence of compounds with unknown polarity and
solubility [33]. A fraction containing both neovestitol and vestitol, which are compounds isolated from
BRP, showed significant activity against Streptococcus mutans biofilms [34]. Thus, the neovestitol/vestitol
fraction of BRP should be further tested in subgingival biofilm models. Additionally, these compounds
were shown to have anti-inflammatory properties when tested isolated. Both neovestitol and vestitol were
reported to modulate the NF-κB pathway in lipopolysaccharide (LPS)-activated macrophages [35,36]
and decreased neutrophil migration, rolling and adhesion, by reducing the expression of ICAM-1
in an in vivo LPS-induced acute peritonitis model [37,38]. Lastly, a recent study also showed that
these compounds downregulated the expression of proteins commonly used as targets for cancer
treatment [39].

Despite the body of evidence showing the beneficial properties of BRP, its clinical use still warrants
further research. Since most of the published articles on this topic report laboratorial or animal studies,
the safety and possible toxicity of BRP in humans remain to be determined.

4. Materials and Methods

4.1. Preparation of BRP Extract

BRP samples were collected in a private farm in the city of Maceio, Alagoas State, northeastern
Brazil. The samples were scraped off the boxes in which they were transported, which also contained
Apis mellifera bees. Any residues of bee wax or other materials were removed. The chemical analysis
of BRP samples was previously performed by our research group [16]. High-performance liquid
chromatography revealed the main compounds found in BRP samples were formononetin, vestitol,
neovestitol, quercetin, liquiritigenin and isoliquiritigenin [16], which is in accordance with the
literature [14,15,31]. Briefly, the BRP ethanolic extract was obtained by adding 25 g of red propolis into
200 mL of 80% ethanol/ 20% water (v/v) under continuous mixing for 45 min. Next, the suspension was
filtered with qualitative filter paper (80 g) to remove any possible impurity, the solvent was evaporated
using a rotary evaporator equipment, and the BRP ethanolic extract was obtained, with a yield of 73%
(from 100 g of red propolis, 73 g of BRP ethanolic extract was obtained). The extract was kept at 4 ◦C
and protected from light to prevent stability loss. The BRP ethanolic extract was re-diluted in 80%
ethanol to obtain concentrations of 3200, 1600, 800 and 400 µg/mL. Prior to biofilm treatments, the BRP
extracts were diluted 1:1 with the culture media, with final treatment concentrations as 1600, 800, 400
and 200 µg/mL. The final ethanol concentration in the extract used in the treatment was 3.2%.

4.2. In Vitro Multispecies Biofilm Model

In vitro multispecies biofilm cultures were prepared as described by Miranda et al. [13], with
some modifications. The bacterial species included in the biofilm model are listed in Table 1.

Tryptone soy agar with 5% sheep blood (Probac, São Paulo, Brazil) was used to grow most species
under anaerobic conditions, 85% nitrogen, 10% carbon dioxide and 5% hydrogen, while Eubacterium
nodatum were cultured on fastidious anaerobic agar with 5% sheep blood. Porphyromonas gingivalis was
grown on tryptone soy agar containing yeast extract enriched with 1% hemin, 5% menadione and 5%
sheep blood. Tannerella forsythia was grown on tryptone soy agar containing yeast extract enriched
with 1% hemin, 5% menadione, 5% sheep blood and 1% N-acetylmuramic acid. All species were
allowed to grow on agar plates for 24 h and then transferred to glass tubes containing BHI culture
medium (Becton Dickinson, Sparks, MD, USA) supplemented with 1% hemin. After 24 h growing on
conical tubes, the optical density (OD) was adjusted for the inoculum to have about 108 cells/mL of
each species. A dilution of individual cell suspensions was performed, and 100 µL aliquots containing
106 cells from each species were added to 11,700 µL of BHI broth complemented with 1% hemin and
5% sheep blood to obtain an inoculum of 15 mL.
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Table 1. List of bacterial species cultured in multispecies biofilms. The strains were categorized into
the microbial complexes described by Socransky et al. [25].

Multispecies Biofilm Strains

Actinomyces complex
Actinomyces naeslundii ATCC 12104

Actinomyces oris ATCC 43146
Actinomyces gerencseriae ATCC 23840

Actinomyces israelii ATCC 12102

Purple complex
Veillonella parvula ATCC 10790

Actinomyces odontolyticus ATCC 17929

Yellow complex
Streptococcus sanguinis ATCC 10556

Streptococcus oralis ATCC 35037
Streptococcus intermedius ATCC 27335

Streptococcus gordonii ATCC 10558
Streptococcus mitis ATCC 49456

Green complex
Aggregatibacter actinomycetemcomitans ATCC 29523

Capnocytophaga ochracea ATCC 33596
Capnocytophaga gingivalis ATCC 33624

Eikenella corrodens ATCC 23834
Capnocytophaga sputigena ATCC 33612

Orange complex
Campylobacter showae ATCC 51146
Eubacterium nodatum ATCC 33099

Fusobacterium nucleatum vincentii ATCC 49256
Parvimonas micra ATCC 33270

Fusobacterium nucleatum polymorphum ATCC 10953
Fusobacterium periodonticum ATCC 33693

Prevotella intermedia ATCC 25611
Streptococcus constellatus ATCC 27823

Red complex
Porphyromonas gingivalis ATCC 33277

Tannerella forsythia ATCC 43037
Other

Streptococcus anginosus ATCC 33397
Streptococcus mutans ATCC 25175

Selenomonas noxia ATCC 43541
Propionibacterium acnes ATCC 11827

Gemella morbillorum ATCC 27824

The multispecies biofilm model was developed using a Calgary biofilm device (CBD) in a 96-well
plate (Nunc; Thermo Scientific, Roskilde, Denmark). A 150 µL aliquot of each inoculum was added to
the wells and corresponded to ~1 × 104 cells of each bacterial strain, except for P. gingivalis and Prevotella
intermedia, whose inocula were adjusted to 2 × 104 cells. A lid containing polystyrene pins was used to
seal the 96-well plate (Nunc TSP system; Thermo Scientific, Roskilde, Denmark). Coated plates were
incubated at 37 ◦C under anaerobic conditions. On day three, the spent medium (BHI broth with 1%
hemin and 5% sheep blood) was replaced, and biofilm cultures were kept at 37 ◦C under anaerobic
conditions for an additional four days to obtain seven-day-old biofilms [13].

4.3. Treatments with BRP Extract

Biofilm cultures were treated with the BRP extract for 24 h after six days of biofilm development.
Biofilm-coated CBD pins were transferred to 96-well plates containing culture media plus the BRP
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ethanolic extract (1600, 800, 400 or 200 µg/mL), dilution vehicle (negative control) and AMOXI at
54 µg/mL (positive control). All groups were diluted with culture media at a 1:1 ratio. The vehicle
control was the same solution used to dissolve the BRP extract and consisted of 6.4% ethanol in 10%
phosphate buffer (v/v, final concentration: 3.2%). After treatment, the pins were washed with PBS and
submitted to biological tests, as following described.

4.4. Quantification of Biofilm Metabolic Activity

The effects of BRP extract and controls on the metabolic activity of multispecies biofilm cells
were measured in a spectrophotometric assay with 2,3,5-triphenyltetrazolium chloride (TTC) (catalog
No. 17779; Fluka analytical). TTC is used to differentiate between metabolically active and inactive
cells. TCC white substrate is enzymatically reduced to red formazan 1,3,5-triphenyl by live cells due to
the activity of several dehydrogenases. The change in substrate color is an indirect measure of bacterial
metabolic activity.

To measure the metabolic activity of biofilm cells, the pins were transferred to 96-well plates with
200 µL/well of fresh BHI medium supplemented with 1% hemin and 0.1% TTC solution. The plates
were incubated under anaerobic conditions for 8 h at 37 ◦C. TTC reduction to red formazan was read
at 485 nm in a spectrophotometer [13].

4.5. Checkerboard DNA–DNA Hybridization

The pins coated with seven-day-old biofilms from each group were transferred to Eppendorf tubes
containing 100 µL of TE buffer (10 mM Tris-HCl, 1 mM EDTA (pH 7.6)); then, 100 µL of 0.5 M NaOH was
added to each tube. The tubes containing the pins and the final solution were boiled for 10 min, and the
solution was neutralized by adding 0.8 mL of 5 M ammonium acetate. The samples were individually
analyzed for the presence and count of the 31 bacterial species using the DNA–DNA hybridization
technique, as previously described (Socransky et al., 1994; Mestnik et al., 2010). Briefly, following
sample lysis, the DNA was placed onto a nylon membrane using a Minislot device (Immunetics,
Cambridge, USA) and fixed onto the membrane at 120 ◦C for 20 min. Next, the membrane was placed
in a Miniblotter 45 (Immunetics). Digoxigenin-labelled whole genomic DNA probes of the 31 bacterial
species were hybridized in each lane of the Miniblotter. Following hybridization, the membranes were
washed, and DNA probes were detected using a specific antibody to digoxigenin conjugated with
phosphatase alkaline. The signals were detected using AttoPhos substrate (Amersham Life Sciences,
Arlington Heights, USA), and the data were obtained in Typhoon Trio Plus program (Molecular
Dynamics, Sunnyvale, USA). Two lanes in each membrane contained the standards with 1 × 105 and
1 × 106 cells of each strain. The signals were converted into absolute counts via comparison with the
standards on the same membrane. Failure to detect a signal was recorded as zero. The measurements
of the experimental groups were compared against those of the negative and positive controls.
Counts below the method detection limit (1 × 104) were considered zero [40].

4.6. Statistical Analysis

The metabolic activity data were analyzed by Kruskal–Wallis followed by Dunn’s post-hoc test,
whereas the microbial composition (checkerboard DNA–DNA hybridization) data were analyzed
using Kruskal–Wallis followed by Dunn’s post-hoc test. A 5% significance level was considered in all
statistical tests.

5. Conclusions

Collectively, our findings showed that BRP (at a minimal concentration of 400 µg/mL) extract was
as effective as 54 µg/mL of AMOXI in killing seven-day-old multispecies biofilm pathogens and did
not affect beneficial Actinomyces spp. growth. This suggests that BRP may be an alternative to AMOXI
as an adjunct in periodontal therapy, but in vivo studies are needed to validate these results.
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